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Abstract— The most crucial step of the structural health monitoring 

(SHM) methodology is the detection stage where a decision on the 

existence of damage has to be made. Without a very detailed and refined 

finite element model of the system, data driven approaches have the 

potential for rapid assessment of the structure at the damage detection 

stage of the more encompassing SHM problem. Change in the dynamic 

properties of structures offers a real-time structural health monitoring 

technique which detects damage at low cost and with little or no human 

intervention. Whether the changes in the identified parameters are due to 

the onset of damage or due to factors introducing non-linearity to the 

system, such as closing and opening of micro-cracks in concrete 

structures, environmental conditions or noise present in the data is a 

challenge that needs to be faced. This study presents a pattern recognition 

type of approach that will help with the distinction of true and false 

positives. The first step of the model-free methodology includes the 

linearity check of the system. The recorded vibration measurements 

recorded from the structure is divided into time segments and with each 

data set modal parameters are identified. The variability of the 

identification results are used as a measure for the existence of 

confounding factors that may mask accumulation of damage revelation. 

An ‘expert’ knowledge gained through this allows better treatment of the 

uncertainties in the problem and mimic the human decision process. The 

results of the numerical simulations are promising for the effectiveness of 

the procedure to minimize ‘false negative’ identifications. 

Keywords— Data Driven Damage Detection, Structural Health 

Monitoring, Cognitive, Cognitive Concepts 

1 .  I N T R O D U C T I O N  

HE need for a rapid assessment of the state of the critical 

and conventional civil structures have been demonstrated 

during recent earthquake disasters. The problem with the 

current practice is the shortage of experienced inspectors and 

inevitable time delays. These problems are compounded when 

the signs of damage are not visible and the structure being 

inspected is not readily accessible.  

Structural health monitoring (SHM) methodologies are being 

explored extensively as a possible means to an automated 

damage characterization strategy for detecting, locating, 

quantifying damage and if possible predicting the remaining 

service life of a structure in a timely manner. SHM employs 

both local and global methods of damage identification to 

achieve this objective. The local methods include visual 

inspections and non-destructive evaluation tools whereas 

global methods work with measured vibration data and data 

mining methods [1-5] for achieving this objective.  

The limitation of the local methods is that they are not 

practical for application to large and complex structures but 

 

 more so to investigate specific components of a structure. 

Most of the global methods, on the other hand, exploit 

changes in modal parameters and to identify the extent and 

location of damage in large structures. The basic idea behind 

these techniques is that the vibration characteristics or the so-

called modal parameters (frequencies, mode shapes and modal 

damping) are functions of the physical properties of the 

structure (mass, energy dissipation mechanisms and stiffness) 

and damage will in turn cause changes in the modal properties. 

The problem that is most commonly considered is the one 

where data are recorded at two different times and it is of 

interest to determine if the structure suffered damage in the 

time interval between the observations. Damage, within this 

context, is defined as any unfavorable changes in the physical 

properties of the structure. The behavior of the system during 

the data collection is typically assumed linear and the damage, 

which may result from an extreme event occurring inside the 

time segment, is characterized as changes in the parameters of 

a linear model. Hence linear methods are utilized to analyze 

the two signals, namely before and after the damage. In Civil 

Engineering applications, however, the assumption of linearity 

is hardly ever satisfied. Even in cases of relatively low 

excitation amplitudes, closing and opening of micro-cracks in 

concrete structures, yielding of regions with high residual 

stresses in steel structures, and the ever present interaction 

between the structural framework and non-structural elements, 

introduces nonlinearity in the response which will definitely 

affect the accuracy of the analysis. Furthermore, most of the 

damage detection techniques generally neglect the effect of 

environmental factors including changes in loads, boundary 

conditions, temperature, and humidity, on modal parameters. 

Whether the changes in the identified parameters are due to 

the onset of damage or due to such other factors is the most 

challenging aspect of the damage identification problem. This 

paper examines cognitive concepts to discriminate the changes 

of modal parameters due to inherent non-linearity of the 

system from those caused by structural damage. We attempt to 

establish a systematic approach to distinguish the differences 

in the identified natural frequencies due to damage versus 

natural variation due to the existence of mild non-linearities.  

   

2 .  M O D A L  I D E N T I F I C A T I O N  W I T H  

O B S E R V E R  K A L M A N  F I L T E R  

A theoretical framework that has proved convenient and 

fruitful for the development of mathematical models from 

input/output data is the state-space approach. Among methods 

that operate entirely in time domain, the Observer/Kalman 

Filter Identification (OKID) algorithm has shown to be 

efficient and robust. The most noteworthy feature of the 

algorithm is the introduction of an observer that transforms the 

mathematical structure to one where the eigenvalues of the 
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system matrix are zero for noiseless data or nearly zero when 

noise is present. A consequence of the modification introduced 

by the observer is that the non-zero length of the modified 

system's pulse response functions is drastically reduced when 

compared to those of the original system, with important gains 

in efficiency and robustness resulting. In effect, the OKID 

algorithm treats the output data as resulting from a modified 

input on a modified system. The matrices of a minimum 

realization for the actual system are then subsequently 

obtained for the modified system. The name Observer/Kalman 

derives from the fact that the gain of the introduced observer is 

that of a Kalman filter [6].   

The eigensystem realization algorithm (ERA) was first 

proposed by Juang and Pappa (1985) for modal parameter 

identification and model reduction of linear dynamical 

systems and was later refined and ERA with data correlations 

(ERA/DC) was formulated to handle the effects of  noise and 

nonlinearities [8].Operating on pulse response functions, also 

known as Markov Parameters, this technique produces an 

input/output mapping having the smallest state vector 

dimension that is compatible with a given accuracy. This 

mapping is known as a realization and has the form 

 

uBxAx                               (1a) 

 DuCxy                                (1b) 

where x = state vector, y = output vector, and the matrices 

A,B,C and D are the result of the realization. Since the same 

input/output mapping of Eqs.(1) is also given by: 

 

uBTzATTz 11                  (2a) 

     DuzCTy                             (2b) 

It is evident that the matrices that define the realization are not 

unique (except for D which is independent of the non-singular 

transformation matrix T). Note, however, that since the system 

matrices of any two realizations are related by a similarity 

transformation, the eigenvalues are preserved. 

In order to carry out the system realization with the extracted 

impulse response data, the discrete counterpart of the 

continuous state-space model can be expressed as 

 

)()()1( 11 kuBkxAkx           (3a) 

)()()( kDukCxky                  (3b) 

For a system with r input and m measurement vectors, the 

system response, yj(k) at time step k due to unit impulse uj can 

be written as 

 

 )()()()( 21 kykykykY r , k=1,2,…      (4) 

and form the rsms Hankel matrix 

 



























))1(2()()1(

)()2()1(

)1()1()(

)1(

skYskYskY

skYkYkY

skYkYkY

kH









   (5) 

where s is an integer that determines the size of the matrix. 

By definition, the submatrices Y(k) correspond to the system 

Markov parameters and can be expressed as  

 

DY )0(                           (6a) 

BCAkY k 1)(          k=1,2…                       (6b) 

The basic formulation of ERA starts with the factorization of 

the Hankel matrix using the singular value decomposition, 
TVSUH )0(                                      (7a) 

TVSASUH 2/12/1)1(                        (7b) 

Thus, the following triplet is a minimum realization: 
2/1
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where 
T
mE

is 
 mmm OOI    

 and 
T
rE

 is 
 rrr OOI    

 and 
Oi is a null matrix of, Ii is an identity matrix of order i. 

The basic formulation of the ERA requires the system's 

Markov parameters. An accurate identification of the Markov 

parameters is vital for accurate system realization. 

Identification of the system Markov Parameters has 

traditionally been carried out by Discrete Inverse Fourier 

Transformation (IDFT) of Frequency Response Functions 

(FRF). The approach used here, however, solves for the 

Markov Parameters directly in the time domain. The approach 

avoids the well-known difficulties associated with time-

domain deconvolution by the introduction of an observer. The 

observer, when appropriately selected, leads to a state-space 

representation where the output is mapped to a modified input 

by a system whose pulse response functions decay much faster 

than those of the original system. As one anticipates, the 

Markov Parameters of the original system can be recovered 

from the observer gain and the Markov Parameters of the 

Observer Model.   

The State-Space Observer Model is readily obtained from Eqs. 

(1). Specifically, adding and subtracting Gy to Eq. (1a) and 

defining 
 











y

u
v                                          (9) 

one gets 

 

vBxAx                                     (10a) 

DuCxy                                       (10b) 

where; 

CGAA                                        (11) 

and 

][ GDGBB                             (12) 
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Provided the system is observable, the eigenvalues of the 
modified system matrix Eq. (11) can be placed arbitrarily. One 
very attractive alternative is to select G such that all the 

eigenvalues of A  are zero. In this case the resulting system 
matrix is nilpotent and the Markov Parameters of the Observer 
Model become identically zero after a finite (typically small) 
number of time steps.  Because of the close relationship 

between the gain G that leads to zero eigenvalues in A  (dead-
beat observer) and the Kalman Filter, the foregoing approach 
is known as the Observer/Kalman Filter Identification (OKID) 
technique. In practice, the term is in fact generally used to 
refer to the complete process of identifying the pulse response 
functions followed by the generation of a minimum 
realization, typically using ERA/DC [8]. Once the system 
realization is obtained, the eigenvalues () and eigenvectors () 
of the state matrix A and the state-to-output influence matrix C 
can be used to obtain the modal parameters. 

3 .  N U M E R I C A L  S I M U L A T I O N S  

The numerical simulations are performed on the shear building 

model of a one-story one bay frame given in Figure 1. For the 

perfectly linear healthy state, the modal parameters of the  

structure are listed in the figure. The input excitation is taken 

as horizontal ground motion. 

 

 
Fig.1. Simplified 3-D model for the numerical simulations: (a) Elevation view 

(b) Plan view  

  

 
Fig.2. (a) Restoring force vs displacement relationship for the wall (b) 

Simulated acceleration measurements at the mass center of the floor 

As part of the attempt to discriminate the changes in the modal 

parameters due to non-linearity of the system versus those 

caused by structural damage, the restoring force relationship 

for the shear wall is assumed to display Bouc-Wen [9] type 

non-linear behavior with parameters that result in smooth 

transition to non-linear softening behavior as shown in Figure 

2. The acceleration response at the indicated sensor locations 

are analytically computed and sensor noise is simulated by 

contaminating both the input and the analytically computed 

acceleration response for all four floors with white noise 

having an RMS equal to 10%. The simulated acceleration 

measurements are also plotted in Figure 2. The 2500 point, 50 

sec. long response data set is divided into 14 sec. long 

segments and consecutive segments are overlapped by a ratio 

of 5/7. ERA-OKID procedure is carried out for each segment 

and the modal parameters displayed in Table 1 are identified. 

 

 

 

 
Fig.3. Identified Parameters for Mode 1: (a) Non-linear case (b) Linear case 

Figure 3(a) and 3(b) display the variation of the estimated 

damping ratios and the natural frequencies for the first mode 

using different data segments with ERA-OKID algorithm for 

the linear damaged and non-linear cases, respectively. As 

clearly indicated in the figure, for the linear case, both for 

healthy and damaged states, the variability in the modal 

TABLE I 

MODAL IDENTIFICATION RESULT 

Data Set 

Linear: 
No Damage 

Linear: 
Damage 

Non-Linear: 
No Damage 

f1(HZ) 1 (%) f1(HZ) 1 (%) f1(HZ) 1 (%) 

1 0.96 2.09 0.83 2.13 0.69 13.88 

2 0.96 2.10 0.83 2.02 0.70 12.67 

3 0.96 2.19 0.83 2.14 0.74 14.04 

4 0.96 2.21 0.83 2.11 0.77 16.50 

5 0.96 2.38 0.83 2.22 0.80 12.47 

6 0.96 2.31 0.83 2.59 0.81 9.31 

7 0.96 2.73 0.83 2.68 0.81 7.75 

8 0.96 3.14 0.83 3.24 0.82 6.79 

9 0.96 3.00 0.84 3.46 0.86 5.80 

10 0.96 3.10 0.84 2.25 0.90 3.91 
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parameter estimates are small. The mean estimated values for 

the fundamental mode are f1=0.96 Hz and 1=2.52% with a 

standard deviation of 0.42% for the undamaged case and 

f1=0.83 Hz and 1=2.48% with a standard deviation of 0.50% 

for the damaged linear case. For the nonlinear case however, 

nonlinearity in the response manifests itself with increased 

damping ratio estimations having high variability (=4.17, 

=10.31). For the linear damaged case, however variability in 

the damping ratios is much smaller (=2.48, =0.50). It 

should also be mentioned that although the singular value 

decomposition of the Hankel matrix indicates the order of the 

system clearly during realization for the perfectly linear case, 

with nonlinear behavior it becomes harder to determine the 

order using the singular values and nonlinearity starts 

appearing as fictitious modes.   

4 .  C O N C L U S I O N S  

In this work, a damage detection methodology has been 
introduced. The proposed methodology is just an initial step in 
a damage characterization problem where a decision has to be 
made on the existence of damage. The initial examination with 
simulated data had promising results its capability for 
detection stage. Although the training data included loss of 
stiffness as the simulated damage and mild non-linear 
softening restraining force-displacement relationship, it can be 
easily expanded to different damage scenarios and force-
displacement relationships including inelastic behavior. The 
variability in the extracted information proved to be very 
useful in discriminating between the simulated cases of 
‘nonlinear behavior’ versus ‘damage’. Although this work did 
not focus on the further localization of damage but just the 
distinction between presence or absence of damage, this type 
of ‘insight’ may allow the ‘expert’ to better treat the 
uncertainties and provide reliable detection of damage. Further 
work will have to involve different structural configurations 
with different damage scenarios including multiple locations 
so that the ‘training data’ includes a more comprehensive data 
base content. 
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