Generalizations of prime submodules

S. Moradi * and A. Azizi ${ }^{\dagger}$

Abstract

Let R be a commutative ring with identity and M a unitary R-module, and $n>1$ an integer number. As a generalization of the concept of prime submodules, a proper submodule N of M will be called n-almost prime, if for $r \in R$ and $x \in M$ with $r x \in N \backslash(N: M)^{n-1} N$, either $x \in N$ or $r \in(N: M)$. We study n-almost prime submodules, in this paper.

2000 AMS Classification: 13C99, 13C13, 13E05, 13F05, 13F15.

Keywords: Essential multiplicatively closed subsets; n-almost prime submodules; Prime submodules.

Received 06/01/2011 : Accepted 15/01/2013 Doi : 10.15672/HJMS. 20154411041

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Also we consider R to be a commutative ring with identity, M an R-module, $n>1$ a positive integer and \mathbb{N} the set of positive integers.

Let N be a submodule of an R-module M. The set $\{r \in R \mid r M \subseteq N\}$ is denoted by ($N: M$) and particularly we denote $\{r \in R \mid r N=0\}$ by $\operatorname{ann}(N)$.

Let N a proper submodule of M. It is said that N is a prime submodule of M, if for $r \in R$ and $x \in M$ with $r x \in N$, either $x \in N$ or $r M \subseteq N$. In this case, if $P=(N: M)$, then P is a prime ideal. The concept of prime submodules has been studied in many papers in recent years (see, for example, $[3,8]$).
*Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, IRAN
Email: smoradi@shirazu.ac.ir
\dagger Email:aazizi@shirazu.ac.ir

2. n-Almost Prime Submodules

According to [1] an ideal I of R is called an n-almost prime ideal if for $a, b \in R$ with $a b \in I \backslash I^{n}$, either $a \in I$ or $b \in I$. The case $n=2$ is called an almost prime ideal and it is due to [5]. We will generalize this definition to modules as follows:
Definition. Let $n>1$ be an integer number. A proper submodule N of M will be called n-almost prime, if for $r \in R$ and $x \in M$ with $r x \in N \backslash(N: M)^{n-1} N$, either $x \in N$ or $r \in(N: M)$. A 2-almost prime submodule will be called an almost prime submodule.

Evidently every prime submodule is an n-almost prime submodule, for any integer $n>1$.

The following remark is an evident consequence of the definition of being almost prime submodules.

Remark.

(i) The zero submodule is an almost prime submodule.
(ii) Let N be a proper submodule of M such that $(N: M)^{n-1} N=N$. Then N is n -almost prime.
(iii) Let N be a proper submodule of a torsion-free divisible module M. Then N is prime if and only if N is n-almost prime.
(iv) Every n-almost prime submodule of an R-module M is m-almost prime, where $3 \leq n$ and $1<m \leq n$.
2.1. Lemma. Let M be an R-module, and I an ideal of R.
(i) If $n \in \mathbb{N}$, then $(I M: M)^{n} M=I^{n} M$.
(ii) If K is a submodule of M such that $(K: M)$ is a maximal ideal, then K is a prime submodule.
(iii) If $1<n \in \mathbb{N}$ such that $M \neq I M=I^{n} M$, then $I M$ is an n-almost prime submodule.
(iv) Let F be a free R-module. Then I is an n-almost prime ideal of R if and only if $I F$ is an n-almost prime submodule of F.
(v) Consider the R-module $F=\oplus_{i \in \mathbb{N}} R$ and let $N=I \oplus\left(\oplus_{1<i \in \mathbb{N}} R\right)$. Then the following are equivalent:
(a) N is a prime submodule of F;
(b) N is an n-almost prime submodule of F;
(c) I is a prime ideal of R.

Proof. The proofs of (i),(ii) and (iii) are clear.
(iv) Consider $F=\oplus_{i \in \alpha} R$. It is easy to see that $(I F: F)=I$, for any ideal I of R. Then I is a proper ideal of R if and only if $I F$ is a proper submodule of F. Also $(I F: F)^{n-1} I F=I^{n} F$.

Suppose I is a proper ideal of R, which is not n-almost prime. Then there exist $a, b \in R \backslash I$ such that $a b \in I \backslash I^{n}$. So $a(b, 0,0,0, \cdots) \in I F \backslash I^{n} F$, but $a \notin I=(I F: F)$, also $(b, 0,0,0, \cdots) \notin I F$, that is $I F$ is not an n-almost prime submodule.

For the converse, suppose I is an n-almost prime ideal of R. We consider the following two cases:

Case 1. $F=R \oplus R$, that is rank $F=2$.
Let $r(a, b) \in I F \backslash I^{n} F$, where $r \in R \backslash(I F: F)=I$ and $a, b \in R$. Then $r a, r b \in I$, and $r a$ or $r b$ is not in I^{n}. Without loss of generality, we may assume $r a \notin I^{n}$. Then $r a \in I \backslash I^{n}$ and as $r \notin I, a \in I$. Similarly if $r b \notin I^{n}$, then $b \in I$ and so $(a, b) \in I F$.

Now let $r b \in I^{n}$. Then $r(a+b) \in I$, and $r a \notin I^{n}$, and so $r(a+b) \in I \backslash I^{n}$, and $r \notin I$, hence $a+b \in I$. Also $a \in I$, therefore $b \in I$, that is $(a, b) \in I F$.

Case 2. F is a free module of arbitrary rank.

If $a \in F$, then $a \in \oplus_{i=1}^{n} R a_{i}$, where $a_{1}, a_{2}, \cdots, a_{n} \in F$ for some integer n. Now by using case 1 , we get the results.
(v) The proofs of $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ and $(\mathrm{c}) \Longrightarrow(\mathrm{a})$ are straightforward.
(b) $\Longrightarrow(\mathrm{c})$ It is easy to see that I is an n-almost prime ideal of R. Now if I is not a prime ideal, then there exists $a, b \in R \backslash I$ such that $a b \in I$. Since I is an n-almost prime ideal, $a b \in I^{n}$. Therefore $a(b, 1,1,1, \cdots) \in N \backslash(N: M)^{n-1} N$, however $a \notin I=(N: M)$ and $(b, 1,1,1, \cdots) \notin N$, which is a contradiction.

Examples.
(1) If I is an ideal of R generated by idempotents, then by Lemma 2.1(iii), $I M$ is an almost prime submodule, or $I M=M$, for any R-module M. For a specific example, let R^{\prime} be an arbitrary ring, and consider $R=\prod_{n=1}^{\infty} R^{\prime}$ and $I=\oplus_{n=1}^{\infty} R^{\prime}$, particularly I is an almost prime ideal.
(2) Let $R=K\left[\left[X^{3}, X^{4}, X^{5}\right]\right]$, where K is a field, and $I=\left\langle X^{3}, X^{4}\right\rangle$. By [1, Example 11], I is an almost prime ideal, which is not a 3 -almost prime ideal.

Let F be a free R-module. By Lemma 2.1(iv), the submodule $I F$ is an almost prime submodule, which is not a 3 -almost prime submodule.
(3) Let R be an Artinian ring. Then for any ideal I of R, there exists an $n \in \mathbb{N}$ such that $I^{n}=I^{n+1}$. So the ideal $J=I^{n}$ is an almost prime ideal, and by Lemma 2.1(iv), for any free R-module F, the submodule $J F$ is an almost prime submodule.

Let M, M^{\prime} be two R-modules. For a projective resolution
$\cdots \xrightarrow{f_{3}} P_{2} \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{\varepsilon} M \longrightarrow 0, \quad$ of M, consider the complexes
$\cdots \xrightarrow{f_{3}} P_{2} \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}=0} 0, \quad$ and $\quad \cdots \xrightarrow{f_{3} \otimes 1} P_{2} \otimes M^{\prime} \xrightarrow{f_{2} \otimes 1} P_{1} \otimes M^{\prime} \xrightarrow{f_{1} \otimes 1} P_{0} \otimes M^{\prime} \xrightarrow{f_{0} \otimes 1} 0$.
Now recall that $\operatorname{Tor}_{n}\left(M, M^{\prime}\right)$ is defined to be $\operatorname{Tor}_{n}\left(M, M^{\prime}\right)=\frac{\operatorname{Ker}\left(f_{n} \otimes 1\right)}{\operatorname{Im}\left(f_{n+1} \otimes 1\right)}$.
2.2. Proposition. Let M be an R-module, and suppose that I is an ideal of R with $I M \neq M$. If $\operatorname{Tor}_{1}\left(\frac{R}{I}, \frac{M}{I M}\right)=0$, then $I M$ is an n-almost prime submodule for each $1<n \in \mathbb{N}$.

Proof. Put $K=I M$. By the short exact sequence $0 \rightarrow K \rightarrow M \rightarrow \frac{M}{K} \rightarrow 0$, and according to [7, Theorem 6.26], there is an exact sequence

$$
0=\operatorname{Tor}_{1}\left(\frac{R}{I}, \frac{M}{K}\right) \xrightarrow{f} \frac{R}{I} \otimes_{R} K \xrightarrow{g} \frac{R}{I} \otimes_{R} M .
$$

The natural homomorphism $h: K \longrightarrow \frac{M}{I M}$ induces a homomorphism $\bar{h}: \frac{K}{I K} \longrightarrow \frac{M}{I M}$. Also note that there is an isomorphism $\theta_{L}: \frac{R}{I} \otimes_{R} L \longrightarrow \frac{L}{I L}$, for each R-module L.

In the following diagram the rows are exact and it is easy to see that the rectangle is commutative:

$$
\begin{array}{cccccc}
& 0=\operatorname{Tor}_{1}\left(\frac{R}{I}, \frac{M}{K}\right) & \xrightarrow{f} & \frac{R}{I} \otimes_{R} K & \xrightarrow{g} & \frac{R}{I} \otimes_{R} M \\
& \downarrow \theta_{K} & & \downarrow \theta_{M} \\
0 \longrightarrow & \operatorname{Ker} \bar{h} & \longrightarrow & \frac{K}{I K} & \xrightarrow{\bar{h}} & \frac{M}{I M}
\end{array}
$$

It follows that $\operatorname{Ker} \bar{h} \cong \operatorname{Kerg}=\operatorname{Imf}=0$. On the other hand, $\operatorname{Ker} \bar{h}=\frac{I M}{I K}$, hence $K=I M=I K$. Therefore by Lemma 2.1, $(K: M) K=(I M: M) I M=I(I M: M) M=$ $I(I M)=I K=K$, and evidently $(K: M) K=K$ implies that K is an n-almost prime submodule for each $1<n \in \mathbb{N}$.
2.3. Corollary. Let M be an R-module and I an ideal of R with $I M \neq M$. Then $I M$ is an n-almost prime submodule of M, for each $1<n \in \mathbb{N}$, if one of the following holds:
(i) $\frac{M}{I M}$ is a flat $\frac{R}{A n n M}$-module.
(ii) $\frac{R}{I}$ is a flat R-module.

Proof. Put $K=I M$. Note that $\frac{\left(K:_{R} M\right)}{A n n M}=\left(K:_{\frac{R}{A n} M} M\right)$, thus K is an n-almost prime R-submodule of M, if and only if it is an n-almost prime $\frac{R}{A n n M}$-submodule of M. Therefore we can replace $\frac{R}{A n n M}$ with R for simplification.

We know that if $\frac{R}{I}$ or $\frac{M}{K}$ is a flat R-module, then $\operatorname{Tor}_{1}\left(\frac{R}{I}, \frac{M}{K}\right)=0$ (see for example [7, Theorem 7.2]). Now the proof follows from Proposition 2.2.

The following example shows that the converse of Corollary 2.3 is not necessarily true.
Example. Let $M=R=\mathbb{Z}$, and $I=2 \mathbb{Z}$. Then evidently $2 \mathbb{Z}$ is a prime ideal [resp. submodule] of R [resp. the R-module M], with $\operatorname{Ann} M=0$. However $\frac{R}{I}$ is not a flat R-module, since it is not torsion-free.

Recall that a ring R is called a Von Neumann regular ring, if for any $a \in R, R a=R a^{2}$. By [7, Corollary 4.10], every semi-simple ring is a Von Neumann regular ring.
2.4. Corollary. Let M be an R-module, where R is a Von Neumann regular ring and suppose I is an ideal of R. If $I M \neq M$, then $I M$ is an n-almost prime submodule for each $1<n \in \mathbb{N}$.

Proof. According to [7, Theorem 4.9], every module over a Von Neumann regular ring is flat. So the proof is given by Corollary 2.3.
2.5. Lemma. Let N be an n-almost prime submodule of M.
(i) If there exist $x \in M \backslash N$ and $r \in R \backslash(N: M)$ with $r x \in N$, then $r N \cup(N$: $M) x \subseteq(N: M)^{n-1} N$.
(ii) If $0 \neq x+N \in \frac{M}{N}$, where $x \in M$, then $(\operatorname{ann}(x+N)) N \subseteq(N: M) N$.
(iii) $(N: M) N=\left(\bigcup_{x \in M \backslash N} \operatorname{ann}(x+N)\right) N$.

Proof. (i) As N is n-almost prime, $r x \in(N: M)^{n-1} N$. Let y be an arbitrary element of N. Then $y+x \notin N$ and $r(y+x)=r y+r x \in N$ and since N is n-almost prime, $r(y+x) \in(N: M)^{n-1} N$. Therefore $r y \in(N: M)^{n-1} N$, and so $r N \subseteq(N: M)^{n-1} N$.

Now let s be an arbitrary element of $(N: M)$. Clearly $r+s \notin(N: M)$ and $(r+s) x \in N$ and as N is n-almost prime, $(r+s) x \in(N: M)^{n-1} N$. Then since $r x \in(N: M)^{n-1} N$, $s x \in(N: M)^{n-1} N$. Hence $(N: M) x \subseteq(N: M)^{n-1} N$.
(ii) Let $r \in \operatorname{ann}(x+N)$. Then $r x \in N$. If $r \in(N: M)$, then clearly $r N \subseteq(N: M) N$. If $r \notin(N: M)$, then in this case by part (i), $r N \subseteq(N: M)^{n-1} N \subseteq(N: M) N$.
(iii) Evidently $(N: M) \subseteq \bigcup_{x \in M \backslash N} \operatorname{ann}(x+N)$. Then by part (ii) we have,
$(N: M) N \subseteq\left(\bigcup_{x \in M \backslash N} \operatorname{ann}(x+N)\right) N \subseteq \bigcup_{x \in M \backslash N}(\operatorname{ann}(x+N) N) \subseteq(N: M) N$.
2.6. Proposition. Let I be an ideal of a ring R and N a submodule of an R-module M.
(i) If $I M \neq I N, I N \neq N$, then $K=I N$ is n-almost prime if and only if $K=(K$: $M)^{n-1} K$.
(ii) If for some positive integer $k>1, I^{k-1} M \neq I^{k} M=K$, then K is n-almost prime if and only if $K=(K: M)^{n-1} K$. Consequently in this case K is almost prime if and only if K is n-almost prime, for any (or some) positive integer $n \geq 3$.
(iii) Let R be an integral domain and M a Noetherian module with $\operatorname{ann}(N)=0$. Then for every proper ideal I of R with $I M \neq I N, I N$ is not n-almost prime.

Proof. (i) If $K=(K: M)^{n-1} K$, then clearly K is n-almost prime. Now assume K is n-almost prime. Evidently K is almost prime. If $K \neq(K: M) K$, then consider $a \in I$ and $x \in N$, where $a x \notin(K: M) K$. Then since $a x \in I N=K \backslash(K: M) K$, either $a \in(K: M)$ or $x \in K$. Let $a \in(K: M)$. As $K=I N \subset I M, I \nsubseteq(K: M)$ and so we can choose an element $r \in I \backslash(K: M)$. As $r x \in I N=K$, Lemma 2.5(i) implies that $(K: M) x \subseteq(K: M) K$, and so $a x \in(K: M) K$.

Now suppose that $x \in K$. By our assumption $N \nsubseteq K$, hence there exists $z \in N \backslash K$. Note that $a z \in I N=K$. Again by Lemma 2.5(i), $a K \subseteq(K: M) K$. Then in this case $a x \in(K: M) K$.

Therefore $K=(K: M) K$, and consequently $K=(K: M)^{n-1} K$.
(ii) We have $I M \neq K$, otherwise $I^{k-1} M \subseteq I M=K=I^{k} M \subseteq I^{k-1} M$, which is impossible. Now apply part (i) for $N=I^{k-1} M$.
(iii) Clearly $N \neq I N$, otherwise by Nakayama's lemma, there exists $s \in I$ such that $(s+1) N=0$ and since $\operatorname{ann}(N)=0,1=-s \in I$, which is a contradiction with the fact that $I \neq R$.

Note that $(I N: M) N \subseteq I N$. If $I N$ is n-almost prime, then $I N$ is almost prime and so by part (i), $I N=(I N: \bar{M}) I N=I(I N: M) N \subseteq I^{2} N \subseteq I N$, that is $I N=I^{2} N$. Again by Nakayama's lemma, for some $t \in I,(t+1) I N=0$. As $\operatorname{ann}(N)=0,(t+1) I=0$. So $1=-t \in I$ or $I=0$, which is a contradiction with the fact that $I \neq R$ and $I M \neq I N$. Consequently $I N$ is not n-almost prime.

Recall that a ring R is said to be ZPI-ring, if every non-zero proper ideal of R can be written as a product of prime ideals of R (see [6, Chapters VI and IX]). According to [6, Theorem 9.10], every ZPI-ring is a Noetherian ring.
2.7. Theorem. Let M be an R-module and I an ideal of R with $I M \neq M$.
(i) If R is a ZPI-ring and $I M$ is an n-almost prime submodule, then $I M=I^{n} M$, or $I M=P M$, where P is a prime ideal of R.
(ii) If R is a Dedekind domain, then $I M$ is an n-almost prime submodule if and only if $I M=I^{n} M$ or $I M$ is a prime submodule of M.
(iii) If (R, m) is a local ZPI-ring and $I M$ is finitely generated, then $I M$ is n-almost prime if and only if $I M=0$ or $I M=m M$.

Proof. (i) Let $I=P_{1}^{k_{1}} \ldots P_{m}^{k_{m}}$, where $P_{i}^{\prime} s$ are distinct prime ideals of R and $k_{i}^{\prime} s$ are positive integers.

Assume that $I M \neq P M$ for each prime ideal P of R. Then $I M=P_{1}^{k_{1}} \ldots P_{m}^{k_{m}} M$ and without loss of generality we may suppose that $I M \neq P_{1}^{k_{1}-1} P_{2}^{k_{2}} \ldots P_{m}^{k_{m}} M$ and $\left(k_{1}-1\right)+$ $k_{2}+k_{3}+\cdots+k_{m}>0$.

Put $N=P_{1}^{k_{1}-1} P_{2}^{k_{2}} \ldots P_{m}^{k_{m}} M$ and $K=I M$. Then $K=P_{1} N$ and $P_{1} M \neq K$ and $K \neq$ N, then by Proposition 2.6(i), $K=(K: M)^{n-1} K$, that is $I M=(I M: M)^{n-1}(I M)$, and by Lemma 2.1(i), $(I M: M)^{n-1}(I M)=I(I M: M)^{n-1} M=I^{n} M$. Thus $I M=I^{n} M$.
(ii) Let R be a Dedekind domain and suppose $I M$ is an n-almost prime submodule. By part (i), $I M=I^{n} M$, or $I M=P M$, where P is a prime ideal of R.

If $I M=P M$, where P is a prime ideal of R, then $P=0$ or P is a maximal ideal of R. Evidently $P=0$ implies that $I^{n} M=0=I M$. Now suppose P is a maximal ideal of R. As $P \subseteq(P M: M)$, we have $P=(P M: M)$ or $P M=M$. By our hypothesis $P M=I M \neq M$, then $(I M: M)=(P M: M)=P$ and so $I M$ is a prime submodule of M, by Lemma 2.1(ii).

Now for the converse, suppose that $I M=I^{n} M$. Then by Lemma 2.1(iii), $I M$ is n-almost prime.
(iii) If $I M=m M$, then by Lemma 2.1 (ii), $m M$ is a prime submodule. Also clearly 0 is an n-almost prime submodule.

Now assume that $I M$ is an n-almost prime submodule of M. By [6 , Theorem 9.10], R is a Noetherian ring. If $m=m^{2}$, by Nakayama's lemma, $m=0$, then R is a field and so $I M=0$.

Now let $m^{2} \neq m$. Choose $x \in m \backslash m^{2}$. Then $m^{2} \subset m^{2}+R x \subseteq m$. By [6, Theorem 9.10], there are no ideals of R strictly between m^{2} and m. So $m^{2}+R x=m$ and by Nakayama's lemma, $m=R x$.

Now let P be a non-zero prime ideal of R, and $0 \neq y \in P$. By the Krull Intersection Theorem, we have $\cap_{n=1}^{+\infty} m^{n}=0$. Thus there is a positive integer k such that $y \in m^{k}$ and $y \notin m^{k+1}$. Since $y \in m^{k}=R x^{k}$, there exists an element $u \in R$ such that $y=u x^{k}$, and since $y \notin m^{k+1}, u \notin m$. Then u is a unit element of R. Hence $x^{k}=u^{-1} y \in P$. We know that P is a prime ideal of R, so $x \in P$, that is $m=P$. Whence m is the only nonzero prime ideal of R. Now by part (i), $I M=I^{n} M$ or $I M=m M$

If $I M=m M$, then Lemma 2.1(ii) implies that $I M$ is a prime submodule.
In case $I M=I^{n} M$, Nakayama's lemma implies that $I M=0$.
The following result is an obvious consequence of the above theorem.
2.8. Corollary. Let R be a ZPI-ring and I a proper ideal of R.
(i) I is an n-almost prime ideal if and only if $I=I^{n}$ or I is a prime ideal.
(ii) If (R, m) is a local ring, then I is an n-almost prime ideal if and only if $I=$ 0 or $I=m$.
2.9. Proposition. Let M be an R-module, and I an ideal which is a product of a finite number of maximal ideals of R. Then $I M$ is an n-almost prime submodule if and only if $I M$ is a prime submodule of M, or $I M=I^{n} M$.

Proof. For each maximal ideal P of R, we have $P \subseteq(P M: M)$, then by Lemma 2.1(ii), $P M$ is a prime submodule or $P M=M$. Thus if $I M$ is an n-almost prime submodule, which is not a prime submodule, then there exist maximal ideals $P_{i}, 1 \leq i \leq m$ and positive numbers $k_{i}, 1 \leq i \leq m$ such that $I M=P_{1}^{k_{1}} P_{2}^{k_{2}} \cdots P_{m}^{k_{m}} M$ and $I M \neq$ $P_{1}^{k_{1}-1} P_{2}^{k_{2}} \cdots P_{m}^{k_{m}} M$. Therefore if we put $N=P_{1}^{k_{1}-1} P_{2}^{k_{2}} \cdots P_{m}^{k_{m}} M$ and $K=P_{1} N$, since K is not prime, we get $K \neq P_{1} M$, also $K=P_{1} N \neq N$, hence by Proposition 2.6(i), $K=(K: M)^{n-1} K$.

Consequently by Lemma 2.1(i), $K=I M=(I M: M)^{n-1}(I M)=I(I M: M)^{n-1} M=$ $I^{n} M$.

For the converse suppose $I M=I^{n} M$. Then according to Lemma 2.1(iii), $I M$ is n almost prime.

Recall that a multiplicatively closed subset of a ring R is a subset S such that $0 \notin S$ and $1 \in S$ and $x y \in S$ for each $x, y \in S$.

The following result studies when the localization of an n-almost prime submodule is n-almost prime.
2.10. Proposition. Let N be an n-almost prime submodule of an R-module M, and S a multiplicatively closed subset of R.
(i) If $S \cap(N: M)=\emptyset$ and for some $x \in M \backslash N, S \cap\left((N: M)^{n-1} N: x\right)=\emptyset$, then $S^{-1} N \neq S^{-1} M$.
(ii) If $S^{-1} N \neq S^{-1} M$, then $S^{-1} N$ is an n-almost prime submodule of $S^{-1} M$.

Proof. (i) Let $x \in M \backslash N$. If $S^{-1} N=S^{-1} M$, then there exists an element $s \in S$ such that $s x \in N$. Since $S \cap\left((N: M)^{n-1} N: x\right)=\emptyset$, $s x \notin(N: M)^{n-1} N$. As N is an n-almost prime submodule and $x \notin N, s \in(N: M) \cap S$, which is a contradiction. Hence $S^{-1} N \neq S^{-1} M$.
(ii) Let for $\frac{r}{s} \in S^{-1} R, \frac{y}{t} \in S^{-1} M, \frac{r}{s} \frac{y}{t} \in S^{-1} N \backslash\left(S^{-1} N: S^{-1} M\right)^{n-1} S^{-1} N$. Then there exists an element $u \in S$ such that ury $\in N$. If ury $\in(N: M)^{n-1} N$, then $\frac{r y}{s t}=$ $\frac{u r y}{u s t} \in S^{-1}\left((N: M)^{n-1} N\right) \subseteq\left(S^{-1} N: S^{-1} M\right)^{n-1} S^{-1} N$, a contraction. Hence ury \in $N \backslash(N: M)^{n-1} N$. As N is almost prime, either $u r \in(N: M)$ or $y \in N$, so either $\frac{r}{s}=\frac{u r}{u s} \in S^{-1}(N: M) \subseteq\left(S^{-1} N: S^{-1} M\right)$ or $\frac{y}{t} \in S^{-1} N$.

3. Essential multiplicatively closed subsets

Recall that an ideal I of a ring R is said to be essential if $I \cap J \neq 0$, for each nonzero ideal J of R (that is $J \nsubseteq 0$). In this section we introduce a similar notion for multiplicatively closed subsets of R, and we find some connections between this notion and n-almost primes.

Definition. Let S be a multiplicatively closed subset of R and P a prime ideal of R with $S \cap P=\emptyset$. Then S will be called P-essential, if $S \cap J \neq \emptyset$, for each ideal J with $J \nsubseteq P$.

Evidently $R \backslash P$ is a P-essential multiplicatively closed subset, for each prime ideal P of R.

Recall that a multiplicatively closed subset S of R is said to be saturated if

$$
x y \in S \Longleftrightarrow x, y \in S
$$

The following lemma is a well known result (see [2, p. 44, Exercise 7 (ii)]).
3.1. Lemma. Let S be a multiplicatively closed subset of R. Then

$$
\bar{S}=R \backslash \cup\{P \mid P \text { is a prime ideal with } P \cap S=\emptyset\}
$$

is a saturated multiplicatively closed subset of R containing S and there is no saturated multiplicatively closed subset of R strictly between S and \bar{S}.

It is obvious that for each prime ideal P of R, the ring R_{P} is a local ring and the ideal P_{P} is a maximal ideal of R_{P}. The following result shows that $S^{-1} R$ being a local ring is indeed related to P-essentiality of S.

Let S be a multiplicatively closed subset of R. For any ideal J of $S^{-1} R$, we consider $J^{c}=\{r \in R \mid r / 1 \in J\}$.
3.2. Proposition. Let S be a multiplicatively closed subset of R and P a prime ideal of R with $S \cap P=\emptyset$. Then the following are equivalent:
(i) S is P-essential;
(ii) $S^{-1} R=R_{P}$;
(iii) $\bar{S}=R \backslash P$;
(iv) $S^{-1} P$ is the only maximal ideal of $S^{-1} R$.

Proof. $(i) \Rightarrow(i i)$ Clearly $S^{-1} R \subseteq R_{P}$, since $S \subseteq R \backslash P$. Now suppose that $\frac{y}{t} \in R_{P}$. Hence as $t \in R \backslash P$, for some $r \in \bar{R}$, we have $r t \in S \subseteq R \backslash P$, and so $r \in R \backslash P$. Then $\frac{y}{t}=\frac{r y}{r t} \in S^{-1} R$ and hence $S^{-1} R=R_{P}$.
(ii) \Rightarrow (iii) Since $P \cap S=\emptyset$, by Lemma 3.1, $\bar{S} \subseteq R \backslash P$. Now let $r \in R \backslash P$. We have $1 / r \in R_{P}=S^{-1} R$, then there exists $s \in S, x \in R$ with $1 / r=x / s$. Thus for some $s^{\prime} \in S$ we have $s^{\prime} r x=s s^{\prime} \in S \subseteq \bar{S}$, and so $r \in \bar{S}$, because \bar{S} is saturated.
$(i i i) \Rightarrow(i v)$ Let m be a maximal ideal of $S^{-1} R$. Then m^{c} is a prime ideal of R with $m^{c} \cap S=\emptyset$. Note that $R \backslash\left(P \cup m^{c}\right)$ is a saturated multiplicatively closed subset of R and since $S \subseteq R \backslash\left(P \cup m^{c}\right) \subseteq(R \backslash P)=\bar{S}$, Lemma 3.1 implies that $R \backslash\left(P \cup m^{c}\right)=(R \backslash P)=\bar{S}$. Hence $m^{c} \subseteq\left(P \cup m^{c}\right)=P$, and thus $m=S^{-1}\left(m^{c}\right) \subseteq S^{-1} P$, and so $m=S^{-1} P$, because of maximality of m.
$(i v) \Rightarrow(i)$ Let J be an ideal of R such that $J \nsubseteq P$. If $J \cap S=\emptyset$, since $S^{-1} P$ is the only maximal ideal of $S^{-1} R$, we have $S^{-1} J \subseteq S^{-1} P$. So $J \subseteq P$, which is impossible. Consequently S is P-essential.
3.3. Theorem. Let N be an n-almost prime submodule of an R-module M with $I=$ $(N: M)$. Then $S=\left[(R \backslash I) \cup\left(I^{n-1} N: M\right)\right] \backslash P$ is P-essential, for each prime ideal P of R.

Proof. First to prove that S is multiplicatively closed, let $r, s \in S$. If $r s \notin S$, then $r s \in I$. Also $r s \notin P$, because if $r s \in P$, then $r \in P$ or $s \in P$, although $S \cap P=\emptyset$. Thus $r s \in I \backslash P$.

If $r \in\left(I^{n-1} N: M\right)$ or $s \in\left(I^{n-1} N: M\right)$, then $r s \in\left(I^{n-1} N: M\right) \backslash P$, and so $r s \in S$.
Now on the contrary suppose $r, s, r s \notin\left(I^{n-1} N: M\right)$. Hence there exists $m \in M$ such that $r s m \notin I^{n-1} N$, and we know that $r s \in I=(N: M)$, therefore $r s m \in N \backslash I^{n-1} N$.

As $r, s \in S \subseteq\left[(R \backslash I) \cup\left(I^{n-1} N: M\right)\right]$ and $r, s \notin\left(I^{n-1} N: M\right)$, we have $r, s \notin I=$ $(N: M)$. Note that $r s m \in N \backslash I^{n-1} N$ and $r, s \notin(N: M)$ and N is n-almost prime, thus $m \in N$.

Now consider $m^{\prime} \in M \backslash N$. If $r s m^{\prime} \notin I^{n-1} N$, the above argument shows that $m^{\prime} \in N$, which is impossible.

Then we may assume $r s m^{\prime} \in I^{n-1} N$. Thus for $x=m+m^{\prime}$, we have $r s x \in N \backslash I^{n-1} N$. Now since $m \in N$ and $m^{\prime} \notin N$, we have $x \notin N$, consequently $r \in(N: M)=I$ or $s \in(N: M)=I$, which is a contradiction.

Next we will prove that S is P-essential. Let J be an ideal of R such that $J \nsubseteq P$. If $I \subseteq P$, then $S=R \backslash P$, and obviously S is P-essential. So suppose that $I \nsubseteq P$.

If $J \cap S=\emptyset$, it is easy to see $J \cap\left[(R \backslash I) \cup\left(I^{n-1} N: M\right)\right] \subseteq P$ and so $J \subseteq I \cup P$. Therefore $J \subseteq I$

Note that $I=(N: M)$, so $I^{n} M=I^{n-1}(N: M) M \subseteq I^{n-1} N$, that is $I^{n} \subseteq\left(I^{n-1} N\right.$: $M)$. Hence $J^{n} \subseteq J \cap I^{n} \subseteq J \cap\left(I^{n-1} N: M\right) \subseteq P$, which is impossible. Consequently $J \cap S \neq \emptyset$ and so S is P-essential.
3.4. Corollary. Let I be an ideal of R such that $N(R) \subseteq I^{n}$ and consider $S_{P}=$ $\left[(R \backslash I) \cup I^{n}\right] \backslash P$. Then the following are equivalent:
(i) I is n-almost prime;
(ii) S_{P} is multiplicatively closed for any prime ideal P;
(iii) S_{P} is multiplicatively closed for any minimal prime ideal P.

Proof. $(i) \Rightarrow(i i)$ The proof is given by Theorem 3.3.
(ii) $\Rightarrow($ iii $)$ The proof is evident.
(iii) $\Rightarrow(i)$ Let $a b \in I \backslash I^{n}$. So $a b \notin N(R)$ and there exists a minimal prime ideal P of R such that $a b \notin P$. Then $a b \notin S_{P}$. Hence $a \notin S_{P}$ or $b \notin S_{P}$. Therefore $a \in I$ or $b \in I$.
3.5. Corollary. Let R be an integral domain and M an R-module.
(i) If N is an n-almost prime submodule of M with $(N: M)=I$, then $S=$ $[(R \backslash I) \cup(I N: M)] \backslash\{0\}$ is a multiplicatively closed subset of R and $S^{-1} R$ is a field.
(ii) An ideal I of R is n-almost prime if and only if $S=\left[(R \backslash I) \cup I^{n}\right] \backslash\{0\}$ is a multiplicatively closed subset of R. When this is the case, $S^{-1} R$ is a field.

Proof. (i) The proof is given by Theorem 3.3 and Proposition 3.2.
(ii) The proof of the first part is given by Corollary 3.4. By part (i), $S^{-1} R$ is a field, if I is n-almost prime.

The following remark studies the converse of the above corollary.
Remark. Let S be a saturated multiplicatively closed subset of R such that $S^{-1} R$ is a field. Then there exist prime ideals I and P of R such that $S=\left[(R \backslash P) \cup I^{2}\right] \backslash P$.

Proof. Since S is a multiplicatively closed subset of R, there exists a prime ideal P of R with $P \cap S=\emptyset$. Then $S^{-1} P$ is a proper ideal of $S^{-1} R$ and $S^{-1} R$ is a field, so $S^{-1} P$ is the only maximal ideal of $S^{-1} R$. Hence by Proposition 3.2, $\bar{S}=R \backslash P$. Note that S is a saturated multiplicatively closed subset of R, then by Lemma 3.1, $S=\bar{S}=R \backslash P$. Thus it is enough to consider $I=P$.

Acknowledgment. The authors would like to thank the referee for his comments on this paper.

References

[1] Anderson, D.D. and Batainen, Malik Generalizations of primes ideals, Comm. Algebra, 36, 86-696, 2008.
[2] Atiah, M. F. and Mcdonald, I. G. Introduction to commutative algebra (Addison-Wesley, 1969).
[3] Azizi, A. Prime submodules and flat modules, Acta Math. Sinica, English Series, 23 (1), 147-152, 2007.
[4] Azizi, A. Strongly irreducible ideals, J. Aust. Math. Soc., 84, 145-154, 2008.
[5] Bhatwadekar, S. M. and Sharma, P. K. Uniqe factorization and birth of almost prime, Comm. Algebra, 33, 43-49, 2005.
[6] Larsen, M. D. and McCarthy, P. J. Multiplicative theory of ideals (Academic press, Inc., 1971).
[7] Rotman, J. J. An introduction to homological algebra, second edition (Springer, 2009).
[8] Tiras, Y. and Harmanci, A. and Smith, P. F. A characterization of prime submodules, J. Algebra, 212 (2), 743-752, 1999.

