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n-coherent rings in terms of complexes
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Abstract
The aim of this paper is to investigate n-coherent rings using complexes.
To this end, the concepts of n-injective complexes and n-flat complexes
are introduced and studied.
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1. Introduction. The notion of coherent rings was first appear in Chase’s paper [[3]]
without being mentioned by name. The term coherent was first used by Bourbaki in [[2]].
Since then, coherent rings have became a vigorously active area of research, see [[13]].

Coherent rings have been characterized in various ways using modules by many authors
such as Chase, Cheatham, Ding, Stone, Stenström and Vasconcelos (see [[3, 4, 8, 14, 16]]).
For example, a ring R is left coherent if and only if the direct product of any flat right
R-modules is flat if and only if the direct limit of FP -injective left R-modules is FP -
injective [[3, 14]]. In [[4], Theorem 1], Cheatham and Stone characterized coherent rings
using the notion of character module as follows:
The following statements are equivalent:
(1) R is a left coherent ring;
(2) A left R-module M is injective if and only if M+ is flat;
(2) A left R-module M is injective if and only if M++ is injective;
(2) A right R-module M is flat if and only if M++ is flat.

The homological theory of complexes of modules has been studied by many authors
such as Christensen, Enochs, Foxby, Garcß́a Rozas, Holm, Liu and Wang. Several char-
acterizations of coherent rings also have been done in various ways using complexes. For
instance, a ring R is right coherent if and only if any complex of left R-modules has a flat
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preenvelope [[12], Theorem 5.2.2]; a ring R is right coherent if and only if the direct limit
of FP -injective complexes of left R-modules is FP -injective [[17], Proposition 2.30].

The concept of n-coherent rings was introduced by Costa in [[7]]. In [[1]], Bennis
introduced the notion of n-X -coherent rings and gave some characterizations of it using
n-X -injective and n-X -flat modules for a class of R-modules X .

Motivated by the above work, the object of this paper is to characterize left n-coherent
rings using complexes. To this end, we firstly introduce and study n-injective and n-flat
complexes for a fixed positive integer n. We show the following results as our main results
in this note (cf. Theorem 4.11).

1.1. Theorem. Let R be a ring and n a fixed positive integer. Then the following are
equivalent:
(1) R is left n-coherent;
(2) Every direct product of n-flat complexes of right R-modules is n-flat;
(3) Every direct limit of n-injective complexes of left R-modules is n-injective;
(4) Extn(A, lim

→
Ci) ∼= lim

→
Extn(A,Ci) for every n-presented complex A of left R-modules

and direct system {Ci}i∈I of complexes of left R-modules;
(5) Torn(

∏
α∈I

Dα, A) ∼=
∏
α∈I

Torn(Dα, A) for any family {Dα}α∈Λ of complexes and any

n-presented complex A of left R-modules;
(6) A complex C of left R-modules is n-injective if and only if C+ is n-flat;
(7) A complex C of left R-modules is n-injective if and only if C++ is n-injective;
(8) A complex C of right R-modules is n-flat if and only if C++ is n-flat;
(9) For any ring S, Hom(Extn(A,B), D) ∼= Torn(Hom(B,D), A) for any n-presented
complex A of left R-modules, any complex B of (R,S)-bimodules, any injective complex
D of right S-modules.

The paper is organized as follows:
In section 2 of this article, some notations are given.
In section 3, some isomorphisms are established which will be used to prove the main

results of this paper.
In section 4, we firstly introduce and study n-injective and n-flat complexes for a fixed

positive integer n. We give various equivalent conditions for a ring to be left n-coherent
using n-injective and n-flat complexes.

2. Preliminaries. Throughout this paper, R denotes a ring with unity, R-Mod denotes
the category of R-modules and C (R) denotes the abelian category of complexes of R-
modules. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of R-modules will be denoted by (C, δ) or C.
We will use superscripts to distinguish complexes. So if {Ci}i∈I is a family of com-

plexes, Ci will be

· · · δ2−→ Ci1
δ1−→ Ci0

δ0−→ Ci−1

δ−1−→ · · · .
Given a left R-module M , we use Dm(M) to denote the complex

· · · −→ 0 −→M
id−→M −→ 0 −→ · · ·

with M in the mth and (m − 1)th positions and set M = D0(M). We also use Sm(M)
to denote the complex with M in the mth place and 0 in the other places and set
M = S0(M).

Given a complex C and an integerm,
∑m C denotes the complex such that (

∑m C)l =
C(l−m), and whose boundary operators are (−1)mδl−m. The mth homology module of C



523

is the module Hm(C) = Zm(C)/Bm(C) where Zm(C) = Ker(δCm) and Bm(C) =Im(δCm+1).
We set Hm(C) = H−m(C).

Let C be a complex of left R-modules (resp., of right R-modules), and let D be a
complex of left R-modules. We will denote by Hom·(C,D) (resp., C ⊗· D) the usual
homomorphism complex (resp., tensor product) of the complexes C and D.

Given two complexes C and D, let Hom(C,D) = Z(Hom·(C,D)). We then see that
Hom(C,D) can be made into a complex with Hom(C,D)m the abelian group of mor-
phisms from C to

∑−mD and with boundary operator given by f ∈ Hom(C,D)m, then
δm(f) : C →

∑−(m−1) D with δm(f)l = (−1)mδDfl for any l ∈ Z. For any complex C,
C+ = Hom(C,Q/Z). Let C be a complex of right R-modules and D be a complex of left
R-modules. We define C⊗D to be (C⊗·D)

B(C⊗·D)
. Then with the maps

(C ⊗· D)m
Bm(C ⊗· D)

→ (C ⊗· D)m−1

Bm−1(C ⊗· D)
, x⊗ y 7−→ δC(x)⊗ y,

where x⊗y is used to denote the coset in (C⊗·D)m
Bm(C⊗·D)

, we get a complex. We note that the
new functor Hom(C,D) will have right derived functors whose values will be complexes.
These values should certainly be denoted Exti(C,D). It is not hard to see that Exti(C,D)
is the complex

· · · → Exti(C,Σ−(m+1)D)→ Exti(C,Σ−mD)→ Exti(C,Σ−(m−1)D)→ · · ·
with boundary operator induced by the boundary operator of D. For a complex C of left
R-modules we have two functors −⊗C : CR → CZ and Hom(C,−) : RC → CZ, where CR
(resp., RC ) denotes the category of complexes of right R-modules (resp., left R-modules).
Since −⊗C : CR → CZ is a right exact functor, we can construct left derived functors,
which we denote by Tor1(−, C).

3. n-Presented complexes and some isomorphisms. In this section, we first in-
troduce and study the concept of n-presented complexes. Moreover, some isomorphisms
which are used to prove the following results are shown.

3.1. Definition ([[10]]). A complex C is called finitely generated if, in the case where we
can write C =

∑
i∈I D

i with Di ∈ C (R) subcomplexes of C, there exists a finite subset
J ⊆ I such that C =

∑
i∈J D

i.
A complex C is called finitely presented if C is finitely generated and for every exact

sequence of complexes 0→ K → L→ C → 0 with L finitely generated, K is also finitely
generated.

3.2. Lemma ([[10]]). A complex C is finitely generated if and only if C is bounded and
Cm is finitely generated in R-Mod for all m ∈ Z.

A complex C is finitely presented if and only if C is bounded and Cm is finitely pre-
sented in R-Mod for all m ∈ Z.

It is clear that we have the following results:

3.3. Lemma. Let 0→ A→ B → C → 0 be a short exact sequence of complexes. Then
the following statements hold:
(1) If A is finitely generated and B is finitely presented, then C is finitely presented;
(2) If A and C are finitely presented, then so is B;
(3) If R is left coherent ring, and B, C are finitely presented, then so is C.

3.4. Lemma. Let C be a complex. Then the following statements are equivalent:
(1) C is finitely presented;
(2) There exists an exact sequence 0→ L→ P → C → 0 of complexes, where P is finitely
generated projective, and L is finitely generated;
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(3) There exists an exact sequence P 1 → P 0 → C → 0 of complexes, where P 0, P 1 are
finitely generated projective, and P 0

m, P
1
m are free for all m ∈ Z.

An R-module M is called n-presented if it has a finite n-presentation, i.e., there is an
exact sequence

Fn → Fn−1 → . . .→ F1 → F0 →M → 0

in which each Fi is finitely generated free.
Now, we extend the notion of n-presented modules to that of complexes and charac-

terize such complexes.

3.5. Definition. Let n ≥ 0 be an integer. A complex C is said to be n-presented if there
is an exact sequence Pn → Pn−1 → · · · → P 1 → P 0 → C → 0 of complexes, where P i is
finitely generated projective, and P im is free for i = 0, 1, · · · , n and all m ∈ Z.

3.6. Remark. (1) A complex C is n-presented if and only if C is bounded and Cm is
n-presented in R-Mod for all m ∈ Z;
(2) A complex C is n-presented if and only if there is an exact sequence of complexes

0→ Kn → Pn−1 → · · · → P 1 → P 0 → C → 0

where P i is finitely generated projective, P im is free for i = 0, 1, · · · , n− 1 and all m ∈ Z,
Kn is finitely generated;
(3) A complex C is n-presented (n ≥ 1) if and only if there is an exact sequence of
complexes

0→ K → P → C → 0,

where K is (n− 1)-presented and P is finitely generated projective.

3.7. Lemma. Let n ≥ 1 be an integer and 0→ K → P → C → 0 an exact sequence of
complexes. Then

(1) If P is n-presented and K is (n− 1)-presented, then C is n-presented;
(2) If K and C are n-presented, then so is P;
(3) If C is n-presented and P is (n− 1)-presented, then K is (n− 1)-presented.

Proof. It is similar to the proof of [[13], Theorem 2.1.2] by Remark 3.6 (1). �

Let I be a set. An R-module M is called I-graded if there exists a family {Mi}i∈I of
submodules of M such that M =

⊕
i∈I

Mi. A Z-graded module is simply called a graded

module. General background about graded modules can be found in [[6]].

3.8. Lemma. Let {Ci}i∈I be a family of complexes, D a finitely generated complex.
Then Hom(D,

⊕
i∈I

Ci) ∼=
⊕
i∈I

Hom(D,Ci) as complexes.

Proof. Firstly,

α :
⊕
i∈I

Hom·(D,Ci)→ Hom·(D,
⊕
i∈I

Ci)

is an isomorphism by x = (xi)i∈I 7−→
∑
i∈I

Hom·(D, εi)(xi) =
∑
i∈I

εixi, where x = (xi)i∈I ∈

(
⊕
i∈I

Hom·(D,Ci))l =
⊕
i∈I

(Hom·(D,Ci))l with xi ∈ Hom·(D,Ci)l and εj : Cj 7−→
⊕
i∈I

Ci

is the natural embedding (see [[6],Proposition 2.5.16]).
Secondly, we will show that Hom(D,

⊕
i∈I

Ci) ∼=
⊕
i∈I

Hom(D,Ci). We define a morphism
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γ = α|⊕
i∈I

Hom(D,Ci) :
⊕
i∈I

Hom(D,Ci)→ Hom(D,
⊕
i∈I

Ci).

Then γ is a graded isomorphism of graded modules with degreeγ = 0. On the other
hand, for any (xi)i∈I ∈ (

⊕
i∈I

Hom(D,Ci))l,

γδ

⊕
i∈I

Hom(D,Ci)

(xi)i∈I = αδ

⊕
i∈I

Hom(D,Ci)

(xi)i∈I = α(δHom(D,Ci)(xi))i∈I =

∑
i∈I

Hom(D, εi)δHom(D,Ci)(xi) =
∑
i∈I

εi(−1)lδC
i

(xi) = (−1)l
∑
i∈I

εiδC
i

(xi),

and

δ
Hom(D,

⊕
i∈I

Ci)

γ(xi)i∈I = δ
Hom(D,

⊕
i∈I

Ci)

α(xi)i∈I = δ
Hom(D,

⊕
i∈I

Ci)

(
∑
i∈I

εixi)

= (−1)lδ

⊕
i∈I

Ci

(
∑
i∈I

εixi) = (−1)l
∑
i∈I

δ

⊕
i∈I

Ci

εixi = (−1)l
∑
i∈I

εiδC
i

(xi).

Thus γ is an isomorphism of complexes, and hence Hom(D,
⊕
i∈I

Ci) ∼=
⊕
i∈I

Hom(D,Ci).

�

3.9. Lemma. Let {Ci}i∈I be any direct system of complexes. Then a finitely generated
complex D is finitely presented if and only if Hom(D, lim

→
Ci) ∼= lim

→
Hom(D,Ci).

Proof. (⇒) It follows from Stenström [[15], Chap. V, Proposition 3.4].
(⇐) Let {Mi}i∈I be a family of R-modules. Then

∑−nMi is a complex for all n ∈ Z
and i ∈ I. Hence Hom(D, lim

→

∑−nMi) ∼= lim
→

Hom(D,
∑−nMi) for all n ∈ Z, which

implies that
Hom(D, lim

→
Mi) ∼= lim

→
Hom(D,Mi).

Since Hom(D, lim
→
Mi) ∼= Hom(D, lim

→
Mi) ∼= HomR(D, lim

→
Mi) and Hom(D,Mi) ∼= HomR(D,Mi),

we have that HomR(Dk, lim
→
Mi) ∼= lim

→
HomR(Dk,Mi) for all k ∈ Z, then Dk is a finitely

presented R-module. Therefore, D is finitely presented. �

3.10. Lemma. Let {Ci}i∈I be a family of complexes, D a finitely presented complex.
Then D⊗

∏
i∈I

Ci ∼=
∏
i∈I

(D⊗Ci) as complexes.

Proof. Firstly,

α : D ⊗·
∏
i∈I

Ci −→
∏
i∈I

(D ⊗· Ci)

is an isomorphism by x 7−→ ((D ⊗· πi)(x))i∈I , where x = d ⊗ c ∈ (D ⊗·
∏
i∈I

Ci)l and

πj :
∏
i∈I

Ci −→ Cj is the natural projection (see [[6], Proposition 2.5.17]).

Secondly, we will show that D⊗
∏
i∈I

Ci ∼=
∏
i∈I

(D⊗Ci). Since we have the following

commutative diagram:
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(D ⊗·
∏
i∈I

Ci)l −−−−−→
(D⊗·

∏
i∈I

Ci)l

Bl(D⊗·
∏
i∈I

Ci)
−−−−−→ 0

αl

y βl

y
(
∏
i∈I

D ⊗· Ci)l −−−−−→
(D⊗·

∏
i∈I

Ci)l

Bl(
∏
i∈I

D⊗·Ci)
−−−−−→ 0,

where β :
(D⊗·

∏
i∈I

Ci)l

Bl(D⊗·
∏
i∈I

Ci)
−→

(D⊗·
∏
i∈I

Ci)l

Bl(
∏
i∈I

D⊗·Ci)
is given by the assignment

d⊗ c+B(D ⊗·
∏
i∈I

Ci) −→ α(d⊗ c) +B(
∏
i∈I

D ⊗· Ci)

for any d⊗ c ∈ (D ⊗·
∏
i∈I

Ci)l. Thus β is a graded isomorphism of graded modules with

degree 0. Moreover,

βδ
D⊗

∏
i∈I

Ci

(d⊗ c+B(D ⊗·
∏
i∈I

Ci))

= β(δD(d)⊗ c) = α(δD(d)⊗ c) = (δD(d)⊗ πi(c))i∈I

and

δ

∏
i∈I

(D⊗Ci)

β(d⊗ c+B(D ⊗·
∏
i∈I

Ci))

= δ

∏
i∈I

(D⊗Ci)

(α(d⊗ c) +B(D ⊗·
∏
i∈I

Ci))

= δ

∏
i∈I

(D⊗Ci)

α(d⊗ c) = (δD⊗C
i

α(d⊗ c))i∈I = (δD(d)⊗ πi(c))i∈I .

Therefore, β is an isomorphism of complexes. �

3.11. Lemma. Let n ≥ 1 be an integer, D an n-presented complex and {Ci}i∈I a direct
system of complexes. Then Extn−1(D, lim

→
Ci) ∼= lim

→
Extn−1(D,Ci).

Proof. We do an induction on n. If n = 1, then the result follows from Lemma 3.9.
Let n = 2 and D be an 2-presented complex. Then there exists an exact sequence

of complexes 0 → L → P → D → 0 with P finitely generated projective and L finitely
presented. Thus there is a commutative diagram with exact rows:

Hom(P, lim
→
Ci) −−−−−→ Hom(L, lim

→
Ci) −−−−−→ Ext1(D, lim

→
Ci) −−−−−→ 0

∼=
y ∼=

y y
lim
→

Hom(P,Ci) −−−−−→ lim
→

Hom(L,Ci) −−−−−→ lim
→

Ext1(D,Ci) −−−−−→ 0.

Since Hom(P, lim
→
Ci) ∼= lim

→
Hom(P,Ci) and Hom(L, lim

→
Ci) ∼= lim

→
Hom(L,Ci) by Lemma

3.9, we have Ext1(D, lim
→
Ci) ∼= lim

→
Ext1(D,Ci).

If n > 2, then it follows from the standard homological method. Therefore, Extn−1(D, lim
→
Ci) ∼=

lim
→

Extn−1(D,Ci). �
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3.12. Lemma. Let n ≥ 1 be an integer, D an n-presented complex and {Nα}α∈I a
family of complexes. Then Torn−1(

∏
α∈I

Nα, D) ∼=
∏
α∈I

Torn−1(Nα, D).

Proof. We do an induction on n. If n = 1, then the result follows from Lemma 3.10.
Let n = 2 and D be an 2-presented complex. Then there exists an exact sequence

of complexes 0 → L → P → D → 0 with P finitely generated projective and L finitely
presented. Thus there is a commutative diagram with exact rows:

0 −−−−−→ Tor1(
∏
α∈I

Nα, D) −−−−−→ (
∏
α∈I

Nα)⊗L −−−−−→ (
∏
α∈I

Nα)⊗Py ∼=
y ∼=

y
0 −−−−−→

∏
α∈I

Tor1(Nα, D) −−−−−→
∏
α∈I

(Nα⊗L) −−−−−→
∏
α∈I

(Nα⊗P ).

Since (
∏
α∈I

Nα)⊗L ∼=
∏
α∈I

(Nα⊗L) and (
∏
α∈I

Nα)⊗P ∼=
∏
α∈I

(Nα⊗P ) by Lemma 3.10, we

have Tor1(
∏
α∈I

Nα, D) ∼=
∏
α∈I

Tor1(Nα, D).

If n > 2, then it follows from the standard homological method. Therefore, Torn−1(
∏
α∈I

Nα, D) ∼=∏
α∈I

Torn−1(Nα, D). �

3.13. Lemma ([[12]]). Let R and S be rings, L a complex of right S-modules, K a
complex of (R,S)-bimodules and P a complex of left R-modules. Suppose that P is finitely
presented and L is injective as complexes of right S-modules. Then Hom(K,L)⊗P ∼=
Hom(Hom(P,K), L) as complexes. This isomorphism is functorial in P, K and L.

3.14. Lemma. (1) Let R and S be rings, n a fixed positive integer, A an n-presented
complex of left R-modules, B a complex of (R,S)-bimodules, C an injective complex of
right S-modules. Then Hom(Extn−1(A,B), C) ∼= Torn−1(Hom(B,C), A).
(2) Let R and S be rings, n a fixed positive integer, A a complex of left R-modules, B
a complex of right (R,S)-bimodules, C an injective complex of right S-modules. Then
Extn(A,Hom(B,C) ∼= Hom(Torn(B,A), C).

Proof. (1) We do an induction on n. If n = 1, then the result follows from Lemma 3.13.
Let n = 2 and A be an 2-presented complex. Then there exists an exact sequence of

complexes 0 → K → P → A → 0 with P finitely generated projective and K finitely
presented in C (R). Thus we have the commutative diagram with exact rows by Lemma
3.13:
0 −−−−−→ Hom(Ext1(A,B), C) −−−−−→ Hom(Hom(K,B), C) −−−−−→ Hom(Hom(P,B), C)y ∼=

y ∼=
y

0 −−−−−→ Tor1(Hom(B,C), A) −−−−−→ Hom(B,C)⊗K −−−−−→ Hom(B,C)⊗ P.

Hence, Hom(Ext1(A,B), C) ∼= Tor1(Hom(B,C), A).
If n > 2, then it follows from the standard homological method. Therefore, Hom(Extn−1(A,B), C) ∼=

Torn−1(Hom(B,C), A).
(2) It follows by similar arguments since Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)) for

any complex A,B and C. �

3.15. Remark. It is not hard to see that

Hom(D,
∏
i∈I

Ci) ∼=
∏
i∈I

Hom(D,Ci),
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D⊗
⊕
i∈I

Ci ∼=
⊕
i∈I

(D⊗Ci),

Extn(D,
∏
i∈I

Ci) ∼=
∏
i∈I

Extn(D,Ci),

and

Torn(
⊕
α∈I

Nα, D) ∼=
⊕
α∈I

Torn(Nα, D)

for a fixed positive integer n, any complex D and any family {Ci}i∈I of complexes by
analogy with the proof of the results above.

4. n-Injective complexes and n-flat complexes. In what follows, if A is n-presented,
i.e., there is a finite n-presentation Fn → Fn−1 → · · · → F 1 → F 0 → A → 0, we will
write K0 = A,K1=Ker(F 0 → A), Ki=Ker(F i−1 → F i−2) for 2 ≤ i ≤ n. Clearly, each
Ki is (n− i)-presented for 0 ≤ i < n.

A complex E is said to be FP -injective if Ext1(P,C) = 0 for any finitely presented
complex P , if and only if Ext1(P,C) = 0 for any finitely presented complex P [[17]]. A
complex F is flat if and only if Tor1(F,C) = 0 (Tori(F,C) = 0 for any i ≥ 1) for any
complex C if and only if Tor1(F, P ) = 0 (Tori(F, P ) = 0 for any i ≥ 1) for any finitely
presented complex P [[9]].

To characterize left n-coherent rings for a fixed positive integer n, we introduce the
following definitions.

4.1. Definition. (1) A complex C is called n-injective if Extn(D,C) = 0 for any n-
presented complex D;
(2) A complex C is called n-flat if Torn(C,D) = 0 for any n-presented complex D.

4.2. Remark. (1) It is obvious that a complex D is 1-injective (resp. 1-flat) if and only if
D is FP-injective (resp. flat); and any n-injective (resp. n-flat) complex is n+ 1-injective
(resp. n+ 1-flat). However, the converse is not true in general (see Example 4.12).
(2) It is clear that the class of all n-injective complexes and the class of all n-flat complexes
are closed under extensions and summands.
(3) A complex C is n-injective if and only if Extn(D,C)=0 for any n-presented complex
D.
(4) If R is a left coherent ring and C is an n-flat (resp. n-injective) complex, then
Tori(C,F ) = 0 (resp. Exti(F,C) = 0) for each n-presented complex F and i ≥ 1.

4.3. Proposition. Let {Ci}i∈I be a family of complexes of R-modules. Then

(1)
∏
i∈I

Ci is n-injective if and only if each Ci is n-injective;

(2)
⊕
i∈I

Bi is n-flat if and only if each Bi is n-flat.

Proof. (1) It follows from the isomorphism Extn(N,
∏
i∈I

Ci) ∼=
∏
i∈I

Extn(N,Ci), where N

is a complex of R-modules.
(2) It follows from the isomorphism Torn(

⊕
i∈I

Bi, N) ∼=
⊕
i∈I

Torn(Bi, N), where N is a

complex of R-modules. �

4.4. Proposition. Let C be a complex of right R-modules and n a fixed positive integer.
Then C is n-flat if and only if C+ is n-injective.
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Proof. It follows from the isomorphism Extn(D,C+) ∼= Torn(C,D)+ for any complex
D. �

4.5. Lemma. A complex C is n-injective if and only if, for every n-presentation Fn →
Fn−1 → · · · → F 1 → F 0 → A→ 0 of a complex A, every f : Kn → C can be extended a
map g : Fn−1 → C.

Proof. We have an exact sequence of complexes 0 → Kn → Fn−1 → Kn−1 → 0, and
an isomorphism Extn(A,C) ∼= Ext1(Kn−1, C) for any complex C. Therefore, the result
follows by definition of n-injective complexes. �

4.6. Lemma. Consider the commutative diagram with exact rows in C (R):

M1

ϕ1

��

f1 // M2

ϕ2

��

f2 // M3

ϕ3

��

// 0

0 // N1
g1 // N2

g2 // N3.

Then the following assertions are equivalent:
(a) there exists α : M3 → N2 with αg2 = ϕ3;
(b) there exists β : M2 → N1 with f1β = ϕ1.

Proof. (b)⇒(a) If β : M2 → N1 has the given propery, then g1βf1 = g1ϕ1 = ϕ2f1,
i.e. (ϕ2g1β)f1 = 0. Since f2 is the cokernel of f1, there exists α : M3 → N2 with
αf2 = ϕ2 − g1β. This implies g2αf2 = g2ϕ2 − g2g1β = g2ϕ2 = ϕ3f2. f2 being epic we
conclude g2α = ϕ3.

(a)⇒(b) is obtained similarly. �

4.7. Proposition. The class of all n-injective complexes and the class of all n-flat com-
plexes are closed under pure subcomplexes.

Proof. Let C1 be a pure subcomplex of an n-injective complex C. For any finite n-
presentation Fn → Fn−1 → · · · → F 1 → F 0 → A→ 0 of A and any map f : Kn → C1,
by Lemma 4.5 and Lemma 4.6, we get the following diagram with exact rows:

0 // Kn

f

��

i // Fn−1

g

||
k

��

p // Kn−1

h

{{
l

��

// 0

0 // C1
j // C

q // C/C1
// 0

where i and j are inclusion maps. So C1 is n-injective by Lemma 4.5 again.
Let S be a pure subcomplex of an n-flat complex C. Then the pure exact sequence

0→ S → C → C/S → 0 induces the split exact sequence 0→ (C/S)+ → C+ → S+ → 0.
Thus S+ is n-injective since C+ is n-injective by Proposition 4.4. So S is n-flat by
Proposition 4.4 again. �

4.8. Lemma. Let {Ci}i∈I be a family of complexes. Then
(1)

⊕
i∈I

Ci is a pure subcomplex of
∏
i∈I

Ci;

(2)
∏
i∈I

Ci is a pure subcomplex of
∏
i∈I

(Ci)++.
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Proof. (1) Since for any finitely presented complex P , we have (
∏
i∈I

Ci)⊗P ∼=
∏
i∈I

(Ci⊗P )

by Lemma 3.10. Thus we get the following commutative diagram:

(
⊕
i∈I

Ci)⊗P

∼=

��

// (
∏
i∈I

Ci)⊗P

∼=

��
0 // ⊕

i∈I
(Ci⊗P ) // ∏

i∈I
(Ci⊗P ).

Hence,
⊕
i∈I

Ci is a pure subcomplex of
∏
i∈I

Ci.

(2) It is similar to the proof of (1) since Ci is a pure subcomplex of (Ci)++ for each
i ∈ I. �

4.9. Lemma. The following are equivalent for a bounded complex C of right R-modules:
(1) C is finitely generated;
(2) C⊗

∏
Λ A

λ →
∏

Λ(C⊗Aλ) is an epimorphism for every family {Aλ}Λ of complexes
of left R-modules.

Proof. (1) ⇒ (2) Let 0 → K → F → C → 0 be an exact sequence of complexes with F
finitely generated projective. Then we have the following commutative diagram:

K⊗
∏

Λ A
λ −−−−−→ F⊗

∏
Λ A

λ −−−−−→ C⊗
∏

Λ A
λ −−−−−→ 0

τK

y τF

y τC

y∏
Λ(K⊗Aλ) −−−−−→

∏
Λ(F⊗Aλ) −−−−−→

∏
Λ(C⊗Aλ) −−−−−→ 0

with exact rows. But τF is isomorphism by Lemma 3.10. So τC is onto.
(2)⇒ (1) Since C is bounded, we can assume that C has the following form:

· · · −→ 0 −→ Cm −→ Cm−1 −→ · · · −→ C1 −→ C0 −→ 0 −→ · · · .

It is enough to prove that Cj is finitely generated in R-Mod for j = 1, · · · ,m. Let
{Mi}i∈I be a family of left R-modules. Then

(C ⊗·
∏
i∈I

Mi)m =
⊕
t∈Z

Ct ⊗ (
∏
i∈I

Mi)m−t = Cm ⊗
∏
i∈I

Mi

and

(
∏
i∈I

C ⊗·Mi)m =
∏
i∈I

⊕
t∈Z

Ct ⊗ (Mi)m−t =
∏
i∈I

Cm ⊗Mi.

C ⊗·
∏
i∈I

Mi : · · · → 0
δm+1−→ Cm ⊗

∏
i∈I

Mi
δm−→ · · · δ2−→ C1 ⊗

∏
i∈I

Mi
δ1−→ 0→ · · · .

∏
i∈I

C ⊗·Mi : · · · → 0
σm+1−→

∏
i∈I

Cm ⊗Mi
σm−→ · · · σ2−→

∏
i∈I

C1 ⊗Mi
σ1−→ 0→ · · · .

Hence C⊗
∏
i∈I

Mi and
∏
i∈I

(C⊗Mi) have the following form:

C⊗
∏
i∈I

Mi :

· · · → 0 −→ Cm ⊗
∏
i∈I

Mi −→
Cm−1⊗

∏
i∈I

Mi

Imδm
−→ · · · −→

C1⊗
∏
i∈I

Mi

Imδ2
−→ 0→ · · · .∏

i∈I
(C⊗Mi) :
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· · · → 0 −→
∏
i∈I

(Cm ⊗Mi) −→
∏
i∈I

(Cm−1⊗Mi)

Imσm
−→ · · · −→

∏
i∈I

(C1⊗Mi)

Imσ2
−→ 0→ · · · .

Since C⊗
∏
i∈I

Mi →
∏
i∈I

(C⊗Mi) is epic, Cm ⊗
∏
i∈I

Mi →
∏
i∈I

(Cm ⊗Mi) is epic, then

Cm is finitely generated in R-Mod by [[11], Lemma 3.2.21]. If we replace the complex
Mi with Mi, we have Cm−1 is finitely generated in R-Mod. If we replace Mi with
· · · → 0 → M0 → M1 → M2 → 0 → · · · , we have Cm−2 is finitely generated in R-Mod.
We continue the process, we can get Cj is finitely generated in R-Mod for j = 1, · · · ,m
by [[11], Lemma 3.2.21]. �

4.10. Lemma. The following are equivalent for a bounded complex C of right R-modules:
(1) C is finitely presented;
(2) C⊗

∏
Λ A

λ →
∏

Λ(C⊗Aλ) is an isomorphism for every family {Aλ}Λ of complexes
of left R-modules.

Proof. (1)⇒ (2) It follows by Lemma 3.10.
(2) ⇒ (1) C is finitely generated by the Lemma 4.9 above. So let 0 → K → F →

C → 0 be exact with F finitely generated projective. It now suffices to show that K is
finitely generated. But for any Λ, we have a commutative diagram:

K⊗
∏

Λ A
λ −−−−−→ F⊗

∏
Λ A

λ −−−−−→ C⊗
∏

Λ A
λ −−−−−→ 0

τK

y τF

y τC

y∏
Λ(K⊗Aλ) −−−−−→

∏
Λ(F⊗Aλ) −−−−−→

∏
Λ(C⊗Aλ) −−−−−→ 0

with exact rows where τF and τC are isomorphisms. So τK is onto and hence K is finitely
generated by Lemma 4.9.

A ring R is left coherent if and only if the direct limit of FP -injective complexes of left
R-modules is FP -injective [[17]]. Now we will give some characterizations of n-coherent
rings using the results above.

4.11. Theorem. Let R be a ring and n a fixed positive integer. Then the following are
equivalent:
(1) R is left n-coherent;
(2) Every direct product of n-flat complexes of right R-modules is n-flat;
(3) Every direct limit of n-injective complexes of left R-modules is n-injective;
(4) Extn(A, lim

→
Ci) ∼= lim

→
Extn(A,Ci) for every n-presented complex A of left R-modules

and direct system {Ci}i∈I of complexes of left R-modules;
(5) Torn(

∏
α∈I

Dα, A) ∼=
∏
α∈I

Torn(Dα, A) for any family {Dα}α∈Λ of complexes and any

n-presented complex A of left R-modules;
(6) A complex C of left R-modules is n-injective if and only if C+ is n-flat;
(7) A complex C of left R-modules is n-injective if and only if C++ is n-injective;
(8) A complex C of right R-modules is n-flat if and only if C++ is n-flat;
(9) For any ring S, Hom(Extn(A,B), D) ∼= Torn(Hom(B,D), A) for any n-presented
complex A of left R-modules, any complex B of (R,S)-bimodules, any injective complex
D of right S-modules.

Proof. (1)⇒ (4) It follows by Lemma 3.11.
(4)⇒ (3) It is trivial.
(3) ⇒ (1) Let A be an n-presented complex of left R-modules. It is sufficient to

show that Kn is finitely presented. Let {Ci}i∈I be a family of n-injective complexes of
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left R-modules, where I is a directed set. Then lim
→
Ci is n-injective by (3), and hence

Ext1(Kn−1, lim
→
Ci) = Extn(A, lim

→
Ci) = 0.

Thus there is a commutative diagram with exact rows:

Hom(Kn−1, lim
→
Ci)

f1−−−−−→ lim
→

Hom(Kn−1, Ci)y y
Hom(Fn−1, lim

→
Ci)

f2−−−−−→ lim
→

Hom(Fn−1, Ci)y y
Hom(Kn, lim

→
Ci)

f3−−−−−→ lim
→

Hom(Kn, Ci)y y
0 0 .

Since both Kn−1 and Fn−1 are finitely presented, f1 and f2 are isomorphisms by Lemma
3.9. Hence f3 is an isomorphism. Kn is finitely generated, so Kn is finitely presented by
Lemma 3.9. Thus A is (n+ 1)-presented. Therefore, R is left n-coherent.

(1)⇒ (5) It holds by Lemma 3.12.
(5)⇒ (2) It is obvious.
(2)⇒ (1) Let A be an n-presented complex of left R-modules. We will show thatKn−1

is 2-presented. For any family {Ai}i∈I of n-flat complexes of right R-modules,
∏
i∈I

Ai is

an n-flat complex. Thus the exact sequence of complexes 0→ Kn → Fn−1 → Kn−1 → 0
gives rise to the following commutative diagram with exact rows:

0 −−−−−→ (
∏
i∈I

Ai)⊗Kn −−−−−→ (
∏
i∈I

Ai)⊗Fn−1 −−−−−→ (
∏
i∈I

Ai)⊗Kn−1 −−−−−→ 0

φ1

y φ2

y φ3

y
0 −−−−−→

∏
i∈I

(Ai⊗Kn) −−−−−→
∏
i∈I

(Ai⊗Fn−1) −−−−−→
∏
i∈I

(Ai⊗Kn−1) −−−−−→ 0.

By Lemma 4.10, φ2 and φ3 are isomorphisms, and hence φ1 is an isomorphism. Thus
Kn is finitely presented, and so Kn−1 is 2-presented, hence A is n+ 1-presented.

(6)⇒ (7) Let C be a complex of left R-modules. If C is n-injective, then C+ is n-flat
by (6), and so C++ is n-injective by Proposition 4.4. Conversely, if C++ is n-injective,
then C is a pure subcomplex of C++ (see [[12], Proposition 5.1.4]). So C is n-injective
by Proposition 4.7.

(7) ⇒ (8) If C is an n-flat complex of right R-modules, then C+ is an n-injective
complex of left R-modules by Proposition 4.4. Hence C+++ is n-injective by (7). Thus
C++ is n-flat by Proposition 4.4. Conversely, if C++ is n-flat, then C is n-flat by
Proposition 4.7.

(8)⇒ (2) Let {Ci}i∈I be a family of n-flat complexes of right R-modules. By Propo-
sition 4.3,

⊕
i∈I

Ci is n-flat, so (
⊕
i∈I

Ci)++ ∼= (
∏
i∈I

Ci
+

)+ is n-flat by (8). But
⊕
i∈I

(Ci)
+ is

a pure subcomplex of
∏
i∈I

(Ci)
+ by Lemma 4.8, and so (

∏
i∈I

(Ci)
+

)+ → (
⊕
i∈I

(Ci)
+

)+ → 0

splits. Thus
∏
i∈I

(Ci)
++ ∼= (

⊕
i∈I

(Ci)
+

)+ is n-flat. Since
∏
i∈I

Ci is a pure subcomplex of∏
i∈I

(Ci)++ by Lemma 4.8,
∏
i∈I

Ci is n-flat by Proposition 4.7.

(1)⇒ (9) It follows from Lemma 3.14.
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(9)⇒ (6) Let S = Z, D = Q/Z and B = C. Then

Torn(C+, A) ∼= Extn(A,C)+

for all n-presented complexes A of left R-modules by (9), and hence (6) holds. �

4.12. Example. If R is n + 1-coherent but not n-coherent, then we can form a direct
limit lim

→
Ci of n-injective complexes {Ci}i∈I , which is not n-injective but is necessary

n + 1-injective; we can also form a direct product
∏
α∈I

Ci of n-flat complexes {Ci}i∈I ,

which is not n-flat but is necessary n+ 1-flat.
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