Hacettepe Journal of Mathematics and Statistics Volume 33 (2004), 15 – 22

AN ALMOST 2–PARACONTACT STRUCTURE ON THE COTANGENT BUNDLE OF A CARTAN SPACE

M. Gîr<mark>t</mark>u*

Received 30 : 10 : 2003 : Accepted 17 : 01 : 2005

Abstract

A Cartan space is a pair (M, K) , where M is a smooth manifold and K an Hamiltonean on the slit cotangent bundle $T_0^*M := TM \setminus \{(x, 0), x \in$ M , that is positively homogeneous of degree 1 in momenta. We show that K induces an almost 2–paracontact Riemannian structure on T_0^*M whose restriction to the figuratrix bundle $\mathbb{K} = \{(x, p) | K(x, p) = 1\}$ is an almost paracontact structure. A condition for this almost paracontact structure to be normal is found, and its geometrical meaning is pointed out. Similar results for Finsler spaces can be found in [1] and [3].

Keywords:

2000 AMS Classification:

1. Introduction

Let (N, h) be an m-dimensional Riemannian manifold. If on N there exists a tensor field ϕ of type $(1,1)$, r vector fields $\xi_1, \xi_2, \ldots, \xi_r$, $(r < m)$, and r, 1–forms $\eta^1, \eta^2, \ldots, \eta^r$ such that

- (i) $\eta^a(\xi_b) = \delta_b^a, \, a, b \in (r) = \{1, 2, \ldots, r\},\,$
- (ii) $\phi^2 = I \sum_a \eta^a \otimes \xi_a$,
- (iii) $\eta^{a}(X) = h(X, \xi_{a}), a \in (r),$
- (iv) $h(\phi X, \phi Y) = h(X, Y) \sum_{a} \eta^{a}(X) \eta^{a}(Y),$

where X, Y are vector fields and I is the identity tensor field on N , then

 $\Sigma = (\phi, \xi_a, \eta^a)_{a \in (r)}$

is said to be an *almost r–paracontact Riemannian structure on* M, and the pair (M, Σ) is called an almost r–paracontact Riemannian manifold.

[∗]Faculty of Sciences, University of Bac˘au, Bac˘au, Romania. E-mail : manuelag@ub.ro

 16 M. Gîrtu

From (i) through (iv) it follows that (see [2]):

$$
\phi(\xi_a) = 0, \ \eta^a \circ \phi = 0, \ a \in (r)
$$

$$
\phi(x, y) := h(\phi X, Y) = h(X, \ \phi Y).
$$

A Cartan space is a pair $K^n = (M, K)$, where M is a smooth n–dimensional manifold and K is a positive function on the cotangent bundle $T_0^*M := T^*M \setminus \{(x,0) \mid x \in M\}$ such that the function K^2 is a regular Hamiltonian which is homogeneous of degree 2 in momenta.

It is well known that T_0^*M is a Riemannian manifold with a Riemannian metric similar to the Sasaki metric, completely determined by K.

We show in Section 2 that, moreover, T_0^*M can be naturally endowed with an almost 2paracontact Riemannian structure. Section 1 is devoted to some preliminaries, especially regarding the geometry of T^*M . In Section 3 we consider the figuratrix bundle $\mathbb{K} =$ ${u \in T^*M \mid K(u) = 1}$ as a submanifold of T_0^*M of codimension one, and we show that it carries an almost paracontact Riemanian structure induced by the above mentioned almost 2-paracontact Riemannian structure on T_0^*M . A condition for this paracontact Riemannian structure to be normal is established and its geometric meaning is discussed.

2. Preliminaries

We recall from Chapter 6 of [4] some facts from the geometry of the cotangent bundle T^*M . We take (x^i) , $i = 1, 2, ..., n$ as local coordinates on M. The induced local coordinates on T^*M will be denoted by (x^i, p_i) , where x^i is in fact $x^i \circ \tau^*$, for τ^* : $T^*M \to M$ the natural projection, and p_i are the components of a covector from T_x^*M , $x(x^i)$, in the cobasis $(dx^i)_x$. The coordinates p_i will be called momenta.

The kernel of the differential $D\tau^*$ of τ^* is a subbundle of TT_0^*M , known as vertical and denoted by VT_0^*M . The vertical distribution $V: u \in T^*M \to V_uT_0^*M = \text{ker}(D\tau^*)_u$ is locally spanned by $\dot{\partial}^i := \frac{\partial}{\partial x^i}$ $\frac{\partial}{\partial p_i}$, hence it is integrable.

The vector field $C^* = p_i \stackrel{\cdot}{\partial}^i$ on T^*M is called the Liouville vector field.

Let $K^n = (M, K)$ be a Cartan space. Then the function $K : T^*M \to \mathbb{R}$ has the properties

(i) K is smooth on T_0^*M and only continuous on the set $\{(x,0) \mid x \in M\}$,

- (ii) $K > 0$ on T^*M ,
- (iii) $K(x, \lambda p) = \lambda K(x, p)$ for any $\lambda > 0$,
- (iv) The matrix with entries $g^{ij}(x,p) = \frac{1}{2}$ $\stackrel{\cdot}{\partial}^i\stackrel{\cdot}{\partial}^j K^2$ is positive definite.

If one sets $p^i = \frac{1}{2}$ $\dot{\partial}^i K^2$ then $g^{ij} = \dot{\partial}^j p^i$, and from the homogeneity condition (iii) there results

(2.1)
$$
p^{i} = g^{ij} p_{j}, \ K^{2} = g^{ij} p_{i} p_{j} = p_{i} p^{j},
$$

$$
C^{ijk} p_{k} = 0, \text{ where } C^{ijk} := \frac{1}{2} \partial^{i} g^{jk}
$$

As $\det(g^{ij}) \neq 0$, from the first equation in (1.1) it follows that $p_i = g_{ij}p^j$, where (g_{ij}) is the inverse of the matrix (g^{ij}) .

.

In the following we restrict our considerations to the open submanifold T_0^*M of T^*M . A nonlinear connection on T_0^*M is a distribution $u \to H_u T_0^*M$, called horizontal, which is supplementary to the vertical distribution. This is usually given by a local basis $\delta_i = \partial_i + N_{ij}(x, p) \partial^j$ for some functions (N_{ij}) having a special behavior, by a change of coordinates on T^*M . It was proved by R. Miron [4, Chapter 4] that any Cartan space

has a canonical nonlinear connection, completely determined by K , whose coefficients $(N_{ij}(x, p))$ are positively homogeneous of degree 1 in momenta, and have the property $N_{ij} = N_{ji}.$

Thus we have a decomposition

 $(T_{u}T_{0}^{*}M = V_{u}T_{0}^{*}M \oplus H_{u}T_{0}^{*}M,$

and $(\delta_i, \dot{\partial}^i)$ is a basis adapted to it.

This suggests the following definition of an almost product structure Q on T^*M .

(2.3)
$$
Q(\delta_i) = g_{ij} \dot{\partial}^j, Q(\dot{\partial}^i) = g^{ij} \delta_j.
$$

It is easy to check that $Q^2 = I$.

Using the matrices (g_{ij}) and (g^{ij}) the following Riemannian metric on T_0^*M is defined α α β α β α β β β

$$
(2.4) \tG = g_{ij} dx^{i} \otimes dx^{j} + g^{ij} \delta p_{i} \otimes \delta p_{j},
$$

where $\delta p_i = dp_i - N_{ij}(x, p) dx^j$ and $(dx^i, \delta p_i)$ is the dual basis of $(\delta_i, \dot{\delta}^i)$.

The Riemannian metric G is similar to the Sasaki metric on the tangent bundle. An easy calculation gives:

(2.5)
$$
G(QX, QY) = G(X, Y), X, Y \in \mathfrak{X}(T_0^*M).
$$

Here $\mathfrak{X}(T^*M)$ is the $\mathfrak{F}(M)$ -module of vector fields on T_0^*M .

3. An almost 2-paracontact Riemannian structure on T_0^*M when (M, K) is a Cartan space

We already know that (T_0^*M, G) is a Riemannian manifold. On T_0^*M there exist two globally defined vector fields:

$$
\xi_1 = \frac{1}{K} p^i \delta_i \text{ and } \xi_2 = \frac{1}{K} p_i \stackrel{\cdot}{\partial}^i.
$$

They are linearly independent. The second one is collinear with the Liouville vector field, while the first one is nothing but the Hamiltonian vector field of the function K .

Indeed, the Hamiltonian vector field of K is

$$
\overrightarrow{K} = (\dot{\partial}^i K) \frac{\partial}{\partial x^i} - (\partial_i K) \frac{\partial}{\partial p_i} = (\dot{\partial}^i K) \delta_i - (\delta_i K) \dot{\partial}^i = \xi_1,
$$

because for a Cartan space $\delta_i K = 0$ and $\dot{\partial}^i K = \frac{p^i}{K}$ $\frac{P}{K}$.

Now we consider the 2 1-forms

$$
\eta^1 = \frac{1}{K} p_i dx^i \text{ and } \eta^2 = \frac{1}{K} p^i \delta p_i.
$$

These are globally defined. It quickly follows that

 (3.1) $a^a(\xi_b) = \delta_b^a, \, a, b \in \{1, 2\}.$

One easily checks that

$$
(3.2) \tQ(\xi_1) = \xi_2, \ Q(\xi_2) = \xi_1,
$$

(3.3)
$$
\eta^1 \circ Q = \eta^2, \ \eta^2 \circ Q = \eta^1.
$$

Using Q, ξ_a , η^a , $a \in \{1,2\}$, we construct the tensor field $q=Q-\eta^2\otimes \xi_1-\eta^1\otimes \xi_2.$

Based on (3.1) - (3.3) it comes out that

$$
(3.4) \qquad q^2(X) = X - \eta^1(X)\xi_1 - \eta^2(X)\xi_2.
$$

18 M. Gîrtu

In the adapted frame $(\delta_i, \dot{\partial}^i)$ we have

$$
G(\delta_i, \delta_j) = g_{ij}, G(\delta_i, \dot{\partial}^j) = 0, \ G(\dot{\partial}^i, \dot{\partial}^j) = g^{ij}.
$$

These equations are used to verify that

 (3.5) $a^{a}(X) = G(X, \xi_{a}), \ a \in \{1, 2\},\$

holds for $X = \delta_i, \dot{\partial}^i$.

A direct calculation using (2.5), (3.5), as well as $G(\xi_a, \xi_b) = \delta_{ab}$, gives

$$
(3.6) \qquad G(qX, qY) = G(X, Y) - \eta^1(X)\eta^1(Y) - \eta^2(X)\eta^2(Y), \ X, Y \in \mathfrak{X}(T_0^*M).
$$

The equations (3.1) , (3.4) - (3.6) show that the following theorem holds good.

3.1. Theorem. Let $K^n = (M, K)$ be a Cartan space. Then T_0^*M is an almost 2paracontact Riemannian manifold with the almost 2-paracontact Riemannian structure $(q, \xi_a, \eta^a, G), a \in \{1, 2\}.$

The next equations follow easily from (3.1) and (3.2)

$$
(3.7) \tq(\xi_a) = 0, \; \eta^a \circ q = 0.
$$

By (3.4) and (3.7) we have

$$
(3.8) \tq^3 - q = 0.
$$

Now we prove

3.2. Lemma. The rank of q is $2n - 2$.

Proof. By the first equation (3.7), the subspace span $\{\xi_1, \xi_2\}$ is contained in ker q. Let now $X \in \text{ker } q$. If $X = X^i \delta_i + Y_i \stackrel{i}{\partial}^i$, the condition $q(X) = 0$ gives $X^i = \frac{X^j p_j}{K^2}$ $\frac{\Lambda^2 p_j}{K^2} p^i,$ $Y_i = \frac{Y_i p^j}{V^2}$ $K^2 P_i$, hence $X \in \text{span}\left\{\xi_1, \xi_2\right\}$

Let $h(X, Y) = G(qX, Y), X, Y \in \mathfrak{X}(T_0^*M).$

3.3. Theorem. The mapping h is bilinear and symmetric and its null space is kerq.

Proof. The bilinearity is obvious. The symmetry holds even in a more general setting cf. Section 1. The null space of h is $\{X \mid h(X,Y) = 0, \forall Y\} = \{X \mid G(qX,Y) = 0, \forall Y\}$ $\{X \mid qX = 0\} = \ker q.$

In the adapted basis $(\delta_i, \dot{\partial}^i)$ we have

(3.9)
$$
q(\delta_i) = A_{ij} \dot{\partial}^j, q(\dot{\partial}^i) = B^{ij} \delta_j, A_{ij} = g_{ij} - \frac{1}{K^2} p_i p_j, B^{ij} = g^{ij} - \frac{1}{K^2} p^i p^j.
$$

We notice that these matrices have rank $n - 1$ because of

(3.10) $A_{ij}p^j = 0, B^{ij}p_j = 0.$

The mapping h has the form

$$
h = A_{ij} dx^i \otimes dx^j - B^{ij} \delta p_i \otimes \delta p_j.
$$

Thus it is a singular pseudo-Riemannian metric on T_0^*M .

4. An almost paracontact structure on the figuratrix bundle of a Cartan space K^n

The set $\mathbb{K} = \{(x, p) \in T_0^*M \mid K(x, p) = 1\}$ will be called the *figuratrix bundle* of the Cartan space $Kⁿ$. It will be thought of as a hypersurface (submanifold of codimension 1) of T_0^*M , endowed with the almost 2-paracontact Riemannian structure from Theorem 3.1.

Let

(4.1)
$$
\begin{cases} x^i = x^i(u^{\alpha}), \\ p_i = p_i(u^{\alpha}), \ \alpha = 1, 2, \dots, 2n - 1, \end{cases}
$$

with rank $\left(\frac{\partial x^i}{\partial x^j}\right)$ $\frac{\partial x^{i}}{\partial u^{\alpha}}, \frac{\partial p_{i}}{\partial u^{\alpha}}$ ∂u^α $= 2n - 1$, a parametrization of K.

We consider the local vector fields $\frac{\partial}{\partial u^{\alpha}} = \frac{\partial x^{i}}{\partial u^{\alpha}}$ $\frac{\partial x^{i}}{\partial u^{\alpha}}\partial_{i}+\frac{\partial p_{i}}{\partial u^{\alpha}}$ ∂u^α $\overset{\cdot}{\partial}^{i},$ which provide a local basis in the tangent bundle to K, and put them into the form

$$
\frac{\partial}{\partial u^{\alpha}} = \frac{\partial x^{i}}{\partial u^{\alpha}} \delta_{i} + \left(\frac{\partial p_{j}}{\partial u^{\alpha}} - N_{ij} \frac{\partial x^{i}}{\partial u^{\alpha}} \right) \dot{\partial}^{j} .
$$

It follows that $G\left(\frac{\partial}{\partial \theta}\right)$ $\left(\frac{\partial}{\partial u^\alpha},\xi_2\right) = \frac{1}{K}$ $\frac{1}{K}p^j\left(\frac{\partial p_j}{\partial u^\alpha}-N_{ij}\frac{\partial x^i}{\partial u^\alpha}\right)$ ∂u^α ¶ . On the other hand, by deriving the identity $K^2(x^i(u^\alpha), p_i(u^\alpha)) = 1$ with respect to u^α we find

$$
0 = (\partial_i K^2) \frac{\partial x^i}{\partial u^{\alpha}} + (\dot{\partial}^i K^2) \frac{\partial p_i}{\partial u^{\alpha}}
$$

= $(\delta_i K^2) \frac{\partial x^i}{\partial u^{\alpha}} + (\dot{\partial}^i K^2) \left(\frac{\partial p_i}{\partial u^{\alpha}} - N_{ij} \frac{\partial x^j}{\partial u^{\alpha}} \right)$
= $2p^i \left(\frac{\partial p_i}{\partial u^{\alpha}} - N_{ij} \frac{\partial x^j}{\partial u^{\alpha}} \right)$

because, for a Cartan space, $\delta_i K = 0$. Thus on K we have $G = \begin{pmatrix} \frac{\partial}{\partial x_i} & \frac{\partial}{\partial y_i} \\ \frac{\partial}{\partial y_i} & \frac{\partial}{\partial y_i} \end{pmatrix}$ $\left(\frac{\partial}{\partial u^\alpha},\xi_2\right)=0\,\,\text{for every}$ $\alpha = 1, 2, \ldots, 2n-1$. In other words, the vector field ξ_2 restricted to K is normal to K.

Recall that ξ_2 restricted to K is $\overline{\xi_2} = p_i(u^{\alpha}) \partial^i$.

4.1. Lemma. The hypersurface K is invariant with respect to q i.e. $q(T_u K) \subset T_u K$, $\forall u \in$ $\mathbb K$

Proof.
$$
G\left(q\left(\frac{\partial}{\partial u^{\alpha}}\right), \xi_2\right) = (\eta^2 \circ q)\left(\frac{\partial}{\partial u^{\alpha}}\right) = 0 \,\forall \alpha = 1, 2, ..., 2n - 1.
$$

By item (i) in Theorem 3.1 from [2], and Lemma 4.1, there follows:

4.2. Theorem. The almost 2-paracontact Riemannian structure (q, ξ_a, η^a, G) , $a \in$ ${1, 2}$, on T_0^*M induces by restriction an almost paracontact Riemannian structure on the figuratrix bundle K.

If we use overlines to denote the restrictions we have

- $\overline{\xi_1} = p^i \delta_i$, is tangent to K
- $\overline{\eta_2} = 0$ because of $\eta^2(X) = G(X, \xi_2) = 0$ for every X tangent to K,
- $\bullet\; G=G|_{\mathbb K},$
- $\overline{q} = \overline{Q} \overline{\eta}^1 \otimes \overline{\eta}^2$ is an automorphism of $T_u\mathbb{K}, \forall u \in \mathbb{K}$.

We put $\xi = \xi_1, \eta = \overline{\eta_1}$, so the almost paracontact Riemannian structure given by Theorem 4.2 is $(\overline{q}, \xi, \eta, G)$. We mention that

$$
(4.2) \qquad \overline{q}^2 = I - \eta \otimes \xi, \ \eta(X) = G(X, \xi),
$$

(4.3) $\overline{G}(\overline{q}X, \overline{q}Y) = \overline{G}(X, Y) - \eta(X)\eta(Y), X, Y \in \mathfrak{X}(\mathbb{K}).$

By Theorem 1.1 in [2], the almost paracontact Riemannian structure $(\overline{q}, \xi, \eta, \overline{G})$ is normal if and only if

(4.4)
$$
N(X,Y) := N_{\overline{q}}(X,Y) - 2d\eta(X,Y)\xi = 0,
$$

where $N_{\overline{q}}$ is the Nijenhuis tensor field of \overline{q} , i.e.

(4.5)
$$
N_{\overline{q}}(X,Y) = [\overline{q}X,\overline{q}Y] + \overline{q}^{2}[X,Y] - \overline{q}[\overline{q}X,Y] - \overline{q}[X,\overline{q}Y], \ \forall X,Y \in \mathfrak{X}(\mathbb{K}).
$$

Now we look for conditions under which $(\overline{q}, \xi, \eta, \overline{G})$ is normal.

If we put $\dot{\delta}_j = \overline{q}(\delta_j)$ we get n local vector fields that are tangent to K, because K is an invariant hypersurface. These, together with δ_i , $i = 1, 2, \ldots, n$, are all tangent to K and they are not linearly independent. But if we consider δ_i , $i = 1, 2, \ldots, n$ and $\dot{\delta}_j$ with $j = 1, 2, \ldots, n-1$, we obtain a set $(\delta_i, \dot{\delta}_j)$ of local vector fields that form a local basis in the tangent bundle to K . We shall compute N from (4.4) in this basis.

First, we note that

(4.6)
$$
\dot{\delta}_j = \overline{q}(\delta_j) = a_{jk} \dot{\partial}^k, \quad a_{jk} = g_{jk} - p_j p_k
$$

$$
\overline{q}(\dot{\partial}^k) = g^{ki} \delta_i.
$$

$$
\overline{q}^2(\delta_i) = b_i^k \delta_k, \quad b_i^k = \delta_i^k - p_i p^k
$$

$$
(4.7) \qquad \overline{q}^2(\dot{\partial}^k) = b_i^k \dot{\partial}^i.
$$

Secondly, we recall some formulae related to K^n from [4],

k

(4.8)
$$
\begin{aligned}\n[\delta_i, \delta_j] &= R_{kij} \stackrel{\cdot}{\partial}^k, \ R_{kij} = \delta_j N_{ki} - \delta_i N_{kj}, \\
[\delta_i, \dot{\partial}^j] &= -(\dot{\partial}^j N_{ik}) \stackrel{\cdot}{\partial}^k.\n\end{aligned}
$$

(4.9) $p_k \dot{\partial}^k N_{ij} = N_{ij}$ (the homogeneity of N_{ij} in momenta).

Assume that K^n is endowed with the linear Cartan connection $(H_{jk}^i, C^j k_i = g_{is} C^{sjk}).$ Denote by $_{|k}$ and $|^{k}$ the horizontal and vertical covariant derivatives, respectively. Then we have

$$
\begin{aligned} (4.10) \quad & K_{|j}^2 := \delta_j K^2 = 0, K^2 |^j = 2p^j, p_{i|j} = 0, \ p_i |^j = \delta_i^j\\ & p_{|j}^i = 0, p^i |^j = g^{ij}. \end{aligned}
$$

(4.11)
$$
R_{kij}p^k = 0, P^i_{jk}p^j = 0, P^i_{jk} := H^i_{jk} - \dot{\partial}^i N_{jk}.
$$

(4.12) $\delta_i g_{jk} = H^s_{ji} g_{sk} + H^s_{ki} g_{js}.$

Now we compute:

$$
2d\eta(\delta_i, \delta_j) = \delta_i p_j - \delta_j p_i = 0
$$
 since by (3.9), $\delta_i p_j = H_{ij}^s p_s$,
\n
$$
2d\eta(\delta_i, \dot{\delta}_j) = -\dot{\delta}_j p_i = -a_{ij}
$$
,
\n
$$
2d\eta(\dot{\partial}^i, \dot{\partial}^j) = 0.
$$

And further,

$$
N(\delta_i, \delta_j) = A_{hij}g^{hk}\delta_k + (B_{kij} - R_{kij})\dot{\partial}^j
$$

\n
$$
N(\delta_i, \dot{\delta}_j) = (a_{ih}\dot{\partial}^h b_j^s - b_j^k R_{hik}g^{hs} - B_{hij}g^{hs} - B_{hij}g^{hs} + a_{ij}p^s)\delta_s -
$$

\n
$$
- \left[A_{kij} - p_jp^r(\delta_r a_{ik} - a_{ih}\dot{\partial}^h N_{rk}) + a_{kr}\delta_i b_j^r\right]\dot{\partial}^k,
$$

\n
$$
N(\dot{\delta}_i, \dot{\delta}_j) = (D_{ij}^s - D_{ji}^s)\delta_s + (b_i^k b_j^h R_{rkh} - B_{rij} + a_{rk} E_{ij}^k)\dot{\partial}^r,
$$

where

$$
A_{kij} = \delta_i a_{jk} - \delta_j a_{ik} + a_{ih} \stackrel{\cdot}{\partial}^h N_{jk} - a_{jh} \stackrel{\cdot}{\partial}^h N_{ik},
$$

$$
B_{kij} = a_{ih} \stackrel{\cdot}{\partial}^h a_{jk} - a_{jh} \stackrel{\cdot}{\partial}^h a_{ik},
$$

(4.14)
$$
D_{ij}^{s} = b_i^{k} \delta_k b_j^{s} + (b_j^{k} \delta_k a_{ih} + b_i^{k} a_{jh} \dot{\partial}^{h} N_{kr}) g^{hs},
$$

$$
E_{ij}^{k} = a_{ih} \dot{\partial}^{h} b_j^{k} - a_{jh} \dot{\partial}^{h} b_i^{k}.
$$

The expressions from (4.14) can be simplified as follows.

First, using (1.1) one easily obtains that $B_{kij} = p_i g_{jk} - p_j g_{ik}$.

From $p^k a_{kr} = 0$ it follows that $(\delta_i p^k) a_{kr} = -(\delta_i a_{kr}) p^r$, and $p_{i|k} = 0$ is equivalent to $\delta_i p_k = N_{ik}$. Based on these formulae we find that the vertical part of $N(\delta_i, \dot{\delta}_j)$ is $-b_j^k A_{rik} \stackrel{\cdot}{\partial}^r$ and its horizontal part takes the form $b_j^k (p_i g_{kh} - p_k g_{ih} - R_{hik}) g^{hs} \delta_s$.

A tedious computation gives

$$
D_{ij}^{s} - D_{ji}^{s} = A_{hij}g^{hs} + p^{k}P_{kh}^{r}(p_{i}g_{rj} - p_{j}g_{ir}) = A_{hij}g^{hs}
$$

by (4.11).

We have $E_{ij}^k = p_i \delta_j^k - p_j \delta_i^k$, and using this we get that the vertical part of $N(\dot{\delta}_i, \dot{\delta}_j)$ is $(R_{kij} + p_i R_{kjo} - p_j R_{rio})\partial^r$, where $R_{kjo} = R_{kjs} p^s$.

The tensor field A_{kij} takes the form $A_{kij} = \delta_i g_{jk} - \delta_j g_{ik} + g_{ih} \stackrel{\cdot}{\partial}^h N_{jk} - g_{jh} \stackrel{\cdot}{\partial}^h N_{ik}$ and by (iii) of Prop. 2.3 in Chapter 7 of [4], it vanishes for Cartan spaces.

Gathering together the above facts we obtain

4.3. Theorem. In the frame $(\delta_i, \dot{\delta}_j)$, $j = 1, 2, \ldots, n-1$, the tensor field N given by (4.4) has the form

$$
N(\delta_i, \delta_j) = (p_i g_{jk} - p_j g_{ik} - R_{kij}) \dot{\partial}^j,
$$

\n
$$
N(\delta_i, \dot{\delta}_j) = -b_j^k (p_i g_{jk} - p_k g_{ih} - R_{hik}) g^{hs} \delta_s,
$$

\n
$$
N(\dot{\delta}_i, \dot{\delta}_j) = (R_{kij} + p_i R_{kjo} - p_j R_{kio}) \dot{\partial}^k.
$$

4.4. Corollary. The almost paracontact Riemannian structure $(\overline{q}, \xi, \eta, \overline{G})$ is normal if and only if

(4.15) $R_{kij} = p_i g_{jk} - p_j g_{ik}.$

Proof. One easily checks that if R_{kij} has the form given by (4.15), then $R_{kij} + p_i R_{kjo}$ $p_jR_{kio} = 0$. Then the conclusion is obvious.

We give a geometrical meaning to (4.15), showing that it implies that the Cartan space K^n is of constant scalar curvature -1 .

A Cartan space K^n is of constant scalar curvature c if

(4.16) $H_{hijk} p^i p^j X^h X^k = c(g_{hj}g_{ik} - g_{hk}g_{ij}) p^i p^j X^h X^k$

for every $(x, p) \in T_0^*M$ and $X = (X^i) \in T_xM$. Here, H_{hijk} is the $(hh)h$ -curvature of the linear Cartan connection of K^n .

We replace H_{hijk} in (4.16) with $g_{is} H_{hjk}^s$ and so it reduces to

(4.16') $p_s H_{hjk}^s p^j X^h X^k = c(p_h p_k - g_{hk}) X^h X^k.$ on K.

By Proposition 5.1 (ii) in Chapter 7 of [4], $p_s H_{hjk}^s = -R_{khj}$, hence we get $R_{kho} X^h X^k =$ $c(g_{hk} - p_h p_k) X^h X^k$, or equivalently

 (4.17) $R_{kho} = c(g_{hk} - p_h p_k),$

because (X^h) , (X^k) are arbitrary vector fields on M.

Now it is easy to check that (4.17) follows from (4.15) when $c = -1$.

In general, (4.17) does not imply (4.15). But this happens when the (g^{ij}) do not depend on p. Indeed, in this case $N_{ij}(x,p) = \gamma_{ij}^k p_k$, where (γ_{ij}^k) are the Christoffel symbols constructed with $g_{ij}(x)$, and then $R_{kij} = R_{kij}^h p_h$, where R_{kij}^h is the curvature tensor derived from $g_{ij}(x)$.

The equation (4.17) now reads as follows:

 (4.17) $R_{khj}^s(x)p_s p^j = c(g_{kh} - p_k p_h).$

On the other hand we can write $g_{kh} - p_k p_h = (\delta_j^s g_{kh}(x) - \delta_h^s g_{kj}(x)) p_s p^j$, and making use of (4.17') we get

(4.18) $R_{khj}^s(x) = c(\delta_j^s g_{kh} - \delta_h^s g_{kj}).$

Equation (4.15) becomes $R_{kij}^h = p_h(\delta_i^h g_{jk} - \delta_j^h g_{ik})$, or equivalently

(4.19) $R_{kij}^h = \delta_i^h g_{jk} - \delta_j^h g_{ik},$

which is equivalent to (4.18) for $c = -1$.

Thus we have obtained:

4.5. Theorem. Let (M, K) be the Cartan space with $K^2 = g^{ij}(x)p_ip_j$. Then the almost paracontact Riemannian structure $(\overline{q}, \xi, \eta, \overline{G})$ on the figuratrix bundle K is normal if and only if the Riemannian manifold $(M, g_{ij}(x))$ is of constant curvature -1.

References

- [1] Anastasiei, M. A framed f-structure on tangent manifold of a Finsler space, Analele Univ. Bucuresti, Mat.-Inf., XLIX, 3–9, 2000.
- [2] Bucki, A. Hypersurfaces of almost r- paracontact Riemannian manifolds. Tensor N. S. 48, 245–251, 1989.
- [3] Gîrtu, M. An almost paracontact structure on the indicatrix bundle of a Finsler space, BJGA 7(2), 43–48, 2002.
- [4] Miron, R., Hrimiuc, D., Shimada, H. and Sabău, V.S. The Geometry of Hamilton and Lagrange Spaces , (Kluwer Academic Publishers, FTPH 118, 2001).