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Generalizations of prime submodules
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Abstract

Let R be a commutative ring with identity andM a unitary R-module,
and n > 1 an integer number. As a generalization of the concept of
prime submodules, a proper submodule N ofM will be called n-almost
prime, if for r ∈ R and x ∈ M with rx ∈ N \ (N : M)n−1N, either
x ∈ N or r ∈ (N : M). We study n-almost prime submodules, in this
paper.
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1. Introduction
Throughout this paper all rings are commutative with identity and all modules are

unitary. Also we consider R to be a commutative ring with identity, M an R-module,
n > 1 a positive integer and N the set of positive integers.

Let N be a submodule of an R−module M. The set {r ∈ R|rM ⊆ N} is denoted by
(N : M) and particularly we denote {r ∈ R|rN = 0} by ann(N).

Let N a proper submodule of M. It is said that N is a prime submodule of M, if for
r ∈ R and x ∈ M with rx ∈ N, either x ∈ N or rM ⊆ N. In this case, if P = (N : M),
then P is a prime ideal. The concept of prime submodules has been studied in many
papers in recent years (see, for example, [3, 8]).
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2. n-Almost Prime Submodules
According to [1] an ideal I of R is called an n-almost prime ideal if for a, b ∈ R with

ab ∈ I \ In, either a ∈ I or b ∈ I. The case n = 2 is called an almost prime ideal and it
is due to [5]. We will generalize this definition to modules as follows:

Definition. Let n > 1 be an integer number. A proper submodule N ofM will be called
n-almost prime, if for r ∈ R and x ∈ M with rx ∈ N \ (N : M)n−1N, either x ∈ N or
r ∈ (N : M). A 2-almost prime submodule will be called an almost prime submodule.

Evidently every prime submodule is an n-almost prime submodule, for any integer
n > 1.

The following remark is an evident consequence of the definition of being almost prime
submodules.

Remark.
(i) The zero submodule is an almost prime submodule.
(ii) Let N be a proper submodule of M such that (N : M)n−1N = N . Then N is

n-almost prime.
(iii) Let N be a proper submodule of a torsion-free divisible module M. Then N is

prime if and only if N is n-almost prime.
(iv) Every n-almost prime submodule of an R-module M is m−almost prime, where

3 ≤ n and 1 < m ≤ n.

2.1. Lemma. Let M be an R-module, and I an ideal of R.
(i) If n ∈ N, then (IM : M)nM = InM.
(ii) If K is a submodule of M such that (K : M) is a maximal ideal, then K is a

prime submodule.
(iii) If 1 < n ∈ N such that M 6= IM = InM, then IM is an n-almost prime

submodule.
(iv) Let F be a free R-module. Then I is an n-almost prime ideal of R if and only

if IF is an n-almost prime submodule of F.
(v) Consider the R-module F = ⊕i∈NR and let N = I ⊕ (⊕1<i∈NR). Then the

following are equivalent:
(a) N is a prime submodule of F ;
(b) N is an n-almost prime submodule of F ;
(c) I is a prime ideal of R.

Proof. The proofs of (i),(ii) and (iii) are clear.
(iv) Consider F = ⊕i∈αR. It is easy to see that (IF : F ) = I, for any ideal I of

R. Then I is a proper ideal of R if and only if IF is a proper submodule of F. Also
(IF : F )n−1IF = InF.

Suppose I is a proper ideal of R, which is not n-almost prime. Then there exist
a, b ∈ R \ I such that ab ∈ I \ In. So a(b, 0, 0, 0, · · · ) ∈ IF \ InF, but a 6∈ I = (IF : F ),
also (b, 0, 0, 0, · · · ) 6∈ IF, that is IF is not an n-almost prime submodule.

For the converse, suppose I is an n-almost prime ideal of R.We consider the following
two cases:

Case 1. F = R⊕R, that is rank F = 2.
Let r(a, b) ∈ IF \ InF, where r ∈ R \ (IF : F ) = I and a, b ∈ R. Then ra, rb ∈ I, and

ra or rb is not in In.Without loss of generality, we may assume ra 6∈ In. Then ra ∈ I \In
and as r 6∈ I, a ∈ I. Similarly if rb 6∈ In, then b ∈ I and so (a, b) ∈ IF.

Now let rb ∈ In. Then r(a+ b) ∈ I, and ra 6∈ In, and so r(a+ b) ∈ I \ In, and r 6∈ I,
hence a+ b ∈ I. Also a ∈ I, therefore b ∈ I, that is (a, b) ∈ IF.

Case 2. F is a free module of arbitrary rank.
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If a ∈ F, then a ∈ ⊕ni=1Rai, where a1, a2, · · · , an ∈ F for some integer n. Now by
using case 1, we get the results.

(v) The proofs of (a) =⇒ (b) and (c) =⇒ (a) are straightforward.
(b) =⇒ (c) It is easy to see that I is an n-almost prime ideal of R. Now if I is not a

prime ideal, then there exists a, b ∈ R \ I such that ab ∈ I. Since I is an n-almost prime
ideal, ab ∈ In. Therefore a(b, 1, 1, 1, · · · ) ∈ N \ (N : M)n−1N, however a /∈ I = (N : M)
and (b, 1, 1, 1, · · · ) /∈ N, which is a contradiction.

Examples.
(1) If I is an ideal of R generated by idempotents, then by Lemma 2.1(iii), IM is an

almost prime submodule, or IM = M, for any R-module M. For a specific example, let
R′ be an arbitrary ring, and consider R =

∏∞
n=1 R

′ and I = ⊕∞n=1R
′, particularly I is an

almost prime ideal.
(2) Let R = K[[X3, X4, X5]], where K is a field, and I = 〈X3, X4〉. By [1, Example

11], I is an almost prime ideal, which is not a 3-almost prime ideal.
Let F be a free R-module. By Lemma 2.1(iv), the submodule IF is an almost prime

submodule, which is not a 3-almost prime submodule.
(3) Let R be an Artinian ring. Then for any ideal I of R, there exists an n ∈ N such

that In = In+1. So the ideal J = In is an almost prime ideal, and by Lemma 2.1(iv), for
any free R-module F, the submodule JF is an almost prime submodule.

Let M, M ′ be two R-modules. For a projective resolution
· · · f3−→P2

f2−→P1
f1−→P0

ε−→M −→ 0, of M, consider the complexes
· · · f3−→P2

f2−→P1
f1−→P0

f0=0−→0, and · · · f3⊗1−→P2 ⊗M ′
f2⊗1−→P1 ⊗M ′

f1⊗1−→P0 ⊗M ′
f0⊗1−→0.

Now recall that Torn(M,M ′) is defined to be Torn(M,M ′) = Ker(fn⊗1)
Im(fn+1⊗1)

.

2.2. Proposition. Let M be an R-module, and suppose that I is an ideal of R with
IM 6= M. If Tor1(R

I
, M
IM

) = 0, then IM is an n-almost prime submodule for each
1 < n ∈ N.

Proof. Put K = IM. By the short exact sequence 0 → K → M → M
K
→ 0, and

according to [7, Theorem 6.26], there is an exact sequence

0 = Tor1(
R

I
,
M

K
)
f−→R

I
⊗R K

g−→R

I
⊗RM.

The natural homomorphism h : K −→ M
IM

induces a homomorphism
h̄ : K

IK
−→ M

IM
. Also note that there is an isomorphism θL : R

I
⊗R L −→ L

IL
, for each

R-module L.
In the following diagram the rows are exact and it is easy to see that the rectangle is

commutative:

0 = Tor1(R
I
, M
K

)
f−→ R

I
⊗R K

g−→ R
I
⊗RM

↓ θK ↓ θM
0 −→ Kerh̄ −→ K

IK

h̄−→ M
IM

It follows that Kerh̄ ∼= Kerg = Imf = 0. On the other hand, Kerh̄ = IM
IK
, hence

K = IM = IK. Therefore by Lemma 2.1, (K : M)K = (IM : M)IM = I(IM : M)M =
I(IM) = IK = K, and evidently (K : M)K = K implies that K is an n-almost prime
submodule for each 1 < n ∈ N.

2.3. Corollary. Let M be an R-module and I an ideal of R with IM 6= M. Then IM
is an n-almost prime submodule of M, for each 1 < n ∈ N, if one of the following holds:

(i) M
IM

is a flat R
Ann M

-module.
(ii) R

I
is a flat R-module.
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Proof. Put K = IM. Note that (K:RM)
Ann M

= (K : R
Ann M

M), thus K is an n-almost
prime R-submodule of M, if and only if it is an n-almost prime R

Ann M
-submodule of M.

Therefore we can replace R
Ann M

with R for simplification.
We know that if R

I
or M

K
is a flat R-module, then Tor1(R

I
, M
K

) = 0 (see for example
[7, Theorem 7.2]). Now the proof follows from Proposition 2.2.

The following example shows that the converse of Corollary 2.3 is not necessarily true.

Example. Let M = R = Z, and I = 2Z. Then evidently 2Z is a prime ideal [resp.
submodule] of R [resp. the R-module M ], with Ann M = 0. However R

I
is not a flat

R-module, since it is not torsion-free.

Recall that a ring R is called a Von Neumann regular ring, if for any a ∈ R, Ra = Ra2.
By [7, Corollary 4.10], every semi-simple ring is a Von Neumann regular ring.

2.4. Corollary. Let M be an R-module, where R is a Von Neumann regular ring and
suppose I is an ideal of R. If IM 6= M, then IM is an n-almost prime submodule for
each 1 < n ∈ N.

Proof. According to [7, Theorem 4.9], every module over a Von Neumann regular ring
is flat. So the proof is given by Corollary 2.3.

2.5. Lemma. Let N be an n-almost prime submodule of M.

(i) If there exist x ∈ M \ N and r ∈ R \ (N : M) with rx ∈ N , then rN ∪ (N :
M)x ⊆ (N : M)n−1N.

(ii) If 0 6= x+N ∈ M
N
, where x ∈M, then (ann(x+N))N ⊆ (N : M)N.

(iii) (N : M)N = (
⋃
x∈M\N ann(x+N))N.

Proof. (i) As N is n-almost prime, rx ∈ (N : M)n−1N. Let y be an arbitrary element
of N. Then y + x /∈ N and r(y + x) = ry + rx ∈ N and since N is n-almost prime,
r(y + x) ∈ (N : M)n−1N. Therefore ry ∈ (N : M)n−1N, and so rN ⊆ (N : M)n−1N.

Now let s be an arbitrary element of (N : M). Clearly r+s /∈ (N : M) and (r+s)x ∈ N
and as N is n-almost prime, (r + s)x ∈ (N : M)n−1N. Then since rx ∈ (N : M)n−1N,
sx ∈ (N : M)n−1N. Hence (N : M)x ⊆ (N : M)n−1N.

(ii) Let r ∈ ann(x+N). Then rx ∈ N. If r ∈ (N : M), then clearly rN ⊆ (N : M)N .
If r /∈ (N : M), then in this case by part (i), rN ⊆ (N : M)n−1N ⊆ (N : M)N.

(iii) Evidently (N : M) ⊆
⋃
x∈M\N ann(x+N). Then by part (ii) we have,

(N : M)N ⊆ (
⋃
x∈M\N ann(x+N))N ⊆

⋃
x∈M\N ( ann(x+N)N) ⊆ (N : M)N.

2.6. Proposition. Let I be an ideal of a ring R and N a submodule of an R-module
M.

(i) If IM 6= IN, IN 6= N, then K = IN is n-almost prime if and only if K = (K :
M)n−1K.

(ii) If for some positive integer k > 1, Ik−1M 6= IkM = K, then K is n-almost prime
if and only if K = (K : M)n−1K. Consequently in this case K is almost prime
if and only if K is n-almost prime, for any (or some) positive integer n ≥ 3.

(iii) Let R be an integral domain and M a Noetherian module with ann(N) = 0.
Then for every proper ideal I of R with IM 6= IN, IN is not n-almost prime.

Proof. (i) If K = (K : M)n−1K, then clearly K is n-almost prime. Now assume K is
n-almost prime. Evidently K is almost prime. If K 6= (K : M)K, then consider a ∈ I
and x ∈ N, where ax 6∈ (K : M)K. Then since ax ∈ IN = K \ (K : M)K, either
a ∈ (K : M) or x ∈ K. Let a ∈ (K : M). As K = IN ⊂ IM, I 6⊆ (K : M) and so we
can choose an element r ∈ I \ (K : M). As rx ∈ IN = K, Lemma 2.5(i) implies that
(K : M)x ⊆ (K : M)K, and so ax ∈ (K : M)K.
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Now suppose that x ∈ K. By our assumption N 6⊆ K, hence there exists z ∈ N \K.
Note that az ∈ IN = K. Again by Lemma 2.5(i), aK ⊆ (K : M)K. Then in this case
ax ∈ (K : M)K.

Therefore K = (K : M)K, and consequently K = (K : M)n−1K.
(ii) We have IM 6= K, otherwise Ik−1M ⊆ IM = K = IkM ⊆ Ik−1M, which is

impossible. Now apply part (i) for N = Ik−1M.
(iii) Clearly N 6= IN, otherwise by Nakayama’s lemma, there exists s ∈ I such that

(s+ 1)N = 0 and since ann(N) = 0, 1 = −s ∈ I, which is a contradiction with the fact
that I 6= R.

Note that (IN : M)N ⊆ IN. If IN is n-almost prime, then IN is almost prime and so
by part (i), IN = (IN : M)IN = I(IN : M)N ⊆ I2N ⊆ IN, that is IN = I2N. Again
by Nakayama’s lemma, for some t ∈ I, (t+ 1)IN = 0. As ann(N) = 0, (t+ 1)I = 0. So
1 = −t ∈ I or I = 0, which is a contradiction with the fact that I 6= R and IM 6= IN.
Consequently IN is not n-almost prime.

Recall that a ring R is said to be ZPI-ring, if every non-zero proper ideal of R can be
written as a product of prime ideals of R (see [6, Chapters VI and IX]). According to
[6, Theorem 9.10], every ZPI-ring is a Noetherian ring.

2.7. Theorem. Let M be an R-module and I an ideal of R with IM 6= M.

(i) If R is a ZPI-ring and IM is an n-almost prime submodule, then IM = InM,
or IM = PM, where P is a prime ideal of R.

(ii) If R is a Dedekind domain, then IM is an n-almost prime submodule if and only
if IM = InM or IM is a prime submodule of M.

(iii) If (R,m) is a local ZPI-ring and IM is finitely generated, then IM is n-almost
prime if and only if IM = 0 or IM = mM.

Proof. (i) Let I = P k11 ...P kmm , where P ′i s are distinct prime ideals of R and k′is are
positive integers.

Assume that IM 6= PM for each prime ideal P of R. Then IM = P k11 ...P kmm M and
without loss of generality we may suppose that IM 6= P k1−1

1 P k22 ...P kmm M and (k1− 1) +
k2 + k3 + · · ·+ km > 0.

Put N = P k1−1
1 P k22 ...P kmm M and K = IM. Then K = P1N and P1M 6= K and K 6=

N, then by Proposition 2.6(i), K = (K : M)n−1K, that is IM = (IM : M)n−1(IM),
and by Lemma 2.1(i), (IM : M)n−1(IM) = I(IM : M)n−1M = InM. Thus IM = InM.

(ii) Let R be a Dedekind domain and suppose IM is an n-almost prime submodule.
By part (i), IM = InM, or IM = PM, where P is a prime ideal of R.

If IM = PM, where P is a prime ideal of R, then P = 0 or P is a maximal ideal of
R. Evidently P = 0 implies that InM = 0 = IM. Now suppose P is a maximal ideal
of R. As P ⊆ (PM : M), we have P = (PM : M) or PM = M. By our hypothesis
PM = IM 6= M, then (IM : M) = (PM : M) = P and so IM is a prime submodule of
M, by Lemma 2.1(ii).

Now for the converse, suppose that IM = InM. Then by Lemma 2.1(iii), IM is
n-almost prime.

(iii) If IM = mM, then by Lemma 2.1(ii), mM is a prime submodule. Also clearly 0
is an n-almost prime submodule.

Now assume that IM is an n-almost prime submodule of M. By [6, Theorem 9.10], R
is a Noetherian ring. If m = m2, by Nakayama’s lemma, m = 0, then R is a field and so
IM = 0.

Now let m2 6= m. Choose x ∈ m \m2. Then m2 ⊂ m2 + Rx ⊆ m. By [6, Theorem
9.10], there are no ideals of R strictly between m2 and m. So m2 + Rx = m and by
Nakayama’s lemma, m = Rx.
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Now let P be a non-zero prime ideal of R, and 0 6= y ∈ P. By the Krull Intersection
Theorem, we have ∩+∞

n=1m
n = 0. Thus there is a positive integer k such that y ∈ mk and

y 6∈ mk+1. Since y ∈ mk = Rxk, there exists an element u ∈ R such that y = uxk, and
since y 6∈ mk+1, u 6∈ m. Then u is a unit element of R. Hence xk = u−1y ∈ P. We know
that P is a prime ideal of R, so x ∈ P, that is m = P. Whence m is the only nonzero
prime ideal of R. Now by part (i), IM = InM or IM = mM

If IM = mM, then Lemma 2.1(ii) implies that IM is a prime submodule.
In case IM = InM, Nakayama’s lemma implies that IM = 0.

The following result is an obvious consequence of the above theorem.

2.8. Corollary. Let R be a ZPI-ring and I a proper ideal of R.

(i) I is an n-almost prime ideal if and only if I = In or I is a prime ideal.
(ii) If (R,m) is a local ring, then I is an n-almost prime ideal if and only if I =

0 or I = m.

2.9. Proposition. Let M be an R-module, and I an ideal which is a product of a finite
number of maximal ideals of R. Then IM is an n-almost prime submodule if and only if
IM is a prime submodule of M, or IM = InM.

Proof. For each maximal ideal P of R, we have P ⊆ (PM : M), then by Lemma 2.1(ii),
PM is a prime submodule or PM = M. Thus if IM is an n-almost prime submod-
ule, which is not a prime submodule, then there exist maximal ideals Pi, 1 ≤ i ≤ m
and positive numbers ki, 1 ≤ i ≤ m such that IM = P k11 P k22 · · ·P kmm M and IM 6=
P k1−1

1 P k22 · · ·P kmm M. Therefore if we put N = P k1−1
1 P k22 · · ·P kmm M and K = P1N, since

K is not prime, we get K 6= P1M, also K = P1N 6= N, hence by Proposition 2.6(i),
K = (K : M)n−1K.

Consequently by Lemma 2.1(i), K = IM = (IM : M)n−1(IM) = I(IM : M)n−1M =
InM.

For the converse suppose IM = InM. Then according to Lemma 2.1(iii), IM is n-
almost prime.

Recall that a multiplicatively closed subset of a ring R is a subset S such that 0 6∈ S
and 1 ∈ S and xy ∈ S for each x, y ∈ S.

The following result studies when the localization of an n-almost prime submodule is
n-almost prime.

2.10. Proposition. Let N be an n-almost prime submodule of an R-module M, and S
a multiplicatively closed subset of R.

(i) If S ∩ (N : M) = ∅ and for some x ∈ M \N, S ∩ ((N : M)n−1N : x) = ∅, then
S−1N 6= S−1M.

(ii) If S−1N 6= S−1M, then S−1N is an n-almost prime submodule of S−1M .

Proof. (i) Let x ∈ M \N. If S−1N = S−1M, then there exists an element s ∈ S such
that sx ∈ N . Since S ∩ ((N : M)n−1N : x) = ∅, sx /∈ (N : M)n−1N. As N is an
n-almost prime submodule and x /∈ N, s ∈ (N : M)∩ S, which is a contradiction. Hence
S−1N 6= S−1M.

(ii) Let for r
s
∈ S−1R, y

t
∈ S−1M, r

s
y
t
∈ S−1N \ (S−1N : S−1M)n−1S−1N. Then

there exists an element u ∈ S such that ury ∈ N. If ury ∈ (N : M)n−1N, then ry
st

=
ury
ust
∈ S−1((N : M)n−1N) ⊆ (S−1N : S−1M)n−1S−1N, a contraction. Hence ury ∈

N \ (N : M)n−1N . As N is almost prime, either ur ∈ (N : M) or y ∈ N, so either
r
s

= ur
us
∈ S−1(N : M) ⊆ (S−1N : S−1M) or y

t
∈ S−1N.
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3. Essential multiplicatively closed subsets
Recall that an ideal I of a ring R is said to be essential if I ∩ J 6= 0, for each non-

zero ideal J of R (that is J 6⊆ 0). In this section we introduce a similar notion for
multiplicatively closed subsets of R, and we find some connections between this notion
and n-almost primes.

Definition. Let S be a multiplicatively closed subset of R and P a prime ideal of R
with S ∩ P = ∅. Then S will be called P -essential, if S ∩ J 6= ∅, for each ideal J with
J 6⊆ P.

Evidently R \P is a P -essential multiplicatively closed subset, for each prime ideal P
of R.

Recall that a multiplicatively closed subset S of R is said to be saturated if

xy ∈ S ⇐⇒ x, y ∈ S.

The following lemma is a well known result (see [2, p. 44, Exercise 7 (ii)]).

3.1. Lemma. Let S be a multiplicatively closed subset of R. Then

S̄ = R \ ∪{P |P is a prime ideal with P ∩ S = ∅}

is a saturated multiplicatively closed subset of R containing S and there is no saturated
multiplicatively closed subset of R strictly between S and S̄.

It is obvious that for each prime ideal P of R, the ring RP is a local ring and the ideal
PP is a maximal ideal of RP . The following result shows that S−1R being a local ring is
indeed related to P -essentiality of S.

Let S be a multiplicatively closed subset of R. For any ideal J of S−1R, we consider
Jc = {r ∈ R | r/1 ∈ J}.

3.2. Proposition. Let S be a multiplicatively closed subset of R and P a prime ideal
of R with S ∩ P = ∅. Then the following are equivalent:

(i) S is P -essential;
(ii) S−1R = RP ;
(iii) S̄ = R \ P ;
(iv) S−1P is the only maximal ideal of S−1R.

Proof. (i) ⇒ (ii) Clearly S−1R ⊆ RP , since S ⊆ R \ P. Now suppose that y
t
∈ RP .

Hence as t ∈ R \ P, for some r ∈ R, we have rt ∈ S ⊆ R \ P, and so r ∈ R \ P. Then
y
t

= ry
rt
∈ S−1R and hence S−1R = RP .

(ii) ⇒ (iii) Since P ∩ S = ∅, by Lemma 3.1, S̄ ⊆ R \ P. Now let r ∈ R \ P. We have
1/r ∈ RP = S−1R, then there exists s ∈ S, x ∈ R with 1/r = x/s. Thus for some s′ ∈ S
we have s′rx = ss′ ∈ S ⊆ S̄, and so r ∈ S̄, because S̄ is saturated.

(iii) ⇒ (iv) Let m be a maximal ideal of S−1R. Then mc is a prime ideal of R with
mc∩S = ∅. Note that R \ (P ∪mc) is a saturated multiplicatively closed subset of R and
since S ⊆ R\(P ∪mc) ⊆ (R\P ) = S̄, Lemma 3.1 implies that R\(P ∪mc) = (R\P ) = S̄.
Hence mc ⊆ (P ∪mc) = P, and thus m = S−1(mc) ⊆ S−1P, and so m = S−1P, because
of maximality of m.

(iv) ⇒ (i) Let J be an ideal of R such that J 6⊆ P. If J ∩ S = ∅, since S−1P is the
only maximal ideal of S−1R, we have S−1J ⊆ S−1P. So J ⊆ P, which is impossible.
Consequently S is P -essential.

3.3. Theorem. Let N be an n-almost prime submodule of an R-module M with I =
(N : M). Then S = [(R \ I) ∪ (In−1N : M)] \ P is P -essential, for each prime ideal P of
R.
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Proof. First to prove that S is multiplicatively closed, let r, s ∈ S. If rs /∈ S, then
rs ∈ I. Also rs 6∈ P, because if rs ∈ P, then r ∈ P or s ∈ P, although S ∩ P = ∅. Thus
rs ∈ I \ P.

If r ∈ (In−1N : M) or s ∈ (In−1N : M), then rs ∈ (In−1N : M) \ P, and so rs ∈ S.
Now on the contrary suppose r, s, rs /∈ (In−1N : M). Hence there exists m ∈M such

that rsm /∈ In−1N, and we know that rs ∈ I = (N : M), therefore rsm ∈ N \ In−1N.
As r, s ∈ S ⊆ [(R \ I) ∪ (In−1N : M)] and r, s /∈ (In−1N : M), we have r, s /∈ I =

(N : M). Note that rsm ∈ N \ In−1N and r, s /∈ (N : M) and N is n-almost prime, thus
m ∈ N.

Now consider m′ ∈M \N. If rsm′ /∈ In−1N, the above argument shows that m′ ∈ N,
which is impossible.

Then we may assume rsm′ ∈ In−1N. Thus for x = m+m′, we have rsx ∈ N \In−1N.
Now since m ∈ N and m′ /∈ N, we have x /∈ N, consequently r ∈ (N : M) = I or
s ∈ (N : M) = I, which is a contradiction.

Next we will prove that S is P -essential. Let J be an ideal of R such that J 6⊆ P. If
I ⊆ P, then S = R \ P, and obviously S is P -essential. So suppose that I 6⊆ P.

If J ∩ S = ∅, it is easy to see J ∩ [(R \ I) ∪ (In−1N : M)] ⊆ P and so J ⊆ I ∪ P.
Therefore J ⊆ I

Note that I = (N : M), so InM = In−1(N : M)M ⊆ In−1N, that is In ⊆ (In−1N :
M). Hence Jn ⊆ J ∩ In ⊆ J ∩ (In−1N : M) ⊆ P, which is impossible. Consequently
J ∩ S 6= ∅ and so S is P -essential.

3.4. Corollary. Let I be an ideal of R such that N(R) ⊆ In and consider SP =
[(R \ I) ∪ In] \ P. Then the following are equivalent:

(i) I is n-almost prime;
(ii) SP is multiplicatively closed for any prime ideal P ;
(iii) SP is multiplicatively closed for any minimal prime ideal P.

Proof. (i)⇒ (ii) The proof is given by Theorem 3.3.
(ii)⇒ (iii) The proof is evident.
(iii)⇒ (i) Let ab ∈ I \ In. So ab /∈ N(R) and there exists a minimal prime ideal P of

R such that ab /∈ P. Then ab /∈ SP . Hence a /∈ SP or b /∈ SP . Therefore a ∈ I or b ∈ I.

3.5. Corollary. Let R be an integral domain and M an R-module.
(i) If N is an n-almost prime submodule of M with (N : M) = I, then S =

[(R \ I)∪ (IN : M)] \ {0} is a multiplicatively closed subset of R and S−1R is a
field.

(ii) An ideal I of R is n-almost prime if and only if S = [(R \ I) ∪ In] \ {0} is a
multiplicatively closed subset of R. When this is the case, S−1R is a field.

Proof. (i) The proof is given by Theorem 3.3 and Proposition 3.2.
(ii) The proof of the first part is given by Corollary 3.4. By part (i), S−1R is a field,

if I is n-almost prime.
The following remark studies the converse of the above corollary.

Remark. Let S be a saturated multiplicatively closed subset of R such that S−1R is a
field. Then there exist prime ideals I and P of R such that S = [(R \ P ) ∪ I2] \ P.

Proof. Since S is a multiplicatively closed subset of R, there exists a prime ideal P of
R with P ∩S = ∅. Then S−1P is a proper ideal of S−1R and S−1R is a field, so S−1P is
the only maximal ideal of S−1R. Hence by Proposition 3.2, S̄ = R \ P. Note that S is a
saturated multiplicatively closed subset of R, then by Lemma 3.1, S = S̄ = R \ P. Thus
it is enough to consider I = P.
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