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Abstract

A wavelet-type transform generated with the aid of the Poisson Semi-
group and a signed Borel measure is introduced. An analogue of the
Calderón reproducing formula (in the framework of the L2 and Lp-
theory) is established.
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1. Introduction

The Calderón reproducing formula is widely used in the theory of continuous wavelet
transforms [3, 4], in fractional calculus and in integral geometry (see, e.g. [1, 2, 5, 6]
and references therein). A version of the Calderón formula asserts that under certain
conditions on u(x), (x ∈ Rn)

(1.1) lim
ε→0
ρ→∞

ρ
∫

ε

f ∗ ut
t

dt = cuf, f ∈ L2(Rn),

where ut(x) = t−nu(x/t), t > 0, “∗” is a convolution operator and the limit is taken
with respect to the L2-norm. The convolution (Wuf)(x, t) = (f ∗ ut)(x) is called the
continuous wavelet transform, generated by the “wavelet function” u.

A generalization of (1.1) has the form [6] :

(1.2)

∞
∫

0

f ∗ µt

t
dt

def
= lim

ε→0
ρ→∞

ρ
∫

ε

f ∗ µt

t
dt = cµf,

where µ is a suitable radial Borel measure, µt stands for the dilation of µ, and the limit
is interpreted in the Lp-norm and in the pointwise (a.e.) sense.
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24 M. Eryiğit, I. A. Aliev

In this paper we introduce a new wavelet-type transform by making use of the Poisson
kernel and finite Borel measure µ. The main purpose of the paper is to prove the relevant
Calderón-type reproducing formula. The L2 and Lp, (1 ≤ p ≤ ∞) cases are examined
separately. The pointwise (a.e.) convergence of the corresponding “truncated integrals”
ρ
∫

ε

(· · · ) is also studied.

2. Preliminiaries

Let

P (x, t) =
Γ((n+ 1)/2)

π(n+1)/2
.

t

(t2 + |x|2)(n+1)/2
, t > 0 , x ∈ Rn,

be the Poisson kernel which possess the following properties [7]:

(2.1)
[

P (., t)
]
∧

(ξ) ≡

∫

Rn

e−2πix.ξP (x, t) dx = e−πt|ξ| ,

with x.ξ = x1ξ1 + · · ·+ xnξn;

(2.2)

∫

Rn

P (x, t) dx = 1, ∀t > 0 ;

P (x, t) is homogeneous function of order (−n), i.e

(2.3) P (λx, λt) = λ−nP (x, t), ∀λ > 0 ;

(2.4)

∫

Rn

P (y, t)P (x− y, τ)dy = P (x, t+ τ).

Given a function f ∈ Lp(Rn) with the norm ‖f‖p = (
∫

Rn

|f(x)|pdx)1/p we denote by

Ptf(x), t > 0 the Poisson semigroup associated with f :

(2.5) Ptf(x) =

∫

Rn

f(x− z)P (z, t)dz, t > 0; P0f(x) = f(x).

It is well known that (see, e.g. [7, p. 8-16])

‖Ptf‖p ≤ ‖f‖p, (1 ≤ p ≤ ∞), ∀t ≥ 0 ;(2.6)

Pt(Pτf)(x) = Pt+τf(x), (t, τ ≥ 0) ;(2.7)

lim
t→0+

Ptf(x) = f(x) ,(2.8)

with the limit being understood in the Lp, (1 ≤ p < ∞)– norm or pointwise for almost
all x ∈ Rn. If f ∈ C0 (the space of continuous functions vanishing at infinity), then
convergence is uniform. Furthermore,

(2.9) sup
t>0

|Ptf(x)| ≤Mf (x),

with the well known Hardy–Littlewood maximal function

(2.10) Mf (x) = sup
r>0

1

|Br|

∫

Br

|f(x− z)|dz, Br = {x : |x| < r}.
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2.1. Definition. Let µ be a signed Borel measure on R1 such that

suppµ ⊂ [0,∞); |µ|(R1) <∞, µ({0}) = 0, and

µ(R1) ≡

∫

R1

dµ(t) = 0.
(2.11)

In addition let P (y, t) be the Poisson kernel extended to t ≤ 0 by zero. We define a
wavelet transform of f : Rn → C as

Wµf(x, η) =

∫

Rn+1

P (y, t)f(x− ηy)dy dµ(t)

(2.11)
=

∫

Rn×(0,∞)

P (y, t)f(x− ηy)dy dµ(t).(2.12)

By setting ty instead of y and using (2.3) we have

(2.13) Wµf(x, η) =

∫

Rn×(0,∞)

P (y, 1)f(x− ηty)dy dµ(t).

2.2. Remark. For any fixed η > 0 the operator Wµ is Lp → Lp bounded. Indeed, by
the Minkowski inequality,

‖Wµf( . , η)‖p ≤ ‖f‖p

∫

Rn×(0,∞)

P (y, t)dy d|µ|(t)
(2.2)
= ‖f‖p‖µ‖ <∞

where

‖µ‖ =

∫

(0,∞)

d|µ|(t) <∞.

2.3. Remark. For f ∈ Lp(Rn), due to the Fubini theorem, we get

Wµf(x, η) =

∫

Rn

f(x− ηy)
(

∫

(0,∞)

P (y, t)dµ(t)
)

dy.

Setting w(y) =
∫

(0,∞)

P (y, t)dµ(t), by the Fubini theorem we have

∫

Rn

w(y)dy
(2.2)
=

∫

(0,∞)

dµ(t)
(2.11)
= 0.

That is, the function w(y) is a usual wavelet function. Further,

Wµf(x, η) =

∫

Rn

f(x− ηy)w(y)dy =
1

ηn

∫

Rn

f(y)w(
x− y

η
)dy.

Therefore, Wµf(x, η) is a continuous wavelet transform generated by the wavelet function
w(y) =

∫

(0,∞)

P (y, t)dµ(t).

2.4. Remark. In the following we will use the convention
b
∫

a

ϕ(t)dµ(t) =
∫

[a,b)

ϕ(t)dµ(t).

In the case where lim
t→0+

ϕ(t) =∞ we assume that µ(0) = 0 and
b
∫

0

ϕ(t)dµ(t) =
∫

(0,b)

ϕ(t)dµ(t).
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We will need the following lemmas.

2.5. Lemma. [5, p.189] Let µ be a Borel measure satisfying the conditions (2.11) and
∞
∫

0

| log t| d|µ|(t) <∞. Set k(s) = 1
s

s
∫

0

dµ(t). Then

k(s) ∈ L1(0,∞) and

∞
∫

0

k(s)ds =

∞
∫

0

log
1

s
dµ(s)

.

2.6. Lemma. [7, p.60] Let Tε, ε > 0 be a family of linear operators, mapping Lp(Rn), 1 ≤
p ≤ ∞ into the space of measurable functions on R n. Define T ∗f by setting

(T ∗f)(x) = sup
ε>0

|(Tεf)(x)|, x ∈ Rn.

Suppose that there exists a constant c > 0 and a real number q ≥ 1 such that

meas{x : |(T ∗f)(x)| > t} ≤ (c‖f‖Lp t−1)q

for all t > 0 and f ∈ Lp(Rn). If there exists a dense subset D of Lp(Rn) such that
lim
ε→0

(Tεg)(x) exists and is finite almost everywhere (a.e.) whenever g ∈ D, then for each

f ∈ Lp(Rn), lim
ε→0

(Tεf)(x) exists and is finite a.e.

3. A Calderon-type reproducing formula associated with the

wavelet-type transform Wµf

We will examine the L2 and Lp, (1 ≤ p ≤ ∞) cases separately. In the L2-case the
conditions on µ are expressed in terms of the Laplace transform of µ, and in the general
case – in terms of µ itself.

3.1. Theorem. Let µ satisfy the conditions in (2.11). Suppose that µ̃(t) =
∞
∫

0

e−stdµ(s)

is the Laplace transform of µ and the integral c̃µ =
∞
∫

0

µ̃(t)dt/t is finite. Then,

∞
∫

0

Wµf(x, η)
dη

η
≡ lim

ε→0
ρ→∞

ρ
∫

ε

Wµf(x, η)
dη

η
= c̃µf(x), ∀f ∈ L2(Rn),

where the limit is interpreted in the L2-norm.

Proof. Let

fε,ρ(x) =

ρ
∫

ε

Wµf(x, η)
dη

η
, 0 < ε < ρ <∞; f ∈ L1 ∩ L2.

By employing the Fourier transform and the Fubini theorem, from (2.13) we have
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f
∧

ε,ρ(y) =

ρ
∫

ε

dη

η

∫

Rn×(0,∞)

P (z, 1)
(

∫

Rn

e−2πix.yf(x− ηtz)dx
)

dzdµ(t)

(we replace x with x+ ηtz)

= f
∧

(y)

ρ
∫

ε

dη

η

∫

Rn×(0,∞)

P (z, 1)e−2πi(z.y)ηtdzdµ(t)

(2.1)
= f

∧

(y)

ρ
∫

ε

dη

η

∞
∫

0

e−πηt|y|dµ(t) (put η = s/π|y|)

= f
∧

(y)

ρπ|y|
∫

επ|y|

ds

s

∞
∫

0

e−stdµ(t) = f
∧

(y)

ρπ|y|
∫

επ|y|

µ̃(s)
ds

s
.

Setting kε,ρ(y) =
ρπ|y|
∫

επ|y|

µ̃(s) ds
s
, we have

(3.1) f
∧

ε,ρ(y) = f
∧

(y)kε,ρ(y).

Since c̃µ =
∞
∫

0

µ̃(s) ds
s

is finite and the function
t
∫

0

µ̃(s) ds
s

continuous on [0,∞),

c
def
= sup

t>0

∣

∣

∣

t
∫

0

µ̃(s)
ds

s

∣

∣

∣

is finite. Hence

(3.2) |kε,ρ(y)| =
∣

∣

∣

ρπ|y|
∫

0

µ̃(s)
ds

s
−

επ|y|
∫

0

µ̃(s)
ds

s

∣

∣

∣
≤ 2c.

Now by the Plancherel and Lebesque Dominated Convergence theorems it follows that

‖fε,ρ − c̃µf‖
2
= ‖f

∧

ε,ρ − c̃µf
∧

‖
2

(3.1)
= ‖f

∧

(kε,ρ − c̃µ)‖
2
→ 0 as ε→ 0, ρ→∞.

Hence, for any f ∈ L1 ∩ L2,

lim
ε→0
ρ→∞

‖fε,ρ − c̃µf‖
2
= 0.

The statement for arbitrary f ∈ L2 follows in a standard way by using uniform L2 → L2

boundedness of the family of linear operators Aε,ρf ≡ fε,ρ:

‖Aε,ρf‖
2
= ‖fε,ρ‖

2
= ‖f

∧

ε,ρ‖2 = ‖f
∧

kε,ρ‖
2

(3.2)

≤ 2c‖f
∧

‖
2
= 2c‖f‖

2
,

that is ‖Aε,ρf‖
2
≤ 2c‖f‖

2
, ∀ f ∈ L1 ∩ L2.

The General case follows by density. ¤

The following result gives a Lp-version of the Calderón-type reproducing formula for
arbitrary p ≥ 1.
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3.2. Theorem. Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞ (L∞ ≡ C0- the space of continuous
functions vanishing at infinity). Let µ be a finite (signed) Borel measure on R1 such that

µ(R1) = 0, µ({0}) = 0, suppµ ⊂ [0,∞) and

∞
∫

0

| log t|d|µ|(t) <∞,

then

(3.3)

∞
∫

0

Wµf(x, η)
dη

η
≡ lim

ε→0

∞
∫

ε

Wµf(x, η)
dη

η
= cµf(x) ,

where

cµ =

∞
∫

0

log
1

t
dµ(t),

the limit being with respect to the Lp-norm (1 ≤ p < ∞), or taken pointwise for almost
all x ∈ Rn. In the case p = ∞ it is assumed that L∞ = C0 and the limit is understood
in the sup-norm.

Proof. We need the following modification of the wavelet-type transform Wµf .

Wµf(x, η) =

∫

Rn×(0,∞)

P (y, t)f(x− ηy)dy dµ(t)

(we put y = (1/η)z, dy = (1/η)ndz and use (2.3))

=

∞
∫

0

(

∫

Rn

P (z, ηt)f(x− z)dz
)

dµ(t)
(2.5)
=

∞
∫

0

Ptηf(x) dµ(t).(3.4)

Let

(3.5) Vεf(x) =

∞
∫

ε

Wµf(x, η)
dη

η
, ε > 0.

Then, by using (3.4) and the Fubini theorem, we have

Vεf(x) =

∞
∫

ε

(

∞
∫

0

Ptηf(x) dµ(t)
)dη

η
=

∞
∫

0

(

∞
∫

ε

Ptηf(x)
dη

η

)

dµ(t)

=

∞
∫

0

(

∞
∫

εt

Psf(x)
ds

s

)

dµ(t) =

∞
∫

0

(1

s

s/ε
∫

0

dµ(t)
)

Psf(x) ds.(3.6)

Setting k(s) = 1
s

s
∫

0

dµ(t) and kτ (s) =
1
τ
k(s/τ), we have kτ (s) =

1
s

s/τ
∫

0

dµ(t) and therefore,

1
s

s/ε
∫

0

dµ(t) = kε(s). Making use of this in (3.6) we have

(3.7) Vεf(x) =

∞
∫

0

kε(s)Psf(x)ds.
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By setting c̃µ =
∞
∫

0

k(s) ds (which is finite and equal to cµ ≡
∞
∫

0

log 1
τ
dµ(τ) by Lemma 2.5),

and using Minkowski inequality we have

‖Vεf(x)− c̃µf(x)‖p =
∥

∥

∥

∞
∫

0

kε(s)Psf(x)ds−

∞
∫

0

k(s)f(x)ds
∥

∥

∥

p

=
∥

∥

∥

∞
∫

0

k(s)Psεf(x)ds−

∞
∫

0

k(s)f(x)ds
∥

∥

∥

p

≤

∞
∫

0

|k(s)|‖Psεf(x)− f(x)‖pds.

From (2.6), (2.8) and Lebesgue’s convergence theorem it follows that the last expression
tends to zero as ε→ 0. For similar reasons the convergence is uniform for f ∈ C0.

It remains to show the pointwise (a.e) convergence in (3.3). For f ∈ Lp, (1 ≤ p <∞),
we have

|Vεf(x)| ≤

∞
∫

0

|kε(s)||Psf(x)|ds

≤ sup
s>0

|Psf(x)|

∞
∫

0

|kε(s)|ds = c · sup
s>0

|Psf(x)|,(3.8)

where c =
∞
∫

0

|kε(s)|ds =
∞
∫

0

|k(s)|ds < ∞ by Lemma 2.5. From (3.8) and (2.9) it follows

that for any λ > 0

meas{x ∈ Rn : sup
ε>0

|Vεf(x)| > λ} ≤ c1.meas{x ∈ Rn : Mf (x)| > λ} ≤
(

c2
‖f‖p
λ

)p

.

Thus the maximal operator sup
ε>0

|Vεf(x)| is of weak (p, p)-type. Now by employing

Lemma 2.6 and keeping in mind that Vεf(x) → c̃µf(x) pointwise as ε → 0 for any
f ∈ C0 (this class of functions is dense in Lp, (1 ≤ p < ∞)), we obtain for any f ∈ Lp

that Vεf(x) → c̃µf(x) a.e. as ε → 0. To complete the proof of the theorem it remains
only to recall that

c̃µ = cµ ≡

∞
∫

0

log
1

s
dµ(s) (see Lemma 2.5).
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