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Near compactness of ditopological texture spaces
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Abstract

The authors consider the notions of near compactness, near cocompact-
ness, near stability, near costability and near dicompactness in the set-
ting of ditopological texture spaces. In particular preservation of these
properties under surjective R-dimaps, co-R-dimaps and bi-R-dimaps
is investigated and non-trivial characterizations of near dicompactness
are given which generalize those for dicompactness. The notions of
semiregularization, semicoregularization and semibiregularization are
defined and used to give generalizations of Mrówka’s Theorem for near
compactness and near cocompactness, and of Tychonoff’s Theorem for
near compactness, near cocompactness and near dicompactness. Also,
results related to pseudo-open and pseudo-closed sets are presented.
Finally, examples are given of co-T1 nearly dicompact ditopologies on
textures which are not nearly plain and an open question is posed.
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1. Introduction
The investigation of various types of generalized open set and generalized continuous

function is a rich area of research in general topology, and there are interesting appli-
cations in various areas, particularly computer science. An early notion in this area is
the now well known concept of regular-open set, and its counterpart regular-closed set.
Closely related with this notion is the property of near compactness introduced by Singal
and Mathur [16, 17], which has been studied by several other authors (see, for example,
[11]). Important in this context is the notion of R-map, see [7]. In this paper these and
related notions will be studied in the wider context of ditopological texture spaces.

Textures and ditopological texture spaces were first introduced by the first author as
a point-based setting for the study of fuzzy sets, and work continues in this direction,
see for example [1, 2, 3, 4, 5], and the recent work of Tiryaki [18], Özçağ and Brown [15],
Yıldız and Brown [22]. On the other hand, textures provide a very convenient setting for
the investigation of complement-free concepts in general, so much of the recent work does
not involve fuzzy sets explicitly. In particular, the notions of diuniformity and dimetric
have been introduced in [14], while a textural analogue of the notion of proximity, called
a diextremity, is given in [23].

Compactness in ditopological texture spaces was introduced in [1], its study continued
in [6, 20], and extended to real compactness in [20] and to strong compactness in [10]. In
this paper we place near compactness in a ditopological setting. All the arguments for
studying properties related to regular-openness and regular-closedness in the topological
setting apply equally well to this case, and since bitopologies and L-topologies, for L a
Hutton algebra, are special cases of ditopologies, the new concepts of near cocompactness,
near stability, near costability, and near dicompactness introduced here, may easily be
carried over to these settings also.

To complete this introduction we recall various concepts from [3, 4] that will be needed
later on in this paper.
Ditopological Texture Spaces: If S is a set, a texturing S of S is a subset of P(S)
which is a point-separating, complete, completely distributive lattice with respect to
containment containing S and ∅, and for which meet coincides with intersection and
finite joins with union. The pair (S, S) is then called a texture.

For a texture (S, S), most properties are conveniently defined in terms of the p-sets
and q-sets

Ps =
⋂
{A ∈ S | s ∈ A}, Qs =

∨
{A ∈ S | s /∈ A}.

The following are some basic examples of textures that we will need.

1.1. Examples. (1) If X is a set and P(X) the powerset of X, then (X,P(X)) is the
discrete texture on X. For x ∈ X, Px = {x} and Qx = X \ {x}.

(2) Setting I = [0, 1], I = {[0, r), [0, r] | r ∈ I} gives the unit interval texture (I, I). For
r ∈ I, Pr = [0, r] and Qr = [0, r).

(3) The texture (L,L) is defined by L = (0, 1], L = {(0, r] | r ∈ I}. For r ∈ L,
Pr = (0, r] = Qr.

(4) The real texture (R,R) has R = {(−∞, r), (−∞, r] | r ∈ R} ∪ {R, ∅}. For r ∈ R,
Pr = (−∞, r] and Qr = (−∞, r).

Since a texturing S need not be closed under the operation of taking set complement,
the notion of topology is replaced by that of dichotomous topology or ditopology, namely
a pair (τ, κ) of subsets of S, where the set of open sets τ satisfies



(1) S, ∅ ∈ τ ,
(2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I =⇒

∨
iGi ∈ τ ,

and the set of closed sets κ satisfies
(1) S, ∅ ∈ κ,
(2) K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ and
(3) Ki ∈ κ, i ∈ I =⇒

⋂
Ki ∈ κ.

We assume no a priori relation between the open and closed sets. Note that in a ditopol-
ogy, equal emphasis is placed on the open and closed sets.

For A ∈ S we define the closure [A] and the interior ]A[ of A under (τ, κ) by the
equalities

[A] =
⋂
{K ∈ κ | A ⊆ K} and ]A[ =

∨
{G ∈ τ | G ⊆ A}.

On the other hand, suppose that (S, S) has a complementation σ, that is an inclusion
reversing involution σ : S → S. Then if τ and κ are related by κ = σ(τ) we say that
(τ, κ) is a complemented ditopology on (S, S, σ). In this case we have σ([A]) = ]σ(A)[ and
σ(]A[) = [σ(A)].

We recall the product of textures and of ditopological texture spaces. Let (Sj , Sj),
j ∈ J , be textures and S =

∏
j∈J Sj . If Ak ∈ Sk for some k ∈ J we write

E(k,Ak) =
∏
j∈J

Yj where Yj =

{
Aj , if j = k

Sj , otherwise.

Then the product texturing S =
⊗

j∈J Sj of S consists of arbitrary intersections of ele-
ments of the set

E =

{ ⋃
j∈J

E(j, Aj) | Aj ∈ Sj for j ∈ J
}
.

Let (Sj , Sj), j ∈ J be textures and (S, S) their product. Then for s = (sj) ∈ S,

Ps =
⋂
j∈J

E(j, Psj ) =
∏
j∈J

Psj , and Qs =
⋃
j∈J

E(j,Qsj ).

It is easy to verify that for Aj ∈ Sj , j ∈ J we have
∏
j∈J Aj ∈ S.

In case (τj , κj) is a ditopology on (Sj , Sj), j ∈ J , the product ditopology on the
product texture (S, S) has subbase {E(j,G) | G ∈ τj , j ∈ J}, cosubbase γ = {E(j,K) |
K ∈ κj , j ∈ J}.

Let (S, S), (T,T) be textures. In the following definition we consider the product
texture P(S) ⊗ T, and denote by P (s,t), Q(s,t), respectively the p-sets and q-sets for the
product texture (S × T,P(S)⊗ T).

Direlations: Let (S, S), (T,T) be textures. Then
(1) r ∈ P(S)⊗ T is called a relation from (S, S) to (T,T) if it satisfies

R1 r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t).
R2 r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

(2) R ∈ P(S)⊗ T is called a corelation from (S, S) to (T,T) if it satisfies
CR1 P (s,t) 6⊆ R,Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R.
CR2 P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.

(3) A pair (r,R), where r is a relation and R a corelation from (S, S) to (T,T), is
called a direlation from (S, S) to (T,T).



One of the most useful notions of (ditopological) texture spaces is that of difunction. A
difunction is a special type of direlation.

Difunctions: Let (f, F ) be a direlation from (S, S) to (T,T). Then (f, F ) is called a
difunction from (S, S) to (T,T) if it satisfies the following two conditions.

DF1 For s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃ t ∈ T with f 6⊆ Q(s,t) and P (s′,t) 6⊆ F .
DF2 For t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.

Image and Inverse Image: Let (f, F ) : (S, S)→ (T,T) be a difunction.
(1) For A ∈ S, the image f→A and the co-image F→A are defined by

f→A =
⋂
{Qt | ∀ s, f 6⊆ Q(s,t) =⇒ A ⊆ Qs},

F→A =
∨
{Pt | ∀ s, P (s,t) 6⊆ F =⇒ Ps ⊆ A}.

(2) For B ∈ T, the inverse image f←B and the inverse co-image F←B are defined
by
f←B =

∨
{Ps | ∀ t, f 6⊆ Q(s,t) =⇒ Pt ⊆ B},

F←B =
⋂
{Qs | ∀ t, P (s,t) 6⊆ F =⇒ B ⊆ Qt}.

For a difunction, the inverse image and the inverse co-image are equal, but the image
and co-image are generally different. A difunction is called surjective if it satisfies

SUR. For t, t′ ∈ T , Pt 6⊆ Qt′ =⇒ ∃ s ∈ S with f 6⊆ Q(s,t′) and P (s,t) 6⊆ F .

Bicontinuity: The difunction (f, F ) : (S, S, τS , κS))→ (T,T, τT , κT ) is called continuous
if B ∈ τT =⇒ F←B ∈ τS , cocontinuous if B ∈ κT =⇒ f←B ∈ κS , and bicontinuous if
it is both continuous and cocontinuous.

On the other hand (f, F ) is open (co-open) if A ∈ τS =⇒ f→A ∈ τT (F→A ∈ τT ).
Also, (f, F ) is closed (coclosed) if A ∈ κS =⇒ f→A ∈ κT (F→A ∈ κT ).

If (Sj , Sj , τj , κj), j ∈ J , are ditopological texture spaces and (S, S, τ, κ) their product,
the projection difunctions (πj ,Πj) : (S, S, τ, κ) → (Sj , Sj , τj , κj) are important examples
of surjective bicontinouous difunctions that satisfy π←j B = E(j, B) = Π←j B for all B ∈ Sj
(see [4] and [6]).

Separation Axioms A comprehensive treatment is given in [5], and the definitions will
not be repeated here.

The layout of the paper is as follows. In Section 2 the concepts of near compact-
ness and near cocompactness are given in the setting of ditopological texture spaces,
while Section 3 deals with near stability and near costability, which are analogues for
near compactness of the notion of stability in bitopological spaces introduced by Ralph
Kopperman [12]. Section 4 deals with the preservation of these properties under surjec-
tive continuous difunctions via the notions of R-dimap and co-R-dimap, while Section 5
combines them in the notion of near dicompactness and provides important characteri-
zations of this important concept. Finally Section 6 introduces the semibiregularization
of a ditopological texture space, gives generalizations of the Mrówka characterization of
compactness for near compactness and near cocompactness, discuses characterizations of
near compact and near cocompact sets in near compact and near cocompact spaces using
the notions of pseudo open and pseudo closed set, and gives versions of the Tychonoff
product theorem for near compactness and near cocompactness. Here also we look at
near dicompactness in the presence of point separation axioms.

This work includes results, many reformulated, from an unpublished section of the
PhD thesis of the second author [9] together with interesting new material.

For terms from lattice theory not defined here the reader is referred to [8].



2. Near compactness and near cocompactness
The notion of nearly compact topological space was introduced by Singal and Mathur

[16, 17], and has been studied by several other authors (see, for example, [11]). The
definition of near compactness requires the concepts of regular-open and regular-closed
sets in a topological space. We recall the definitions below:

2.1. Definition. Let (X,T) be a topological space.
(1) If A ⊆ X satisfies A = int(cl(A)) then A is called a regular-open set.
(2) If B ⊆ X satisfies B = cl(int(B))) then B is called a regular-closed set.

2.2. Examples. (1) Every regular-open set is open and every regular-closed set is closed.
Moreover the complement of a regular-closed set is regular-open and the complement of
a regular-open set is regular-closed.

(2) Let X = {a, b} and let the topology on X be T = {∅, X, {a}}. Here {b} is a closed
set but cl(int({b})) = ∅, so {b} is not regular-closed.

2.3. Lemma. Let (X,T) be a topological space, A,B ⊆ X. Then int(cl(A)) is a regular-
open set and cl(int(B)) a regular-closed set �

In case of ditopological texture spaces we may give corresponding definitions, as fol-
lows.

2.4. Definition. Let (τ, κ) be a ditopology on the texture (S, S).
(1) An element A ∈ S will be called regular-open if ][A][ = A.
(2) An element B ∈ S will be called regular-closed if [ ]A[ ] = A

It is clear that sets of the form ][A][, A ∈ S, are regular-open and those of the form
[ ]A[ ], A ∈ S are regular-closed. In general there is no relation between regular-open and
regular-closed sets in a ditopological texture space, but for complemented ditopological
texture spaces we do have the following result.

2.5. Proposition. Let (S, S, σ, τ, κ) be a complemented ditopological texture space and
A ∈ S. Then

(1) A ∈ S is regular-open if and only if σ(A) is regular-closed.
(2) A ∈ S is regular-closed if and only if σ(A) is regular-open .

Proof. Straightforward. �

Now let us recall the definition of nearly compact topological space.

2.6. Definition. A topological space (X,T) is said to be nearly compact if every open
cover {Ui | i ∈ I} of X admits a finite subfamily such that X =

⋃n
i=1 int(cl(Ui)). That

is, X is nearly compact if and only if every regular-open cover of X has a finite subcover.

The set R with its usual topology and R with the discrete topology are not nearly
compact. However the indiscrete topology and the left ray topology {(−∞, r) | r ∈
R} ∪ {R, ∅} on R are examples of nearly compact topological spaces.

In the case of ditopological texture spaces we may give a corresponding definition of
near compactness, and a dual notion of near cocompactness, as follows.

2.7. Definition. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.
(1) A will be called nearly compact in S if whenever A ⊆

∨
i∈I Gi, Gi ∈ τ , there

exists I ′ ⊆ I finite, so that A ⊆
⋃
i∈I′ ][Gi][. The ditopological texture space

(S, S, τ, κ) will be called nearly compact if S is nearly compact in S.



(2) A will be called nearly cocompact in S if whenever
⋂
i∈I Fi ⊆ A, Fi ∈ κ, there

exists I ′ ⊆ I finite, so that
⋂
i∈I′ [ ]Fi[ ] ⊆ A. The ditopological texture space

(S, S, τ, κ) will be called nearly cocompact if ∅ is nearly cocompact in S.

As in the topological case we have the following characterizations.

2.8. Proposition. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.
(1) A is nearly compact in S if and only if every cover of A by regular-open sets in

S has a finite subcover.
(2) A is nearly cocompact in S if every cocover of A by regular-open sets in S has a

finite sub-cocover.

Proof. (1). Let A be nearly compact in S and suppose Gi, i ∈ I is cover of A by regular-
open sets. Since in particular Gi ∈ τ , we have I ′ finite with A ⊆

⋃
i∈I′ ][Gi][=

⋃
i∈I′ Gi

since the sets Gi are regular-open. Hence {Gi | i ∈ I} has a finite subcover.
Conversely, suppose every regular-open cover of A has a finite subcover, and let {Gi |

i ∈ I} be an open cover of A. For each i ∈ I, Gi ⊆ ][Gi][, so {][Gi][ | i ∈ I} is a cover of
A by regular-open sets. By hypothesis there exists I ′ ⊆ I finite with A ⊆

⋃
i∈I′ ][Gi][,

which shows that A is nearly compact.

(2). The proof is dual to the above, and is therefore omitted. �

2.9. Corollary. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.
(1) If A is compact in S it is nearly compact in S.
(2) If A is cocompact in S it is nearly cocompact in S.

Proof. Clear from Proposition 2.8 since every regular-open set is open and every regular-
closed set is closed. �

The following examples show that the converse of Corollary 2.9 is false. Also, in
general, the properties of near compactness and near cocompactness are independent of
one another.

2.10. Examples. Consider the texture (L,L) as in Examples 1.1.
(1) Let τ = L and κ = {L, ∅}. If we take r with 0 < r < 1 and set A = (0, r], then

[A] = L and so ][A][ = ]L[ 6= A, from which we see that A is not regular-open. It
follows that the only regular-open sets are ∅ and L, so (τ, κ) is nearly compact
because any regular-open cover of L is finite. On the other hand (τ, κ) is not
compact by [6, Example 2.2 (2)].

(2) In just the same way, τ = {∅, L} and κ = L define a ditopology which is nearly
cocompact but not cocompact.

(3) Take τ = {(0, r] | 0 ≤ r ≤ 1/2} ∪ {L} and κ = L. This ditopology (τ, κ) is not
nearly co-compact, since for example C = {(0, 1/n] | n = 1, 2 . . .} is a regular-
closed co-cover of ∅ which has no finite sub co-cover. However (τ, κ) is nearly
compact because it is compact.

(4) In just the same way τ = L and κ = {(0, r] | 1/2 ≤ r ≤ 1} ∪ {∅} defines a
ditopology which is nearly co-compact but not nearly compact.

For complemented ditopologies, however, near compactness and near cocompactness
are equivalent.

2.11. Proposition. Let (S, S, σ, τ, κ) be a complemented ditopological texture space.
Then (τ, κ) is nearly compact if and only if (τ, κ) is nearly cocompact.

Proof. Straightforward. �



3. Near stability and near costability
We now wish to generalize the notions of stability and costability. The following

definition would appear to be appropriate.

3.1. Definition. Let (τ, κ) be a ditopology on the texture space (S, S).
(1) (τ, κ) will be called nearly stable if every set F ∈ S \ {S} of the form F =⋂

α∈AKα, Kα regular-closed for each α ∈ A, is nearly compact in S.
(2) (τ, κ) will be called nearly costable if every setG ∈ S\∅ of the formG =

∨
α∈AGα,

Gα regular-open for each α ∈ A, is nearly cocompact in S.

3.2. Example. Consider the texture (L,L), as in previous examples,
(1) Take τ = L and κ = {∅, (0, 1/2], L}. As we have noted earlier, (τ, κ) is not stable

because (0, 1/2] is a closed set which is not compact. On the other hand the
only regular-open sets in this space are ∅, (0, 1/2] and L, so it is nearly stable.

(2) Dually, (τ, κ) defined by τ = {∅, (0, 1/2], L} and κ = L is nearly costable but
not costable.

(3) Let τ = κ = {(0, 1/2 − 1/n] | n ≥ 2} ∪ {(0, 1/2], L}. The regular-closed set
(0, 1/2] is not nearly compact since {(0, 1/2−1/n] | n ≥ 2} is a cover by regular-
open sets which has no finite subcover, so (τ, κ) is not nearly stable. On the
other hand it is clearly nearly costable.

(4) Dually, (τ, κ) defined by τ = κ = {(0, 1/2 + 1/n] | n ≥ 2}∪ {∅, (0, 1/2]} is nearly
stable but not nearly costable.

The last two examples show that in general near stability and near costability are
independent of one another. However for complemented ditopological texture spaces
these concepts are equivalent, as we now show.

3.3. Proposition. Let (S, S, σ) be a texture with complementation σ and (τ, κ) a com-
plemented ditopology on (S, S, σ). Then (τ, κ) is nearly stable if and only if (τ, κ) is nearly
costable.

Proof. Suppose that (τ, κ) is nearly stable. Let ∅ 6= G =
∨
α∈AGα with Gα regular-open

for each α. Also, let D be a regular-closed cocover of G, i.e.,⋂
D ⊆ G =

∨
Gα.

If we let Kα = σ(Gα) then Kα is regular-closed and K = σ(G) = σ(
∨
Gα) =

⋂
σ(Gα) =⋂

α∈AKα satisfies K 6= S. Also,

C = {σ(F ) | F ∈ D}
is a cover of K by regular-open sets. By hypothesis K is nearly compact so there exists
α1, . . . αn ∈ A such that

K ⊆ σ(Fα1) ∪ σ(Fα2) ∪ . . . ∪ σ(Fαn) = σ(Fα1 ∩ Fα2 ∩ . . . ∩ Fαn),

so Fα1 ∩ Fα2 ∩ . . . ∩ Fαn ⊆ σ(K) = G, which proves that G is nearly cocompact. Hence,
(τ, κ) is nearly costable.

Conversely, if (τ, κ) is nearly costable it is nearly stable. The proof is dual to the
above, and is omitted. �

4. R-dimaps and co-R-dimaps
Now let us consider the preservation of the above properties under surjective difunc-

tions. It is known [7] that near compactness of topological spaces is preserved under
R-maps, so we begin by recalling the definition of R-map.



4.1. Definition. Let (X1,T1), (X2,T2) be topological spaces and f : X1 → X2 a func-
tion. If for every regular-open set B ⊆ X2 the set f−1(B) is regular-open in X1 the
function f is called an R-map.

We make corresponding definitions for ditopological texture spaces.

4.2. Definition. Let (S1, S1, τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces and
(f, F ) : (S1, S1)→ (S2, S2) a difunction.

(1) (f, F ) will be said to be an R-dimap if for every regular-open set B ∈ S2 the set
F←(B) ∈ S1 is regular-open .

(2) (f, F ) will be said to be a co-R-dimap if for every regular-closed set B ∈ S2 the
set f←(B) ∈ S1 is regular-closed.

(3) (f, F ) will be said to be a bi-R-dimap if it is an R-dimap and a co-R-dimap.

Now we may state and prove the following theorems, which generalize the topological
case.

4.3. Theorem. Let (f, F ) : (S1, S1, τ1, κ1)→ (S2, S2, τ2, κ2) be a surjective R-dimap. If
(S1, S1, τ1, κ1) is nearly compact then (S2, S2, τ2, κ2) is nearly compact.

Proof. Assume S2 =
∨
α∈A Gα, where the sets Gα ∈ S2 are regular-open . Since (f, F )

is a difunction we have F←(S2) = S1 by [3, Proposition 2.28 (1 c)], so

S1 = F←(S2) = F←
( ∨
α∈A

Gα
)

=
∨
α∈A

F←(Gα),

by [3, Corollary 2.12 (2)]. Also, F←(Gα) is regular-open for each α ∈ A since (f, F ) is
a R-bimap. Hence, by the near compactness of (S1, S1, τ1, κ1) there exists A′ ⊆ A finite
such that S1 =

⋃
α∈A′ F

←(Gα). Hence

f←(S2) = S1 =
⋃
α∈A′

F←(Gα) = F←
( ⋃
α∈A′

Gα
)
.

Since (f, F ) is surjective f←(S2) ⊆ F←(
⋃
α∈A′ Gα) implies that S2 ⊆

⋃
α∈A′ Gα by

[3, Corollary 2.33 (1 ii)]. Therefore, S2 =
⋃
α∈A′ Gα, and so (S2, S2, τ2, κ2) is nearly

compact. �

As expected, we have a dual theorem for near cocompactness.

4.4. Theorem. Let (f, F ) : (S1, S1, τ1, κ1)→ (S2, S2, τ2, κ2) be a surjective co R-dimap.
If (S1, S1, τ1, κ1) is nearly cocompact then (S2, S2, τ2, κ2) is nearly cocompact.

Proof. This is dual to the proof of Theorem 4.3, and is omitted. �

Next let us investigate the preservation of near stability and near costability under
surjective difunctions.

4.5. Theorem. Let (S1, S1τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces with
(τ1, κ1) nearly stable, and (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) a surjective bi-R-
dimap. Then (τ2, κ2) is nearly stable.

Proof. Take K ∈ S2 \ {S2} of the form K =
⋂
α∈AKα with Kα regular-closed for each

α ∈ A. We must prove that K is nearly compact for the ditopology (τ2, κ2) so take
regular-open sets Gi, i ∈ I, satisfying

(4.1) K ⊆
∨
{Gi | i ∈ I}.

Since (f, F ) is a co-R-dimap, f←(K) = f←(
⋂
α∈AKα) =

⋂
α∈A f

←(Kα) is an intersection
of regular-closed sets in (S1, S1). As in the proof of [6, Theorem 3.17], f←(K) 6= S1.
Hence f←(K) is nearly compact in (S1, S1, τ1, κ1), since this space is nearly stable.



From (4.1) we have

f←(K) ⊆ f←
(∨
{Gi | i ∈ I}

)
= F←

(∨
{Gi | i ∈ I}

)
=
∨
{F←(Gi) | i ∈ I}

by [3, Corollary 2.12 (2)], and F←(Gi) is regular-open since (f, F ) is an R-dimap. By
near compactness we have i1, i2, . . . , in ∈ I with

f←(K) ⊆
n⋃
k=1

F←(Gik )

= F←
( n⋃
k=1

Gik

)
= f←

( n⋃
k=1

Gik

)
.

Since (f, F ) is surjective we have

K = F (f←(K)) ⊆ F
(
f←
( n⋃
k=1

Gik

))
=

n⋃
k=1

Gik .

This shows that K is nearly compact and completes the proof that (τ2, κ2) is nearly
stable. �

4.6. Theorem. Let (S1, S1τ1, κ1), (S2, S2, τ2, κ2) be ditopological texture spaces with
(τ1, κ1) nearly costable, and (f, F ) : (S1, S1, τ1, κ1) → (S2, S2, τ2, κ2) a surjective bi-
R-dimap. Then (τ2, κ2) is nearly costable.

Proof. The proof is dual to that of Theorem 4.5, and is omitted. �

5. Near dicompactness
The notion of dicompactness may be generalized for near compactness as follows.

5.1. Definition. A ditopological texture space will be called nearly dicompact if it is
nearly compact, nearly cocompact, nearly stable and nearly costable.

As a consequence of Theorems 4.3, 4.4, 4.5 and 4.6 we may state the following:

5.2. Theorem. Near dicompactness is preserved under a surjective bi-R-dimap.

To give non-trivial characterizations of near dicompactness analogous to those for di-
compact ditopological texture spaces we require the following definitions that are adapted
from [1, 6].

5.3. Definition. Let (τ, κ) be a ditopology on (S, S).
(1) A setD ⊆ S×S is called a difamily on (S, S). A difamilyD is called regular-closed,

co-regular-open if ADB implies A is regular-closed and B is regular-open, while
it is called regular-open, co-regular-closed if A is regular-open and B is regular-
closed.

(2) A difamily D has the finite exclusion property (fep) if whenever (Fi, Gi) ∈ D,
i = 1, 2, . . . , n we have

⋂n
i=1 Fi 6⊆

⋃n
i=1Gi.

(3) A regular-closed, co-regular-open difamily D with
⋂
{F | F ∈ domD} 6⊆

∨
{G |

G ∈ ranD} is said to be bound in (S, S, τ, κ).
(4) A difamily D = {(Gi, Fi) | i ∈ I} is called a dicover of (S, S) if for all partitions

I1, I2 of I (including the trivial partitions) we have⋂
i∈I1

Fi ⊆
∨
i∈I2

Gi.

(5) A difamily D is called finite (co-finite) if domD (resp. ranD) is finite.



5.4. Theorem. The following are equivalent for a ditopological texture space (S, S, τ, κ).

(1) (S, S, τ, κ) is nearly dicompact.
(2) Every regular-closed, co-regular-open difamily with the finite exclusion property

is bound.
(3) Every regular-open, co-regular-closed dicover has a sub-dicover which is finite

and co-finite.

Proof. (1) =⇒ (2). Suppose that (1) holds, but that we have a regular-closed, co-regular-
open difamily B = {(Fi, Gi) | i ∈ I} with the fep, which is not bound in (S, S, τ, κ). Let
F =

⋂
i∈I Fi. Then F is an intersection of regular-closed sets, and F ⊆

∨
i∈I Gi since B is

not bound. According as F 6= S or F = S we may use near stability or near compactness,
respectively, to show the existence of a finite subset J1 of I with F ⊆

⋃
j∈J1 Gj . Now

let G =
∨
j∈J1 Gj . Then G is a join of regular-open sets and

⋂
i∈I Fi ⊆ G. Hence,

according as G 6= ∅ or G = ∅, we may use near costability or near cocompactness,
respectively, to show that

⋂
j∈J2 Fj ⊆ G for some finite subset J2 of I. Since now⋂

j∈J1∪J2 Fj ⊆
⋃
j∈J1∪J2 Gj we have a contradiction to the fact that B has the fep.

(2) =⇒ (3). Suppose that C = {(Gi, Fi) | i ∈ I} is a regular-open, co-regular-closed
dicover with no finite, co-finite sub-dicover. As in the proof of [1, Theorem 3.5] we
consider the set F of functions f satisfying

(a) dom f is a set of finite subsets of I.
(b) ∀ J ∈ dom f , f(J) = (f1(J), f2(J)) ∈ P??J .
(c) J1, . . . , Jn ∈ dom f =⇒ J1 ∪ . . . ∪ Jn ∈ dom f .
(d) J, K ∈ dom f , J ⊆ K =⇒ fl(J) = J ∩ fl(K), l = 1, 2.

Here

P
??
J = {(J1, J2) ∈ P

?
J | ∀K finite, J ⊆ K ⊆ I, ∃ (K1,K2) ∈ P

?
K

with J ∩Kl = Jl, l = 1, 2}.

where

PJ = {(J1, J2) | J = J1 t J2}, and

P
?
J = {(J1, J2) ∈ PJ |

⋂
j∈J1

Fj 6⊆
∨
j∈J2

Gj},

and J = J1 t J2 denotes that {J1, J2} is a partition of J . Just as in the proof of [1,
Theorem 3.5] we may establish that F contains an element g satisfying

⋃
dom g = I.

Now consider the family B = {(Fj , Gk) | j ∈ g1(J), k ∈ g2(J), J ∈ dom g}. It is easy
to show that B has the fep. Also Fj is regular-closed and Gk is regular-open, so by (2)
we have ⋂

J∈dom g

(
⋂

j∈g1(J)

Fj) 6⊆
∨

J∈dom g

(
⋃

j∈g2(J)

Gj).

Let I1 =
⋃
{g1(J) | J ∈ dom g}, I2 = I \ I1. Then (I1, I2) is a partition of I, and

I2 ⊆
⋃
{g2(J) | J ∈ dom g}. This gives us⋂
J∈dom g

(
⋂

j∈g1(J)

Fj) =
⋂
i∈I1

Fi ⊆
∨
i∈I2

Gi ⊆
∨

J∈dom g

(
⋃

j∈g2(J)

Gj),

which is a contradiction.
(3) =⇒ (1). First take regular-open sets Gi, i ∈ I, with S =

∨
i∈I Gi. For i ∈ I let

Fi = ∅. Then C = {(Gi, Fi) | i ∈ I} is a regular-open , co-regular-closed dicover, so has



a finite, co-finite sub-dicover {(Gj , Fj) | j ∈ J}. For the partition J1 = ∅, J2 = J of J ,

S =
⋂
j∈J1

Fj ⊆
⋃
j∈J2

Gj ,

whence S =
⋃
j∈J Gj , and (S, τ, κ) is nearly compact. Near cocompactness is proved in

an analogous way.
To establish near stability let F 6= S have the form F =

⋂
α∈A Fα where each Fα is

regular-closed and let Gi, i ∈ I, be regular-open sets with F ⊆
∨
i∈I Gi. Define

C = {(S, Fα) | α ∈ A} ∪ {(Gi, ∅) | i ∈ I}.

It is clear that C is a regular-open , co-regular-closed dicover, and hence has a finite,
co-finite sub-dicover C1. Without loss of generality we may assume

C1 = {(S, Fβ) | β ∈ B} ∪ {(Gj , ∅) | j ∈ J},

where B ⊆ A and J ⊆ I are finite. Now we obtain

F ⊆
⋂
β∈B

Fβ ⊆
⋃
j∈J

Gj ,

which shows that F is nearly compact in S. Hence (τ, κ) is nearly stable, and near
costability can be proved in a similar way.

Hence (τ, κ) is nearly dicompact. �

6. Semibiregulization and the Tychonoff Theorems
As we have noted before, for any topological space (X,T) the intersection of a finite

number of regular-open sets is regular-open . It follows that the regular-open sets in any
topological space (X,T) form a base for a topology on X. This gives rise to the following
definition.

6.1. Definition. The topology generated by the regular-open sets in the topological
space (X,T) is called the semiregularization topology of (X,T) and is denoted by (X,T?).

It is clear that T? ⊆ T, but the converse is not true in general. Topologies for which
T = T? are given a special name.

6.2. Definition. The topological space (X,T) is called semiregular if the regular-open
sets form a base for the topology. Equivalently, if T? = T.

6.3. Example. For any set X, all the open sets in the discrete topology on X and in
the indiscrete topology on X are regular-open . Hence these spaces are semiregular. For
the usual topology on R the basic open sets (a, b) are also regular-open , so this topology
is semiregular. However the only regular-open sets for the finite complement topology
on an infinite set X are ∅ and X, which generate the indiscrete topology on X. Hence
this space is not semiregular.

In the case of ditopological texture spaces we may define analogous concepts.

6.4. Definition. Let (S, S, τ, κ) be a ditopological texture space.
(1) Denote by τ? the topology generated by the regular-open sets of (τ, κ). Then

(τ?, κ) is called the semiregularization of (τ, κ). The ditopology (τ, κ) is called
semiregular if τ? = τ .

(2) Denote by κ? the cotopology generated by the regular-closed sets of (τ, κ). Then
(τ, κ?) is called the semicoregularization of (τ, κ). The ditopology (τ, κ) is called
semicoregular if κ? = κ.



(3) The ditopology (τ?, κ?) is called the semibiregularization of (τ, κ) and (τ, κ) is
called semibiregular if (τ?, κ?) = (τ, κ).

An important result for topological spaces is that a topological space is nearly compact
if and only if the semiregularization topology is compact. For ditopological texture spaces
we have the following results.

6.5. Theorem. Let (τ, κ) be a ditopology on (SS).
(1) The following are equivalent:

(a) (τ, κ) is nearly compact.
(b) (τ?, κ) is compact.
(c) (τ?, κ?) is compact.

(2) The following are equivalent:
(a) (τ, κ) is nearly cocompact.
(b) (τ, κ?) is cocompact.
(c) (τ?, κ?) is cocompact.

Proof. (1) (a) =⇒ (b). Let C be a cover of S by members of τ?. Then C is also a cover
of S by members of τ so there exists a finite subfamily of C, say Ci, i = 1 . . . n, such that

S =

n⋃
i=1

][Ci][.

Since ][Ci][ = Ci we obtain S =
⋃n
i=1 Ci, so (τ?, κ) is compact.

(b) =⇒ (c). Clear since compactness depends only on the topology.
(c) =⇒ (a). Let C be a cover of S by member of τ . Then C ⊆ ][C][∀C ∈ C, where

the interior and closure are taken in (τ, κ), and therefore { ][C][ | C ∈ C} is a covering of
S by members of τ?. By (c) there exists a finite subfamily of C, say Ci, i = 1 . . . n, such
that

S =

n⋃
i=1

][Ci][.

Hence (τ, κ) is nearly compact.

(2). The proof is dual to (1), and is omitted. �

We may present the following generalization of Mrówka’s characterization of compact
topological spaces [13].

6.6. Theorem. Let (S1, S1, τ1, κ1) be a ditopological texture space. The following are
equivalent:

(1) (S1, S1, τ1, κ1) is nearly compact.
(2) For all ditopological spaces (S2, S2, τ2, κ2) the projection difunction

(π2,Π2) : (S1, S1, τ
∗
1 , κ1)× (S2, S2, τ2, κ2)→ (S2, S2, τ2, κ2)

is co-open.
(3) Condition (2) holds for all normal ditopological spaces (S2, S2, τ2, κ2).

Proof. In view of Theorem 6.5 (1 b) it is sufficient to apply [6, Corollary 2.18] with τ∗1 in
place of τ1. �

Dually,

6.7. Theorem. Let (S1, S1, τ1, κ1) be a ditopological texture space. The following are
equivalent:

(1) (S1, S1, τ1, κ1) is nearly cocompact.



(2) For all ditopological spaces (S2, S2, τ2, κ2) the projection difunction

(π2,Π2) : (S1, S1, τ1, κ1∗)× (S2, S2, τ2, κ2)→ (S2, S2, τ2, κ2)

is closed.
(3) Condition (2) holds for all normal ditopological spaces (S2, S2, τ2, κ2). �

6.8. Theorem. Let (τ, κ) be a ditopology on (S, S). Then:
(1) (τ, κ) is nearly stable iff (τ?, κ?) is stable.
(2) (τ, κ) is nearly costable iff (τ?, κ?) is costable.

Proof. (1). Suppose (τ, κ) is nearly stable. Take F ∈ κ? with F 6= S. Then F =
⋂
Kα,

where the Kα are regular-closed sets. By near stability F is nearly compact in (τ, κ).
However, as in the proof of Theorem 6.5 this means that F is compact in (τ?, κ?). Hence
(τ?, κ?) is stable.

The converse is proved is exactly the same way.

(2). This is dual to (1), and the proof is omitted. �

6.9. Corollary. The ditopological texture space (S, S, τ, κ) is nearly dicompact if and
only if (S, S, τ?, κ?) is dicompact. �

We recall the following notions from [6, Definition 3.10]:

6.10. Definition. Let (S, S, τ, κ) be a ditopological texture space and A ∈ S.
(1) (a) Q(A) =

⋂
{ ]Qs[ | Ps 6⊆ A}.

(b) A is called pseudo open if Q(A) = ]A[.
(2) (a) P (A) =

∨
{[Ps] | A 6⊆ Qs}.

(b) A is called pseudo closed if P (A) = [A].

It is shown in [6, Lemma 3.11] that ]A[⊆ Q(A) ⊆ A and A ⊆ P (A) ⊆ [A] for all
A ∈ S. Now we have:

6.11. Theorem. Let (S, S, τ, κ) be a nearly compact nearly stable ditopological space for
which (τ∗, κ∗) is R0. Then every pseudo closed set in (τ∗, κ∗) is nearly compact in (τ, κ).

Proof. By Theorem 6.5 (1c) we have that (S, S, τ∗, κ∗) is compact, while by
Theorem 6.8 it is stable. Hence by [6, Theorem 3.14 (1)] a pseudo closed set F in
(S, S, τ∗, κ∗) is compact. It follows as in the proof of Theorem 6.5 that F is nearly
compact in (S, S, τ, κ). �

Dually,

6.12. Theorem. Let (S, S, τ, κ) be a nearly cocompact nearly costable ditopological space
for which (τ∗, κ∗) is co-R0. Then every pseudo open set in (τ∗, κ∗) is nearly cocompact
in (τ, κ). �

In the opposite direction the following is an immediate consequence of [6, Theo-
rem 3.15].

6.13. Theorem. Let (S, S, τ, κ) be a ditopological texture space.
(1) Suppose (τ∗, κ∗) is co-R1. Then if A is nearly compact in (τ, κ) it is pseudo

closed in (τ∗, κ∗).
(2) Suppose (τ∗, κ∗) is R1. Then if A is cocompact in (τ, κ) it is pseudo open in

(τ∗, κ∗).

Now we may give Tychonoff Theorems for near compactness, near cocompactness and
near dicompactness.



6.14. Theorem. Let (Si, Si, τi, κi), i ∈ I, be non-empty ditopological texture spaces and
(S, S, τ, κ) their product.

(i) (S, S, τ, κ) is nearly compact if and only if (Si, Si, τi, κi) is nearly compact for all
i ∈ I.

(ii) (S, S, τ, κ) is nearly cocompact if and only if (Si, Si, τi, κi) is nearly cocompact
for all i ∈ I.

(iii) (S, S, τ, κ) is nearly dicompact if and only if (Si, Si, τi, κi) is nearly dicompact
for all i ∈ I.

Proof. We will need the following lemma.

6.15. Lemma. Let (Si, Si, τi, κi), i ∈ I, be ditopological texture spaces and (S, S, τ, κ)
their product. Let (S, S, τ ′, κ′) denote the product of the spaces (Si, Si, τ?i , κ?i ). Then
(τ?, κ?) = (τ ′, κ′).

Proof. The sets E(i, G), i ∈ I, G ∈ τ?i , form a subbase for the topology τ ′. Since the
regular-open sets in τi are a base for the topology τ?i it follows that the family

G = {E(i, G) | i ∈ I,G regular-open in τi}

is also a subbase for τ ′. However E(i, G) is regular-open in τ if and only if G is regular-
open in τi, so it is not difficult to verify that G is also a subbase for the topology τ?.
Hence τ ′ = τ?, and the proof of κ′ = κ? is dual to this. �

We now turn to the proof of the theorem.
(i). Suppose that (τ, κ) is nearly compact. Then, by Theorem 6.5 (1 c), the ditopology

(τ?, κ?) is compact. However, by Lemma 6.15, (S, S, τ?, κ?) is the product of the spaces
(Si, Si, τ

?
i , κ

?
i ) so by [6, Theorem 2.15 (i)] (Si, Si, τ

?
i , κ

?
i ) is compact for all i ∈ I. Hence,

by Theorem 6.5 (1 c), (Si, Si, τi, κi) is nearly compact for all i ∈ I.

Conversely, suppose that the spaces (Si, Si, τi, κi) are nearly compact for all i ∈
I. Then by Theorem 6.5 (1 c) the spaces (Si, Si, τ

?
i , κ

?
i ) are compact, so by [6, Theo-

rem 2.15 (i)], (τ ′, κ′) = (τ?, κ?) is a compact ditopology on (S, S). The product ditopo-
logical texture (S, S, τ, κ) is therefore nearly compact, again by Theorem 6.5 (1 c).

(ii). The proof is dual to (i), and is omitted.

(iii). Straightforward from (i) and (ii). �

We end by recalling an important result from [20]. First we will require the following
definition.

6.16. Definition. Let (S, S) be a texture.
(1) s ∈ S will be called a plain point if Ps 6⊆ Qs. The set of plain points of S will

be denoted by Sp.
(2) The texture (S, S) will be called nearly-plain if given s ∈ S there exists a point

in Sp with the same q-set as s.

It is shown in [20, Proposition 4.1] that every dicompact bi-T2 ditopological texture
space has a nearly plain texture. This restriction rules out the possibility of a dicompact
bi-T2 ditopology on, for example, the texture (L,L) of Examples 1.1 (1) for this texture
has no plain points. Indeed, this texture does not even have the weaker almost plain
property discussed in [21]. It is natural to ask if similar restrictions hold for near com-
pactness. This is currently an open question, but the following examples show that there
can exist co-T1 nearly dicompact ditopologies on such textures.



6.17. Example. Consider (L,L) with the ditopology (τ, κ) defined by τ = L, κ =
{L, ∅}. As in Examples 2.10 (1) we see that the only regular-open sets are L, ∅, whence
τ∗ = κ∗ = {L, ∅} and so (L,L, τ, κ) is nearly dicompact. With regard to separation we
see that Qs 6⊆ Qt =⇒ t < s so we may choose t < r < s and then G = (0, r] ∈ τ ,
Ps 6⊆ G 6⊆ Qt, so (L,L, τ, κ) is co-T1 by [5, Theorem 4.11 (2 ii)]. On the other hand by [5,
Theorem 4.11 (1 i)] it is clear that this space is not T1 and hence, in particular not bi-T2.

6.18. Example. Consider the Hutton texture of the real texture (R,R) given in Ex-
amples 1.1 (4). As shown in [22] this may be represented by (MR,MR) where MR =
(R× {0}) ∪ (R× {1}) ∪ {∞} and MR = {Ur | r ∈ R} ∪ {Vr | r ∈ R} ∪ {MR}, where

Ur = (−∞, r]× {0, 1}, Vr = (−∞, r)× {0} ∪ (−∞, r]× {1}.
Moreover, P(r,0) = Ur, Q(r,0) = Vr; P(r,1) = Q(r,1) = Vr; P∞ = Q∞ = MR. As noted in
[22] this texture is not nearly plain since ∞ is a non-plain point whose q-set is not equal
to the q-set of any of the plain points. If we take τ = {Vr | r ∈ R}∪{MR, ∅}, κ = {MR, ∅}
then much as in the above example we see that τ∗ = κ∗ = {MR, ∅}, whence (MR,MR, τ, κ)
is nearly dicompact. Again, this space is co-T1. To see this using [5, Theorem 4.11 (2 ii)]
note that we have Q∞ 6⊆ Q(s,k) for any s ∈ R, k = 0, 1, and Q(s,m) = Vs 6⊆ Vt = Q(t,n)

for t < s and m,n = 0, 1. In the first case we may take r > s, G = Vr ∈ τ to give
P∞ 6⊆ G 6⊆ Q(s,k) and in the second case t < r < s, G = Vr to give P(s,m) 6⊆ G 6⊆ Q(t,n).

As in the above example this space also is not T1 and hence in particular not bi-T2.
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