Hacettepe Journal of Mathematics and Statistics
Volume 44 (3) (2015), 587595

Generalizations of prime submodules
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Abstract

Let R be a commutative ring with identity and M a unitary R-module,
and n > 1 an integer number. As a generalization of the concept of
prime submodules, a proper submodule N of M will be called n-almost
prime, if for # € R and x € M with rz € N\ (N : M)""!N, either
x € Norre (N:M). We study n-almost prime submodules, in this

paper.
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1. Introduction

Throughout this paper all rings are commutative with identity and all modules are
unitary. Also we consider R to be a commutative ring with identity, M an R-module,
n > 1 a positive integer and N the set of positive integers.

Let N be a submodule of an R—module M. The set {r € R|rM C N} is denoted by
(N : M) and particularly we denote {r € R|rN = 0} by ann(N).

Let N a proper submodule of M. It is said that N is a prime submodule of M, if for
r € R and © € M with rz € N, either z € N or rM C N. In this case, if P = (N : M),
then P is a prime ideal. The concept of prime submodules has been studied in many
papers in recent years (see, for example, [3, 8]).
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2. n-Almost Prime Submodules

According to [1] an ideal I of R is called an n-almost prime ideal if for a,b € R with
ab € I'\ I", either a € I or b € I. The case n = 2 is called an almost prime ideal and it
is due to [5]. We will generalize this definition to modules as follows:

Definition. Let n > 1 be an integer number. A proper submodule N of M will be called
n-almost prime, if for r € R and € M with ro € N\ (N : M)""'N, either z € N or
r € (N : M). A 2-almost prime submodule will be called an almost prime submodule.

Evidently every prime submodule is an n-almost prime submodule, for any integer
n> 1.

The following remark is an evident consequence of the definition of being almost prime
submodules.

Remark.

(i) The zero submodule is an almost prime submodule.
(i) Let N be a proper submodule of M such that (N : M)""'N = N. Then N is
n-almost prime.
(iii) Let N be a proper submodule of a torsion-free divisible module M. Then N is
prime if and only if N is n-almost prime.
(iv) Every n-almost prime submodule of an R-module M is m—almost prime, where
3<nand1<m<n.

2.1. Lemma. Let M be an R-module, and I an ideal of R.
(i) fn €N, then (UM : M)"M = I"M.
(if) If K is a submodule of M such that (K : M) is a maximal ideal, then K is a
prime submodule.
(iii) If 1 < n € N such that M # IM = I"M, then IM is an n-almost prime
submodule.
(iv) Let F be a free R-module. Then I is an n-almost prime ideal of R if and only
if IF is an n-almost prime submodule of F.
(v) Consider the R-module F' = @;ecnR and let N = I & (B1<ienR). Then the
following are equivalent:
(a) N is a prime submodule of F;
(b) N is an n-almost prime submodule of F;
(c¢) I is a prime ideal of R.

Proor. The proofs of (i),(ii) and (iii) are clear.

(iv) Consider F = @;caR. It is easy to see that (IF : F) = I, for any ideal I of
R. Then I is a proper ideal of R if and only if [F' is a proper submodule of F. Also
(IF:F)" 'IF =I"F.

Suppose [ is a proper ideal of R, which is not n-almost prime. Then there exist
a,b € R\ I such that ab e I'\ I". So a(,0,0,0,---) € IF\I"F,buta ¢ I = (IF : F),
also (b,0,0,0,---) & IF, that is I F is not an n-almost prime submodule.

For the converse, suppose I is an n-almost prime ideal of R. We consider the following
two cases:

Case 1. F'= R ® R, that is rank F = 2.

Let r(a,b) € IF\ I"F, wherer € R\ (IF : F) =1 and a,b € R. Then ra,rb € I, and
ra or rb is not in I"™. Without loss of generality, we may assume ra ¢ I™. Then ra € I\ I"
and as r ¢ I, a € I. Similarly if rb ¢ I™, then b € I and so (a,b) € IF.

Now let rb € I"™. Then r(a+b) € I, and ra ¢ I", and so r(a+b) € I\I", and r € I,
hence a +b € I. Also a € I, therefore b € I, that is (a,b) € IF.

Case 2. F'is a free module of arbitrary rank.
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If a € F, then a € ®j-, Ra;, where a1,az, - ,a, € F for some integer n. Now by
using case 1, we get the results.

(v) The proofs of (a) = (b) and (c) = (a) are straightforward.

(b) = (c) It is easy to see that I is an n-almost prime ideal of R. Now if I is not a
prime ideal, then there exists a,b € R\ I such that ab € I. Since I is an n-almost prime
ideal, ab € I". Therefore a(b,1,1,1,---) € N\ (N : M)""'N, however a ¢ I = (N : M)
and (b,1,1,1,---) ¢ N, which is a contradiction. [ |

Examples.

(1) If I is an ideal of R generated by idempotents, then by Lemma 2.1(iii), IM is an
almost prime submodule, or IM = M, for any R-module M. For a specific example, let
R' be an arbitrary ring, and consider R = [[>2, R’ and I = &5, R’, particularly I is an
almost prime ideal.

(2) Let R = K[[X?, X* X?]], where K is a field, and I = (X?* X*). By [1, Example
11], I is an almost prime ideal, which is not a 3-almost prime ideal.

Let F be a free R-module. By Lemma 2.1(iv), the submodule IF is an almost prime
submodule, which is not a 3-almost prime submodule.

(3) Let R be an Artinian ring. Then for any ideal I of R, there exists an n € N such
that I"™ = I"™'. So the ideal J = I™ is an almost prime ideal, and by Lemma 2.1(iv), for
any free R-module F, the submodule JF' is an almost prime submodule.

Let M, M’ be two R-modules. For a projective resolution

cee ﬁ)PQ £>P1 L)Po =M — 0, of M, consider the complexes
ISP 2p P00, and - BE P @ MRS P e MEE Py @ M.
Now recall that Tor, (M, M') is defined to be Tor,(M,M') = %.

2.2. Proposition. Let M be an R-module, and suppose that I is an ideal of R with
IM # M. If Tor1(§, %) = 0, then IM is an n-almost prime submodule for each
l<neNlN

ProoF. Put K = IM. By the short exact sequence 0 - K — M — 2 — 0, and

K
according to [7, Theorem 6.26], there is an exact sequence

_ R M, ¢ R g R
O—TOT‘l([,K) I®RK‘>I®RM.
The natural homomorphism h : K — % induces a homomorphism
h: % — % Also note that there is an isomorphism 6y, : ? ®r L — %, for each
R-module L.

In the following diagram the rows are exact and it is easy to see that the rectangle is
commutative:

OITO’I“l(?,%) i) ?@RK i} %@RM
10k i 30
0o — Kerh — = Ly AL
It follows that Kerh = Kerg = Imf = 0. On the other hand, Kerh = %, hence

K =1IM = IK. Therefore by Lemma 2.1, (K : M)K = (IM : M)IM = I(IM : M)M =
I(IM) = IK = K, and evidently (K : M)K = K implies that K is an n-almost prime
submodule for each 1 < n € N. ]

2.3. Corollary. Let M be an R-module and I an ideal of R with IM # M. Then IM

is an n-almost prime submodule of M, for each 1 < n € N, if one of the following holds:
(i) AL is aflat - -module.
(i) % is a flat R-module.
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Proor. Put K = IM. Note that (Iﬁ% = (K : _r_ M), thus K is an n-almost

Ann M
prime R-submodule of M, if and only if it is an n-almost prime ﬁ—submodule of M.
Therefore we can replace ﬁ with R for simplification.
We know that if & or 2% is a flat R-module, then Tory (%, 22) = 0 (see for example
[7, Theorem 7.2]). Now the proof follows from Proposition 2.2. ]

The following example shows that the converse of Corollary 2.3 is not necessarily true.

Example. Let M = R = Z, and I = 2Z. Then evidently 2Z is a prime ideal [resp.
submodule| of R [resp. the R-module M], with Ann M = 0. However £ is not a flat
R-module, since it is not torsion-free.

Recall that a ring R is called a Von Neumann regular ring, if for any a € R, Ra = Ra>.
By [7, Corollary 4.10], every semi-simple ring is a Von Neumann regular ring.

2.4. Corollary. Let M be an R-module, where R is a Von Neumann regular ring and
suppose [ is an ideal of R. If IM # M, then IM is an n-almost prime submodule for
each 1l <neN.

ProOF. According to [7, Theorem 4.9, every module over a Von Neumann regular ring
is flat. So the proof is given by Corollary 2.3. |

2.5. Lemma. Let N be an n-almost prime submodule of M.

(i) If there exist z € M\ N and r € R\ (N : M) with ra € N, then rN U (N :
M)z C (N :M)"'N.
(i) If0# 2+ N € & where x € M, then (ann(z + N))N C (N : M)N.
(ili) (N : M)N = (U,ern v ann(z + N))N.

ProOF. (i) As N is n-almost prime, rz € (N : M)™ ' N. Let y be an arbitrary element
of N. Then y+z ¢ N and r(y + ) = ry + rz € N and since N is n-almost prime,
r(y+x) € (N : M)""'N. Therefore ry € (N : M)" ' N, and so rN C (N : M)""'N.

Now let s be an arbitrary element of (N : M). Clearly r+s ¢ (N : M) and (r+s)x € N
and as N is n-almost prime, (r + s)z € (N : M)""'N. Then since rz € (N : M)""'N,
sz € (N: M) 'N. Hence (N : M)z C (N : M)""'N.

(ii) Let r € ann(z + N). Then rz € N. If r € (N : M), then clearly rN C (N : M)N.
If » ¢ (N : M), then in this case by part (i), rN C (N : M)""'N C (N : M)N.

(iii) Evidently (N : M) € U,cpn n @ann(z + N). Then by part (ii) we have,

(N : M)N C (Upeanny ann(@+ N)N C U, crpnn(ann(z+ N)N) C (N : M)N. &

2.6. Proposition. Let I be an ideal of a ring R and N a submodule of an R-module
M.
(i) If IM # IN, IN # N, then K = IN is n-almost prime if and only if K = (K :
M)" K.
(i) If for some positive integer k > 1, I*"'M # I*M = K, then K is n-almost prime
if and only if K = (K : M)" "' K. Consequently in this case K is almost prime
if and only if K is n-almost prime, for any (or some) positive integer n > 3.
(iii) Let R be an integral domain and M a Noetherian module with ann(N) = 0.
Then for every proper ideal I of R with IM # IN, IN is not n-almost prime.

Proor. (i) If K = (K : M)" 'K, then clearly K is n-almost prime. Now assume K is
n-almost prime. Evidently K is almost prime. If K # (K : M)K, then consider a € I
and z € N, where ax ¢ (K : M)K. Then since axz € IN = K \ (K : M)K, either
ac€(K:M)orze K. Letae (K: M). As K=IN CIM,IZ (K : M) and so we
can choose an element r € I\ (K : M). As ra € IN = K, Lemma 2.5(i) implies that
(K: M)z C(K:M)K, andsoaz € (K : M)K.
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Now suppose that z € K. By our assumption N € K, hence there exists z € N \ K.
Note that az € IN = K. Again by Lemma 2.5(i), aK C (K : M)K. Then in this case
ar € (K : M)K.

Therefore K = (K : M)K, and consequently K = (K : M)" K.

(i) We have IM # K, otherwise I*'M C IM = K = I*M C I*~'M, which is
impossible. Now apply part (i) for N = I*~! M.

(iii) Clearly N # IN, otherwise by Nakayama’s lemma, there exists s € I such that
(s +1)N = 0 and since ann(N) =0, 1 = —s € I, which is a contradiction with the fact
that I # R.

Note that (IN : M)N C IN.If IN is n-almost prime, then I'N is almost prime and so
by part (i), IN = (IN : M)IN = I(IN : M)N C I’N C IN, that is IN = I>N. Again
by Nakayama’s lemma, for some ¢t € I, (t+ 1)IN = 0. As ann(N) =0, (t+ 1) = 0. So
1= —telorl=0, which is a contradiction with the fact that I # R and IM # IN.
Consequently I N is not n-almost prime. |

Recall that a ring R is said to be ZPI-ring, if every non-zero proper ideal of R can be
written as a product of prime ideals of R (see [6, Chapters VI and IX]). According to
[6, Theorem 9.10], every ZPI-ring is a Noetherian ring.

2.7. Theorem. Let M be an R-module and I an ideal of R with IM # M.

(i) If R is a ZPI-ring and IM is an n-almost prime submodule, then IM = I" M,
or IM = PM, where P is a prime ideal of R.
(ii) If R is a Dedekind domain, then IM is an n-almost prime submodule if and only
if IM =1"M or IM is a prime submodule of M.
(iii) If (R, m) is a local ZPI-ring and IM is finitely generated, then IM is n-almost
prime if and only if IM =0 or IM = mM.

Proor. (i) Let I = P/*...Pkm where P/s are distinct prime ideals of R and k|s are
positive integers.

Assume that IM # PM for each prime ideal P of R. Then IM = Plkl...P,’f{"M and
without loss of generality we may suppose that IM # Pf171P2k2...P,'ff"M and (k1 —1) +
ks +ks+---+km>0.

Put N = P/*'Py2.. Pk M and K = IM. Then K = PN and P,M # K and K #
N, then by Proposition 2.6(i), K = (K : M)" 'K, that is IM = (IM : M)"~'(IM),
and by Lemma 2.1(i), (IM : M) Y(IM) =I(IM : M)" *M = I"M. Thus IM = I" M.

(ii) Let R be a Dedekind domain and suppose IM is an n-almost prime submodule.
By part (i), IM = I"M, or IM = PM, where P is a prime ideal of R.

If IM = PM, where P is a prime ideal of R, then P = 0 or P is a maximal ideal of
R. Evidently P = 0 implies that I"M = 0 = IM. Now suppose P is a maximal ideal
of R. As P C (PM : M), we have P = (PM : M) or PM = M. By our hypothesis
PM =1IM # M, then (IM : M) = (PM : M) = P and so IM is a prime submodule of
M, by Lemma 2.1(ii).

Now for the converse, suppose that IM = I"M. Then by Lemma 2.1(iii), IM is
n-almost prime.

(iii) If IM = mM, then by Lemma 2.1(ii), mM is a prime submodule. Also clearly 0
is an n-almost prime submodule.

Now assume that IM is an n-almost prime submodule of M. By [6, Theorem 9.10], R
is a Noetherian ring. If m = m?, by Nakayama’s lemma, m = 0, then R is a field and so
IM =0.

Now let m? # m. Choose € m \ m?. Then m?> C m? + Rz C m. By [6, Theorem
9.10], there are no ideals of R strictly between m? and m. So m? + Rz = m and by
Nakayama’s lemma, m = Rzx.
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Now let P be a non-zero prime ideal of R, and 0 # y € P. By the Krull Intersection
Theorem, we have ﬁ:z'im" = 0. Thus there is a positive integer k such that y € m” and
y & m**1. Since y € m* = Ra*, there exists an element u € R such that y = uz®, and
since y € m**1, u & m. Then u is a unit element of R. Hence z® = u~'y € P. We know
that P is a prime ideal of R, so x € P, that is m = P. Whence m is the only nonzero
prime ideal of R. Now by part (i), IM =I1"M or IM = mM

If IM = mM, then Lemma 2.1(ii) implies that IM is a prime submodule.

In case IM = I" M, Nakayama’s lemma implies that IM = 0. |

The following result is an obvious consequence of the above theorem.

2.8. Corollary. Let R be a ZPI-ring and I a proper ideal of R.

(i) I is an n-almost prime ideal if and only if I = I"™ or [ is a prime ideal.
(it) If (R,m) is a local ring, then I is an n-almost prime ideal if and only if I =
OorI=m.

2.9. Proposition. Let M be an R-module, and I an ideal which is a product of a finite
number of maximal ideals of R. Then IM is an n-almost prime submodule if and only if
IM is a prime submodule of M, or IM = I"M.

ProoF. For each maximal ideal P of R, we have P C (PM : M), then by Lemma 2.1(ii),
PM is a prime submodule or PM = M. Thus if IM is an n-almost prime submod-
ule, which is not a prime submodule, then there exist maximal ideals P;, 1 < i < m
and positive numbers ki, 1 < i < m such that IM = PF*P}2... Pkm )M and TM #
PF=lpr2 ... pkm 0. Therefore if we put N = Pf* ' PF2 ... pEm M and K = P, N, since
K is not prime, we get K # PyM, also K = PIN # N, hence by Proposition 2.6(i),
K= (K:M"'K.

Consequently by Lemma 2.1(i), K = IM = (IM : M) *(IM) =I(IM : M)"~'M =
1" M.

For the converse suppose IM = I"M. Then according to Lemma 2.1(iii), IM is n-
almost prime. |

Recall that a multiplicatively closed subset of a ring R is a subset S such that 0 ¢ S
and 1 € S and zy € S for each z,y € S.

The following result studies when the localization of an n-almost prime submodule is
n-almost prime.

2.10. Proposition. Let N be an n-almost prime submodule of an R-module M, and S
a multiplicatively closed subset of R.

(i) ¥ SN(N:M)=0and for some z € M\ N, SN ((N: M)"'N : z) = (), then
STIN £S5 M.
(ii) If ST'N # S™'M, then S™'N is an n-almost prime submodule of S™'M.

Proor. (i) Let z € M\ N. If S'N = S~'M, then there exists an element s € S such
that sz € N. Since SN ((N : M)"'N : 2) = 0, szt ¢ (N : M)"'N. As N is an
n-almost prime submodule and z ¢ N, s € (N : M) NS, which is a contradiction. Hence
STIN #£S7'M.

(i) Let for Z € S7'R,¥ € ST'M, 2% € ST'N\ (ST'N:S'M)""'S™'N. Then
there exists an element u € S such that ury € N. If ury € (N : M)" "N, then % =

wy ¢ STH(N: M) 'N) C (S7'N : ST*M)" 'S™'N, a contraction. Hence ury €

ust
N\ (N : M)"'N. As N is almost prime, either ur € (N : M) or y € N, so either
L= e S (N:M)C(ST'N:S"M)or e S™'N. |

s
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3. Essential multiplicatively closed subsets

Recall that an ideal I of a ring R is said to be essential if I N J # 0, for each non-
zero ideal J of R (that is J Z 0). In this section we introduce a similar notion for
multiplicatively closed subsets of R, and we find some connections between this notion
and n-almost primes.

Definition. Let S be a multiplicatively closed subset of R and P a prime ideal of R
with SN P = (. Then S will be called P-essential, if SN .J # (), for each ideal J with
JZP.

Evidently R\ P is a P-essential multiplicatively closed subset, for each prime ideal P
of R.
Recall that a multiplicatively closed subset S of R is said to be saturated if

zy € S<=zx,y € S.
The following lemma is a well known result (see [2, p. 44, Exercise 7 (ii)]).

3.1. Lemma. Let S be a multiplicatively closed subset of R. Then
S = R\ U{P|P is a prime ideal with PN S = (}

is a saturated multiplicatively closed subset of R containing S and there is no saturated
multiplicatively closed subset of R strictly between S and S.

It is obvious that for each prime ideal P of R, the ring Rp is a local ring and the ideal
Pp is a maximal ideal of Rp. The following result shows that S~ R being a local ring is
indeed related to P-essentiality of S.

Let S be a multiplicatively closed subset of R. For any ideal J of S™!'R, we consider
Je={reR|r/leJ}.

3.2. Proposition. Let S be a multiplicatively closed subset of R and P a prime ideal
of R with SN P = (. Then the following are equivalent:
(i) S is P-essential;

(i) S™'R = Rp;

(iii)) S=R\P;

(iv) ST'P is the only maximal ideal of S™'R.
ProoF. (i) = (ii) Clearly S™'R C Rp, since S C R\ P. Now suppose that ¥ € Rp.
Hence as t € R\ P, for some r € R, we have rt € S C R\ P, and so 7 € R\ P. Then
=" ¢ S 'R and hence S™'R = Rp.

(i1) = (i4i) Since PN S = @, by Lemma 3.1, S C R\ P. Now let r € R\ P. We have
1/r € Rp = ST'R, then there exists s € S, € R with 1/ = x/s. Thus for some s’ € S
we have s'rex = ss’ € S C S, and so r € S, because S is saturated.

(ii3) = (iv) Let m be a maximal ideal of S™'R. Then m® is a prime ideal of R with
mNS = . Note that R\ (PUm®) is a saturated multiplicatively closed subset of R and
since S C R\ (PUm®) C (R\P) = S, Lemma 3.1 implies that R\ (PUm®) = (R\P) = S.
Hence m¢ C (PUmS) = P, and thus m = S~!(m®) C S™'P, and so m = S~ ' P, because
of maximality of m.

(iv) = (i) Let J be an ideal of R such that J € P. If JN .S = §, since S™'P is the
only maximal ideal of S™'R, we have S~*J C S™'P. So J C P, which is impossible.
Consequently S is P-essential. |

3.3. Theorem. Let N be an n-almost prime submodule of an R-module M with [ =
(N :M). Then S = [(R\I)U(I"'N : M)]\ P is P-essential, for each prime ideal P of
R.
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Proor. First to prove that S is multiplicatively closed, let r,s € S. If rs ¢ S, then
rs € I. Also rs € P, because if rs € P, then r € P or s € P, although SN P = (). Thus
rsel\ P

Ifre(I"'N:M)orse (I"'N: M), thenrse€ (I""'N: M)\ P,and so rs € S.

Now on the contrary suppose r, s,7s ¢ (I" ' N : M). Hence there exists m € M such
that rsm ¢ I~ N, and we know that rs € I = (N : M), therefore rsm € N \ I""'N.

Asr,s € SC(R\DU{I"'N : M) and r,s ¢ (I""'N : M), we have r,s ¢ I =
(N : M). Note that rsm € N\ I""'N and 7,5 ¢ (N : M) and N is n-almost prime, thus
m € N.

Now consider m’ € M \ N. If rsm’ ¢ I"~' N, the above argument shows that m’ € N,
which is impossible.

Then we may assume rsm’ € I" ' N. Thus for z = m+m/, we have rsz € N\I""'N.
Now since m € N and m’ ¢ N, we have z ¢ N, consequently r € (N : M) = I or
s € (N : M) = I, which is a contradiction.

Next we will prove that S is P-essential. Let J be an ideal of R such that J € P. If
I C P, then S = R\ P, and obviously S is P-essential. So suppose that I Z P.

If JNS =0, it is easy to see JA[(R\)U (™ 'N : M) C Pandso J C TUP.
Therefore J C [

Note that I = (N : M), so I"M = I""*(N : M)M C I""'N, that is I C (I""'N :
M). Hence J" C JNI" C JN(I"'N : M) C P, which is impossible. Consequently
JNS #( and so S is P-essential. [ ]

3.4. Corollary. Let I be an ideal of R such that N(R) C I"™ and consider Sp =
[(R\I)UI"]\ P. Then the following are equivalent:
(i) I is n-almost prime;
(ii) Sp is multiplicatively closed for any prime ideal P;
(iii) Sp is multiplicatively closed for any minimal prime ideal P.

PROOF. (i) = (i4) The proof is given by Theorem 3.3.

(it) = (4i7) The proof is evident.

(413) = (i) Let ab € I\ I". So ab ¢ N(R) and there exists a minimal prime ideal P of
R such that ab ¢ P. Then ab ¢ Sp. Hence a ¢ Sp or b ¢ Sp. Thereforea€ I orbe I. R

3.5. Corollary. Let R be an integral domain and M an R-module.

(i) If N is an n-almost prime submodule of M with (N : M) = I, then S =
[(R\T)U(IN : M)]\ {0} is a multiplicatively closed subset of R and S™'R is a
field.

(ii) An ideal I of R is m-almost prime if and only if S = [(R\ ) UI"]\ {0} is a
multiplicatively closed subset of R. When this is the case, S™'R is a field.

ProoOF. (i) The proof is given by Theorem 3.3 and Proposition 3.2.
(ii) The proof of the first part is given by Corollary 3.4. By part (i), S™'R is a field,
if I is n-almost prime. L

The following remark studies the converse of the above corollary.

Remark. Let S be a saturated multiplicatively closed subset of R such that S™'R is a
field. Then there exist prime ideals I and P of R such that S = [(R\ P)UI?]\ P.

PROOF. Since S is a multiplicatively closed subset of R, there exists a prime ideal P of
R with PNS = 0. Then S~ P is a proper ideal of S™'R and S™'R is a field, so S™'P is
the only maximal ideal of S™'R. Hence by Proposition 3.2, S = R\ P. Note that S is a
saturated multiplicatively closed subset of R, then by Lemma 3.1, S = S = R\ P. Thus
it is enough to consider I = P. |
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