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Abstract

A Cartan space is a pair (M,K), whereM is a smooth manifold and K
an Hamiltonean on the slit cotangent bundle T ∗

0M := TM \{(x, 0), x ∈
M}, that is positively homogeneous of degree 1 in momenta. We show
thatK induces an almost 2–paracontact Riemannian structure on T ∗

0M

whose restriction to the figuratrix bundle K = {(x, p) | K(x, p) = 1}
is an almost paracontact structure. A condition for this almost para-
contact structure to be normal is found, and its geometrical meaning is
pointed out. Similar results for Finsler spaces can be found in [1] and
[3].
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1. Introduction

Let (N,h) be an m–dimensional Riemannian manifold. If on N there exists a tensor
field φ of type (1, 1), r vector fields ξ1, ξ2, . . . , ξr, (r < m), and r, 1–forms η1, η2, . . . , ηr

such that

(i) ηa(ξb) = δab , a, b ∈ (r) = {1, 2, . . . , r},
(ii) φ2 = I −

∑

a η
a ⊗ ξa,

(iii) ηa(X) = h(X, ξa), a ∈ (r),
(iv) h(φX, φY ) = h(X,Y )−

∑

a η
a(X)ηa(Y ),

where X, Y are vector fields and I is the identity tensor field on N , then

Σ = (φ, ξa, η
a)a∈(r)

is said to be an almost r–paracontact Riemannian structure on M , and the pair (M,Σ)
is called an almost r–paracontact Riemannian manifold.
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From (i) through (iv) it follows that (see [2]):

φ(ξa) = 0, η
a ◦ φ = 0, a ∈ (r)

φ(x, y) := h(φX, Y ) = h(X, φY ).

A Cartan space is a pair Kn = (M,K), where M is a smooth n−dimensional manifold
and K is a positive function on the cotangent bundle T ∗

0M := T ∗M \ {(x, 0) | x ∈ M}
such that the function K2 is a regular Hamiltonian which is homogeneous of degree 2 in
momenta.

It is well known that T ∗
0M is a Riemannian manifold with a Riemannian metric similar

to the Sasaki metric, completely determined by K.

We show in Section 2 that, moreover, T ∗
0M can be naturally endowed with an almost 2-

paracontact Riemannian structure. Section 1 is devoted to some preliminaries, especially
regarding the geometry of T ∗M . In Section 3 we consider the figuratrix bundle K =
{u ∈ T ∗M | K(u) = 1} as a submanifold of T ∗

0M of codimension one, and we show that
it carries an almost paracontact Riemanian structure induced by the above mentioned
almost 2-paracontact Riemannian structure on T ∗

0M . A condition for this paracontact
Riemannian structure to be normal is established and its geometric meaning is discussed.

2. Preliminaries

We recall from Chapter 6 of [4] some facts from the geometry of the cotangent bundle
T ∗M . We take (xi), i = 1, 2, . . . , n as local coordinates on M . The induced local
coordinates on T ∗M will be denoted by (xi, pi), where x

i is in fact xi ◦ τ∗, for τ∗ :
T ∗M → M the natural projection, and pi are the components of a covector from T ∗

xM ,
x(xi), in the cobasis (dxi)x. The coordinates pi will be called momenta.

The kernel of the differential Dτ∗ of τ∗ is a subbundle of TT ∗
0M , known as vertical

and denoted by V T ∗
0M . The vertical distribution V : u ∈ T ∗M → VuT

∗
0M = ker(Dτ∗)u

is locally spanned by
.

∂
i
:=

∂

∂pi
, hence it is integrable.

The vector field C∗ = pi
.

∂
i
on T ∗M is called the Liouville vector field.

Let Kn = (M,K) be a Cartan space. Then the function K : T ∗M → R has the
properties

(i) K is smooth on T ∗
0M and only continuous on the set {(x, 0) | x ∈M},

(ii) K > 0 on T ∗M ,
(iii) K(x, λp) = λK(x, p) for any λ > 0,

(iv) The matrix with entries gij(x, p) = 1
2

.

∂
i .

∂
j
K2 is positive definite.

If one sets pi = 1
2

.

∂
i
K2then gij =

.

∂
j
pi, and from the homogeneity condition (iii) there

results

(2.1)
p
i = g

ij
pj , K

2 = g
ij
pipj = pip

j
,

C
ijk
pk = 0, where C

ijk := 1
2

.

∂
i
gjk.

As det(gij) 6= 0, from the first equation in (1.1) it follows that pi = gijp
j , where (gij) is

the inverse of the matrix (gij).

In the following we restrict our considerations to the open submanifold T ∗
0M of T ∗M .

A nonlinear connection on T ∗
0M is a distribution u → HuT

∗
0M , called horizontal,

which is supplementary to the vertical distribution. This is usually given by a local basis

δi = ∂i +Nij(x, p)
.

∂
j
for some functions (Nij) having a special behavior, by a change of

coordinates on T ∗M . It was proved by R. Miron [4, Chapter 4] that any Cartan space
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has a canonical nonlinear connection, completely determined by K, whose coefficients
(Nij(x, p)) are positively homogeneous of degree 1 in momenta, and have the property
Nij = Nji.

Thus we have a decomposition

(2.2) TuT
∗
0M = VuT

∗
0M ⊕HuT

∗
0M,

and (δi,
.

∂
i
) is a basis adapted to it.

This suggests the following definition of an almost product structure Q on T ∗M .

(2.3) Q(δi) = gij
.

∂
j
, Q(

.

∂
i
) = g

ij
δj .

It is easy to check that Q2 = I.

Using the matrices (gij) and (g
ij) the following Riemannian metric on T ∗

0M is defined

(2.4) G = gijdx
i ⊗ dx

j + g
ij
δpi ⊗ δpj ,

where δpi = dpi −Nij(x, p)dx
j and (dxi, δpi) is the dual basis of (δi,

.

∂
i
).

The Riemannian metric G is similar to the Sasaki metric on the tangent bundle. An
easy calculation gives:

(2.5) G(QX,QY ) = G(X,Y ), X, Y ∈ X(T ∗
0M).

Here X(T ∗M) is the F(M)–module of vector fields on T ∗
0M .

3. An almost 2-paracontact Riemannian structure on T ∗

0 M when

(M, K) is a Cartan space

We already know that (T ∗
0M,G) is a Riemannian manifold. On T ∗

0M there exist two
globally defined vector fields:

ξ1 =
1

K
p
i
δi and ξ2 =

1

K
pi

.

∂
i
.

They are linearly independent. The second one is collinear with the Liouville vector field,
while the first one is nothing but the Hamiltonian vector field of the function K.

Indeed, the Hamiltonian vector field of K is

−→
K = (

.

∂
i
K)

∂

∂xi
− (∂iK)

∂

∂pi
= (

.

∂
i
K)δi − (δiK)

.

∂
i
= ξ1,

because for a Cartan space δiK = 0 and
.

∂
i
K =

pi

K
.

Now we consider the 2 1-forms

η
1 =

1

K
pidx

i and η2 =
1

K
p
i
δpi.

These are globally defined. It quickly follows that

(3.1) η
a(ξb) = δ

a
b , a, b ∈ {1, 2}.

One easily checks that

Q(ξ1) = ξ2, Q(ξ2) = ξ1,(3.2)

η
1 ◦Q = η

2
, η

2 ◦Q = η
1
.(3.3)

Using Q, ξa, η
a, a ∈ {1, 2}, we construct the tensor field

q = Q− η
2 ⊗ ξ1 − η

1 ⊗ ξ2.

Based on (3.1) - (3.3) it comes out that

(3.4) q
2(X) = X − η

1(X)ξ1 − η
2(X)ξ2.
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In the adapted frame (δi,
.

∂
i
) we have

G(δi, δj) = gij , G(δi,
.

∂
j
) = 0, G(

.

∂
i
,
.

∂
j
) = g

ij
.

These equations are used to verify that

(3.5) η
a(X) = G(X, ξa), a ∈ {1, 2},

holds for X = δi,
.

∂
i
.

A direct calculation using (2.5), (3.5), as well as G(ξa, ξb) = δab, gives

(3.6) G(qX, qY ) = G(X,Y )− η
1(X)η1(Y )− η

2(X)η2(Y ), X, Y ∈ X(T ∗
0M).

The equations (3.1), (3.4) - (3.6) show that the following theorem holds good.

3.1. Theorem. Let Kn = (M,K) be a Cartan space. Then T ∗
0M is an almost 2-

paracontact Riemannian manifold with the almost 2-paracontact Riemannian structure

(q, ξa, η
a, G), a ∈ {1, 2}.

The next equations follow easily from (3.1) and (3.2)

(3.7) q(ξa) = 0, η
a ◦ q = 0.

By (3.4) and (3.7) we have

(3.8) q
3 − q = 0.

Now we prove

3.2. Lemma. The rank of q is 2n− 2.

Proof. By the first equation (3.7), the subspace span {ξ1, ξ2} is contained in ker q. Let

now X ∈ ker q. If X = Xiδi + Yi
.

∂
i
, the condition q(X) = 0 gives X i =

Xjpj

K2
p
i,

Yi =
Yip

j

K2
pi, hence X ∈ span {ξ1, ξ2} ¤

Let h(X,Y ) = G(qX, Y ), X,Y ∈ X(T ∗
0M).

3.3. Theorem. The mapping h is bilinear and symmetric and its null space is ker q.

Proof. The bilinearity is obvious. The symmetry holds even in a more general setting cf.
Section 1. The null space of h is {X | h(X,Y ) = 0, ∀Y } = {X | G(qX, Y ) = 0, ∀Y } =
{X | qX = 0} = ker q. ¤

In the adapted basis (δi,
.

∂
i
) we have

(3.9)
q(δi) = Aij

.

∂
j
, q(

.

∂
i
) = B

ij
δj ,

Aij = gij −
1

K2
pipj , B

ij = g
ij −

1

K2
p
i
p
j
.

We notice that these matrices have rank n− 1 because of

(3.10) Aijp
j = 0, Bij

pj = 0.

The mapping h has the form

h = Aijdx
i ⊗ dx

j −B
ij
δpi ⊗ δpj .

Thus it is a singular pseudo-Riemannian metric on T ∗
0M .
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4. An almost paracontact structure on the figuratrix bundle of a

Cartan space Kn

The set K = {(x, p) ∈ T ∗
0M | K(x, p) = 1} will be called the figuratrix bundle of the

Cartan space Kn. It will be thought of as a hypersurface (submanifold of codimension
1) of T ∗

0M , endowed with the almost 2-paracontact Riemannian structure from Theorem
3.1.

Let

(4.1)

{

xi = xi(uα),

pi = pi(u
α), α = 1, 2, . . . , 2n− 1,

with rank

(

∂xi

∂uα
,
∂pi

∂uα

)

= 2n− 1, a parametrization of K.

We consider the local vector fields
∂

∂uα
=

∂xi

∂uα
∂i +

∂pi

∂uα

.

∂
i
, which provide a local

basis in the tangent bundle to K, and put them into the form

∂

∂uα
=

∂xi

∂uα
δi +

(

∂pj

∂uα
−Nij

∂xi

∂uα

)

.

∂
j
.

It follows that G

(

∂

∂uα
, ξ2

)

=
1

K
p
j

(

∂pj

∂uα
−Nij

∂xi

∂uα

)

. On the other hand, by deriving

the identity K2(xi(uα), pi(u
α)) = 1 with respect to uα we find

0 = (∂iK
2)
∂xi

∂uα
+ (

.

∂
i
K

2)
∂pi

∂uα

= (δiK
2)
∂xi

∂uα
+ (

.

∂
i
K

2)

(

∂pi

∂uα
−Nij

∂xj

∂uα

)

= 2pi
(

∂pi

∂uα
−Nij

∂xj

∂uα

)

because, for a Cartan space, δiK = 0. Thus on K we have G =
(

∂

∂uα
, ξ2

)

= 0 for every

α = 1, 2, . . . , 2n− 1. In other words, the vector field ξ2 restricted to K is normal to K.

Recall that ξ2 restricted to K is ξ2 = pi(u
α)

.

∂
i
.

4.1. Lemma. The hypersurface K is invariant with respect to q i.e. q(TuK) ⊂ TuK, ∀u ∈
K.

Proof. G

(

q

(

∂

∂uα

)

, ξ2

)

= (η2 ◦ q)

(

∂

∂uα

)

= 0 ∀α = 1, 2, . . . , 2n− 1. ¤

By item (i) in Theorem 3.1 from [2], and Lemma 4.1, there follows:

4.2. Theorem. The almost 2-paracontact Riemannian structure (q, ξa, ηa, G), a ∈
{1, 2}, on T ∗

0M induces by restriction an almost paracontact Riemannian structure on

the figuratrix bundle K.

If we use overlines to denote the restrictions we have

• ξ1 = piδi, is tangent to K
• η2 = 0 because of η

2(X) = G(X, ξ2) = 0 for every X tangent to K,
• G = G|K,

• q = Q− η1 ⊗ η2 is an automorphism of TuK, ∀u ∈ K.



20 M. Gı̂rţu

We put ξ = ξ1, η = η1, so the almost paracontact Riemannian structure given by

Theorem 4.2 is (q, ξ, η, G). We mention that

q
2 = I − η ⊗ ξ, η(X) = G(X, ξ),(4.2)

G(qX, qY ) = G(X,Y )− η(X)η(Y ), X, Y ∈ X(K).(4.3)

By Theorem 1.1 in [2], the almost paracontact Riemannian structure (q, ξ, η, G) is nor-

mal if and only if

(4.4) N(X,Y ) := Nq(X,Y )− 2dη(X,Y )ξ = 0,

where Nq is the Nijenhuis tensor field of q, i.e.

(4.5) Nq(X,Y ) = [qX, qY ] + q
2[X,Y ]− q[qX, Y ]− q[X, qY ], ∀X,Y ∈ X(K).

Now we look for conditions under which (q, ξ, η, G) is normal.

If we put δ̇j = q(δj) we get n local vector fields that are tangent to K, because K is
an invariant hypersurface. These, together with δi, i = 1, 2, . . . , n, are all tangent to K
and they are not linearly independent. But if we consider δi, i = 1, 2, . . . , n and δ̇j with

j = 1, 2, . . . , n− 1, we obtain a set (δi, δ̇j) of local vector fields that form a local basis in
the tangent bundle to K. We shall compute N from (4.4) in this basis.

First, we note that

δ̇j = q(δj) = ajk
.

∂
k
, ajk = gjk − pjpk

q(
.

∂
k
) = g

ki
δi.

(4.6)

q
2(δi) = b

k
i δk, b

k
i = δ

k
i − pip

k

q
2(
.

∂
k
) = b

k
i

.

∂
i
.

(4.7)

Secondly, we recall some formulae related to Kn from [4],

[δi, δj ] = Rkij
.

∂
k
, Rkij = δjNki − δiNkj ,

[

δi, ∂̇
j
]

= −(∂̇jNik)
.

∂
k
.

(4.8)

pk
.

∂
k
Nij = Nij (the homogeneity of Nij in momenta).(4.9)

Assume that Kn is endowed with the linear Cartan connection (H i
jk, C

jki = gisC
sjk).

Denote by |k and |
k the horizontal and vertical covariant derivatives, respectively. Then

we have

K
2
|j := δjK

2 = 0,K2|j = 2pj , pi|j = 0, pi|
j = δ

j
i

p
i
|j = 0, p

i|j = g
ij
.

(4.10)

Rkijp
k = 0, P ijkp

j = 0, P ijk := H
i
jk−

.

∂
i
Njk.(4.11)

δigjk = H
s
jigsk +H

s
kigjs.(4.12)

Now we compute:

2dη(δi, δj) = δipj − δjpi = 0 since by (3.9), δipj = H
s
ijps,

2dη(δi, δ̇j) = −δ̇jpi = −aij ,

2dη(
.

∂
i
,
.

∂
j
) = 0.



An almost 2-paracontact structure 21

And further,

(4.13)

N(δi, δj) = Ahijg
hk
δk + (Bkij −Rkij)

.

∂
j

N(δi, δ̇j) = (aih
.

∂
h
b
s
j − b

k
jRhikg

hs −Bhijg
hs −Bhijg

hs + aijp
s)δs−

−
[

Akij − pjp
r(δraik − aih

.

∂
h
Nrk) + akrδib

r
j

]

.

∂
k
,

N(δ̇i, δ̇j) = (D
s
ij −D

s
ji)δs + (b

k
i b
h
jRrkh −Brij + arkE

k
ij)

.

∂
r
,

where

(4.14)

Akij = δiajk − δjaik + aih
.

∂
h
Njk − ajh

.

∂
h
Nik,

Bkij = aih
.

∂
h
ajk − ajh

.

∂
h
aik,

D
s
ij = b

k
i δkb

s
j + (b

k
j δkaih + b

k
i ajh∂̇

h
Nkr)g

hs
,

E
k
ij = aih

.

∂
h
b
k
j − ajh

.

∂
h
b
k
i .

The expressions from (4.14) can be simplified as follows.

First, using (1.1) one easily obtains that Bkij = pigjk − pjgik.

From pkakr = 0 it follows that (δip
k)akr = −(δiakr)p

r, and pi|k = 0 is equivalent

to δipk = Nik. Based on these formulae we find that the vertical part of N(δi, δ̇j) is

−bkjArik
.

∂
r
and its horizontal part takes the form bkj (pigkh − pkgih −Rhik)g

hsδs.

A tedious computation gives

D
s
ij −D

s
ji = Ahijg

hs + p
k
P
r
kh(pigrj − pjgir) = Ahijg

hs

by (4.11).

We have Ekij = piδ
k
j − pjδ

k
i , and using this we get that the vertical part of N(δ̇i, δ̇j) is

(Rkij + piRkjo − pjRrio)∂
r, where Rkjo = Rkjsp

s.

The tensor field Akij takes the form Akij = δigjk − δjgik + gih
.

∂
h
Njk − gjh

.

∂
h
Nik

and by (iii) of Prop. 2.3 in Chapter 7 of [4], it vanishes for Cartan spaces.

Gathering together the above facts we obtain

4.3. Theorem. In the frame (δi, δ̇j), j = 1, 2, . . . , n−1, the tensor field N given by (4.4)
has the form

N(δi, δj) = (pigjk − pjgik −Rkij)
.

∂
j
,

N(δi, δ̇j) = −b
k
j (pigjk − pkgih −Rhik)g

hs
δs,

N(δ̇i, δ̇j) = (Rkij + piRkjo − pjRkio)
.

∂
k
.

4.4. Corollary. The almost paracontact Riemannian structure (q, ξ, η, G) is normal if
and only if

(4.15) Rkij = pigjk − pjgik.

Proof. One easily checks that if Rkij has the form given by (4.15), then Rkij + piRkjo −
pjRkio = 0. Then the conclusion is obvious. ¤

We give a geometrical meaning to (4.15), showing that it implies that the Cartan
space Kn is of constant scalar curvature −1.

A Cartan space Kn is of constant scalar curvature c if

(4.16) Hhijkp
i
p
j
X
h
X
k = c(ghjgik − ghkgij)p

i
p
j
X
h
X
k
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for every (x, p) ∈ T ∗
0M and X = (Xi) ∈ TxM . Here, Hhijk is the (hh)h–curvature of the

linear Cartan connection of Kn.

We replace Hhijk in (4.16) with gis H
s
hjk and so it reduces to

(4.16’) psH
s
hjkp

j
X
h
X
k = c(phpk − ghk)X

h
X
k
.

on K.
By Proposition 5.1 (ii) in Chapter 7 of [4], psH

s
hjk = −Rkhj , hence we getRkhoX

hXk =

c(ghk − phpk)X
hXk, or equivalently

(4.17) Rkho = c(ghk − phpk),

because (Xh), (Xk) are arbitrary vector fields on M .

Now it is easy to check that (4.17) follows from (4.15) when c = −1.

In general, (4.17) does not imply (4.15). But this happens when the (gij) do not
depend on p. Indeed, in this case Nij(x, p) = γkijpk, where (γ

k
ij) are the Christoffel

symbols constructed with gij(x), and then Rkij = Rhkijph, where R
h
kij is the curvature

tensor derived from gij(x).

The equation (4.17) now reads as follows:

(4.17’) R
s
khj(x)psp

j = c(gkh − pkph).

On the other hand we can write gkh− pkph = (δ
s
jgkh(x)− δ

s
hgkj(x))psp

j , and making use
of (4.17’) we get

(4.18) R
s
khj(x) = c(δsjgkh − δ

s
hgkj).

Equation (4.15) becomes Rhkij = ph(δ
h
i gjk − δhj gik), or equivalently

(4.19) R
h
kij = δ

h
i gjk − δ

h
j gik,

which is equivalent to (4.18) for c = −1.

Thus we have obtained:

4.5. Theorem. Let (M,K) be the Cartan space with K2 = gij(x)pipj . Then the almost

paracontact Riemannian structure (q, ξ, η, G) on the figuratrix bundle K is normal if and

only if the Riemannian manifold (M, gij(x)) is of constant curvature −1.
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