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Abstract

A wavelet-type transform generated with the aid of the Poisson Semi-
group and a signed Borel measure is introduced. An analogue of the
Calderén reproducing formula (in the framework of the Ly and L,-
theory) is established.
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1. Introduction

The Calderdn reproducing formula is widely used in the theory of continuous wavelet
transforms [3, 4], in fractional calculus and in integral geometry (see, e.g. [1, 2, 5, 6]
and references therein). A version of the Calderén formula asserts that under certain
conditions on u(z), (z € R")

(1.1) lim /f e dt =cof, f€ L2(R"™),

s—»O

where wi(z) = t7"u(z/t), t > 0, “¢” is a convolution operator and the limit is taken
with respect to the La-norm. The convolution (W f)(z,t) = (f * us)(z) is called the
continuous wavelet transform, generated by the “wavelet function” wu.

A generalization of (1.1) has the form [6] :

/f*utdtdefl /f Trie gy oy

E~>0

where p is a suitable radial Borel measure, u: stands for the dilation of u, and the limit
is interpreted in the Ly-norm and in the pointwise (a.e.) sense.
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In this paper we introduce a new wavelet-type transform by making use of the Poisson
kernel and finite Borel measure p. The main purpose of the paper is to prove the relevant
Calderén-type reproducing formula. The Lo and L,, (1 < p < o0) cases are examined
separately. The pointwise (a.e.) convergence of the corresponding “truncated integrals”

P
f( -+ ) is also studied.

5

2. Preliminiaries

Let

I'((n+1)/2) t
r(n+1)/2 ’(t2+|x‘2)(n+l)/27

P(z,t) = t>0,z€eR",

be the Poisson kernel which possess the following properties [7]:

ey [Pe] @ = [P = 7,

Rn

(2.2) /P(az,t) dz =1, vt > 0;

Rn
P(z,t) is homogeneous function of order (—n), i.e
(2.3)  P(Az,At) = A" "P(z,t), YA >0;
(2.4) / P(y,t)P(x —y,7)dy = P(z,t + 7).

Rn
Given a function f € L,(R™) with the norm ||f|, = ([ |f(z)[Pdz)'/? we denote by

]Rn
P f(x), t > 0 the Poisson semigroup associated with f:
(25)  Pif(z) = /f(m— DP(z,t)dz, t> 0 Pof(x) = f(x).
Rﬂ,

It is well known that (see, e.g. [7, p. 8-16])
26)  NPSllp <M fllpy A<p<o0), VE>0;
(2.7)  P(Prf)(x) = Pryrf(z), (L,7=0);

(28)  lim Pif(@) = f(@),

with the limit being understood in the L, (1 < p < 0o0)— norm or pointwise for almost
all z € R™. If f € C° (the space of continuous functions vanishing at infinity), then
convergence is uniform. Furthermore,

(29)  sup|Pf(@)] < My(e),

with the well known Hardy—Littlewood maximal function

>0

(2.10)  M;(z) = sup BlB/ /(2 — 2)|dz, Br = {z: |a| < r}.
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2.1. Definition. Let i be a signed Borel measure on R such that
suppp C [0,00);  [p|(RY) < oo, pu({0}) =0, and

(2.11)
W) = [ dutt) =0,

In addition let P(y,t) be the Poisson kernel extended to t < 0 by zero. We define a
wavelet transform of f: R"™ — C as

W, f () = / Py, t) (& — ny)dy dp(t)
R+l
(211)

(2.12) P(y,t)f(z — ny)dy du(t).
R™ x (0,00)
By setting ty instead of y and using (2.3) we have
(213) Wofwn = [ P@.Df@-nty)dyduce).
R™ x (0,00)
2.2. Remark. For any fixed n > 0 the operator W, is L, — L, bounded. Indeed, by
the Minkowski inequality,
(2.2)
IWufComlle < 11£1l / Py, t)dy dlu|(t) =" || fllpllull < oo
R™ % (0,00)

where

lall = [ dlul(e) < o

(0,00)

2.3. Remark. For f € L,(R"), due to the Fubini theorem, we get

W tan) = [ fe—m)( [ Pw.0du))d.

(0,00)
Setting w(y) = [ P(y,t)du(t), by the Fubini theorem we have
(0,00)
(2.2) (2.11)
[utay ™ [ due) “270.
R™ (0,00)

That is, the function w(y) is a usual wavelet function. Further,
1 r—y
W tten) = [ fa =y = = [ fu* .
R™ R™

Therefore, W, f(x, n) is a continuous wavelet transform generated by the wavelet function
w(y) = [ Ply,t)du(t).
(0,00)
b

2.4. Remark. In the following we will use the convention [ (t)du(t) = [ @(t)du(t).
a [a,b)

b
In the case where lim+ ¢(t) = oo we assume that p(0) = 0 and [ p(t)du(t) = [ @(t)du(t).
t—0 0 (0,b)
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We will need the following lemmas.

2.5. Lemma. [5, p.189] Let pu be a Borel measure satisfying the conditions (2.11) and
[ |logt|d|u|(t) < co. Set k(s) =2 [du(t). Then
0 0

- S

oo

k(s) € L1(0,00) and /k(s)ds = /logédu(s)

2.6. Lemma. [7, p.60] Let T-, e > 0 be a family of linear operators, mapping LP(R™), 1 <
p < 00 into the space of measurable functions on R™. Define T f by setting

(T"f)(z) = sup I(Tef)(@)|, = € R™.
Suppose that there exists a constant ¢ > 0 and a real number ¢ > 1 such that
meas{z : [(T"f)(z)| > t} < (c|l fllert™ ")

for allt > 0 and f € LP(R"™). If there exists a dense subset D of LP(R™) such that
lin%)(ng)(x) exists and is finite almost everywhere (a.e.) whenever g € D, then for each
f e LP(R"), lir%(TEf)(Jz) exists and is finite a.e.

3. A Calderon-type reproducing formula associated with the
wavelet-type transform W, f

We will examine the Lz and Ly, (1 < p < o) cases separately. In the La-case the
conditions on p are expressed in terms of the Laplace transform of y, and in the general
case — in terms of p itself.

3.1. Theorem. Let u satisfy the conditions in (2.11). Suppose that fi(t) = [ e *'du(s)

o3

is the Laplace transform of p and the integral ¢, = [ fi(t)dt/t is finite. Then,
0
7 d f d
[Wasn® = tim [ Wor@n T =G, V€ La®),
0 p—ee €

where the limit is interpreted in the La-norm.

Proof. Let
r d
ﬂA@=/WJmm#, 0<ec<p<oo; felinla

By employing the Fourier transform and the Fubini theorem, from (2.13) we have
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Folw) = / W[ Pe( [t - e dedute)

c R™ % (0,00) R7
(we replace x with z + ntz)

P
= A /d—n / P(z,1)e” 20 qady(t)
<)

R™ x (
(21 1) / d77 / —m}tlyldlu (put n = s/m|y|)

n

Pyl

A ds 7 s A N ds
' [ L [ermn=rw [ a0
emly| 0 emly|
prly|
Setting ke ,(y) = [ fi(s)22, we have
emlyl

A

B1) @) = @kepw).

Since ¢, =

fi(s)2 is finite and the function fu s)% continuous on [0, 00),

8
¢ = sup
t>0

is finite. Hence

62 kol =| [ wT - [ aeT| <2

Now by the Plancherel and Lebesque Dominated Convergence theorems it follows that

31
N (ke — &), = 0as e — 0, p— oc.

- A - A
er,p*CufHQ = Hfs,p*cuf ||
Hence, for any f € L1 N Lo,

tim ||fep — 2 fll, =

p—00

The statement for arbitrary f € Lo follows in a standard way by using uniform Ly — Lo
boundedness of the family of linear operators A. ,f = f: ,:

A A (3.2) A
IAcofll, = fenll, = Wfepll, = IF kepll, < 2elf I, =2¢llfll,,

that is | A, fll, < 2¢|lfll,, ¥ f € L1 N Lo.

The General case follows by density. a

The following result gives a Ly-version of the Calderén-type reproducing formula for
arbitrary p > 1.
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3.2. Theorem. Let f € L,(R"), 1< p < oo (Lo = C°- the space of continuous
functions vanishing at infinity). Let p be a finite (signed) Borel measure on R* such that

H(R') =0, u({0}) =0, suppyu C [0,00) and / | log ]| (¢) < o,
0

then

oo

(3.3) / W, f(z,m)

0

dn . 7 dn
— =lim [ W,f(x,n)— =c.f(x),
n S wf( 77)77 wf ()

where

o)

1
Cp = /10g 7an(),

0

the limit being with respect to the Lp-norm (1 < p < 00), or taken pointwise for almost
all x € R™. In the case p = oo it is assumed that Loc = C° and the limit is understood
in the sup-norm.

Proof. We need the following modification of the wavelet-type transform W, f.

Wuf(z,n) = / P(y,t)f(x —ny)dy du(t)
R™ % (0,00)

(we put y = (1/1)z, dy = (1/n)"dz and use (2.3))

(3.4) — [ (] P =) dut) 2 [ Pof@ duto

Let

35)  Vif(x) :/Wuf(w,n)d#, e 0.

€

Then, by using (3.4) and the Fubini theorem, we have

Vef(z) =
(3.6) =

s s/
Setting k(s) = L [du(t) and k-(s) = 2k(s/7), we have k-(s) = £ [ du(t) and therefore,
0 0

o=
o2
I
=
=
N
Il
o
m
—
N
&
z.
=
o
=
o
@
Qo
=
o+
=N
@
&
—
w
(=]
=
£
@
g
<
@



A Wavelet-type Transform 29

By setting &, = [ k(s) ds (which is finite and equal to ¢, = [ log Ldu(7) by Lemma 2.5),
0 0

and using Minkowski inequality we have

IVet(@) = euf @)l = || [ he(o)Pads - / K(s)f()ds

= fk( )Pucf(a /Ook

< / k() | P £ (@) — £(2)]]pds.

P

From (2.6), (2.8) and Lebesgue’s convergence theorem it follows that the last expression
tends to zero as € — 0. For similar reasons the convergence is uniform for f € C°.

It remains to show the pointwise (a.e) convergence in (3.3). For f € L,, (1 <p < c0),
we have

Vet@) < [ Il s@)ds
0
(3.8) < sup |P.f(2)| / Ike(s)|ds = ¢ - sup | Pu £ ()],
s>0 s>0

0

where ¢ = f |k<(s)|ds = f |k(s)|ds < oo by Lemma 2.5. From (3.8) and (2.9) it follows
that for any A>0

meas{z € R" : sup |V.f(z)| > A} < ci.meas{x € R" : Ms(z)] > A\} < <Cz@>p.
e>0

Thus the maximal operator sup|V.f(z)| is of weak (p,p)-type. Now by employing
e>0

Lemma 2.6 and keeping in mind that V. f(z) — ¢é.f(x) pointwise as ¢ — 0 for any
f € C° (this class of functions is dense in L,, (1 < p < 00)), we obtain for any f € L,

that V. f(z) — ¢éu.f(z) a.e. as e — 0. To complete the proof of the theorem it remains
only to recall that

Cu=cu= /log du(s) (see Lemma 2.5).
0
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