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Hyperconnectedness and extremal
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Abstract
The aim of this paper is to study hyperconnectedness and extremal dis-
connectedness in a space equipped with a countable number of topolo-
gies.
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1. Introduction
A bitopological space [7] is a nonempty set with two topologies. Kovár [8, 9] also

studied the properties of a nonempty set equipped with three topologies. Datta and
Roy Choudhuri [5], and Raut and Datta [13] introduced nontrivial infinitesimally small
elements. With this, they defined a number system as an extension of real number
system. Their study offers a natural framework for dealing with an infinite sequence of
distinct topologies on a set. Also emergence of chaos in a deterministic system, in the
theory of dynamical system, relates to an interplay of finite or infinite number of different
topologies in the underlining set. All these matters motivated the authors to consider
a countable number of topologies in (ω)topological spaces [2, 3, 4] and (ℵ0)topological
spaces [1]. In this paper, we introduce the notion of (a)topological spaces which is a set
equipped with countable number of topologies. The notion of (a)topological spaces is
more general than both the notions of (ω)topological spaces and (ℵ0)topological spaces.
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Sarma [14] introduced the notion of pairwise extremal disconnectedness in bitopo-
logical spaces [7]. Among other results, she proved a result on pairwise extremal dis-
connectedness which is parallel to Urysohn’s lemma on pairwise normal spaces. In [12],
Mathew studied the hyperconnected topological spaces (Steen and Seebach [15]). In this
paper, we study hyperconnectedness and extremal disconnectedness in the context of
(a)topological spaces.

2. (a)topological spaces
2.1. Definition. If {τn} is a sequence of topologies on a set X, then the pair (X, {τn})
is called an (a)topological space.

If there is no scope of confusion, we denote the (a)topological space (X, {τn}), simply
by X. Throughout the paper, N denotes the set of natural numbers. The elements of
N are denoted by i, j, k, l, m, n etc. If a set G is open with respect to the topology τn
i.e., if G ∈ τn, then we say G is (τn)open. (τn)closed set, (τn)closure have the obvious
meaning. The (τn)closure (resp. (τn)interior) of a set E is denoted by (τn)clE (resp.
(τn)intE). Following Levine [11], we now introduce the following definitions.

2.2. Definition. Let X be an (a)topological space and let m 6= n. A set A ⊂ X is said
to be (m,n)semiopen if there exists a U ∈ τm such that U ⊂ A ⊂ (τn)clU .

Thus any (τm)open set is an (m,n)semiopen set for any n 6= m. The class of all
(m,n)semiopen sets with m 6= n, is denoted by SO(m,n)(X). We write SO(X) =⋃

(m,n)SO(m,n)(X). A set belonging to SO(X) is called an (a)semiopen set.

2.3. Definition. An (a)topology {σn} on X is said to be stronger (resp. weaker) than
an (a)topology {τn} if τn ⊂ σn (resp. σn ⊂ τn) for each n. If, in addition, τn 6= σn for
at least one n, then {σn} is said to be strictly stronger (resp. weaker) than {τn}.

2.4. Definition. An (a)topological space (X, {τn}) with property P is said to be maxi-
mal (resp. minimal) with respect to P if for any other (a)topology {σn} strictly stronger
(resp. weaker) than {τn}, the space (X, {σn}) can not have this property.

3. Hyperconnected spaces
Recall that a topological space (X,T ) is hyperconnected if the intersection of any two

nonempty open sets is nonempty.

3.1. Definition. An (a)topological space (X, {τn}) is said to be hyperconnected if for
any two nonempty sets U and V with U ∈ τm, V ∈ τn and m 6= n, we have U ∩ V 6= ∅.

It follows that ifX is hyperconnected, then for any nonempty set U ∈ τm, (τn)clU = X
for any n 6= m.

3.2. Theorem. Suppose for any (τm)open set G and (τn)open set H, G ∩ H ∈ τl for
some l. Then the (a)topological space (X, {τn}) and the topological spaces (X, τn), n ∈ N
are hyperconnected iff the set D of all nonempty (a)semiopen sets is a filter.

Proof. Let the (a)topological space (X, {τn}) and the topological spaces (X, τn), n ∈ N
be hyperconnected and A, B ∈ D. Then there exist two pairs (m,n) and (k, l) with
m 6= n and k 6= l such that for some U ∈ τm and V ∈ τk, U ⊂ A ⊂ (τn)clU , V ⊂ B ⊂
(τl)clV . Since (X, {τn}) and (X, τn), n ∈ N are hyperconnected, we have U ∩ V 6= ∅.
Also U ∩ V ∈ τi for some i. Therefore (τj)cl(U ∩ V ) = X for any j 6= i. Hence
U ∩V ⊂ A∩B ⊂ (τj)cl(U ∩V ). Thus A∩B ∈ D. Now let A be a nonempty (a)semiopen
set and B ⊃ A. Then for some (m,n) with m 6= n, there exists U ∈ τm such that



U ⊂ A ⊂ (τn)clU . But (τn)clU = X. Therefore U ⊂ B ⊂ (τn)clU . Hence B is a
nonempty (a)semiopen set. Thus D is a filter.

Since for any n, a (τn)open set is an (a)semiopen set, the converse follows. �

For a pair (m,n), the union of an arbitrary number of (m,n)semiopen sets is an
(m,n)semiopen set. If X is hyperconnected, then the intersection of a finite number of
(m,n)semiopen sets is (m,n)semiopen. Hence in this case, the class SO(m,n)(X) forms a
topology on X. Since the class {SO(m,n)(X) | m,n ∈ N} is countable, and any countable
class can be represented as a sequence, we rewrite the class {SO(m,n)(X) | m,n ∈ N} as
a sequence {Sk}. So (X, {Sk}) is an (a)topological space. From Theorem 3.2, it follows
that if (X, {τn}) is hyperconnected and if for G ∈ τm and H ∈ τn, G ∩H ∈ τl for some
l, then (X, {Sk}) is hyperconnected.

3.3. Corollary. If (X, {τn}) is maximal hyperconnected, then {τn} = {Sk}.

Levine [10] introduced the concept of a simple extension of a topological space. Let
(X,P) be a topological space. A family Q of subsets of X is a simple extension of P if
Q contains P and there exists a P /∈P such that Q = {G ∪ (H ∩ P ) | G,H ∈P}.

3.4. Theorem. If for any (τm)open set G and (τn)open set H, G ∩H ∈ τl for some l
and if the space (X, {τn}) is maximal hyperconnected and the space (X, τn), n ∈ N are
hyperconnected, then the set D of all nonempty (a)semiopen sets is an ultrafilter.

Proof. Since by Theorem 3.2, D is a filter, it is sufficient to show that for a nonempty
set E, X − E ∈ D if E /∈ D. Let us suppose that E /∈ D. Then E /∈

⋃
nτn. Let τn(E)

denote a simple extension of τn. Then the space (X, {τn(E)}) which is stronger than
(X, {τn}) is not hyperconnected. So for some nonempty set U ∈ τm(E) and nonempty
set V ∈ τn(E) with m 6= n we have U ∩ V = ∅. By the definition of simple extension,
U = U1 ∪ (U2 ∩ E) and V = V1 ∪ (V2 ∩ E) for some Ui ∈ τm and Vi ∈ τn, i = 1, 2. Since
U ∩V = ∅, U1∩V1 = ∅. But (X, {τn}) is hyperconnected and so either U1 = ∅ or V1 = ∅.
Suppose without loss of generality, U1 = ∅. Now we consider the cases (i) V1 = ∅, and
(ii) V1 6= ∅.

Case (i): V1 = ∅. Since U, V 6= ∅, we have U2 6= ∅, V2 6= ∅. Therefore U2 ∩ V2 6= ∅,
since (X, {τn}) is hyperconnected. Now

U ∩ V = ∅
⇒ U2 ∩ V2 ∩ E = ∅
⇒ U2 ∩ V2 ⊂ X − E
⇒ X − E ∈ D, since D is a filter.

Case (ii): V1 6= ∅. Since U2 6= ∅, we have U2 ∩ V1 6= ∅. Therefore U2 ∩ V1 ∈ D. Again
since U ∩ V = ∅, we have (U2 ∩E) ∩ V1 = ∅ ⇒ U2 ∩ V1 ⊂ X −E. Therefore X −E ∈ D.
Thus D is an ultrafilter. �

Recall that a topological space (X,T ) is a door space if for each A ⊂ X, either A ∈ T
or X −A ∈ T .

3.5. Definition. The space (X, {τn}) is said to be a door space if for every subset E of
X, there exists an n0 such that either E ∈ τn0 or X − E ∈

⋃
n 6=n0

τn.

3.6. Theorem. If the (a)topological space (X, {τn}) is door and hyperconnected, then⋂
τn − {∅} is a filter.

Proof. Let A,B ∈
⋂

nτn − {∅}. Then A,B are nonempty (τn)open sets for all n and so
A∩B ∈

⋂
n τn. Since (X, {τn}) is hyperconnected, A∩B 6= ∅. Thus A∩B ∈

⋂
nτn−{∅}.

Now suppose B ⊃ A ∈
⋂

nτn − {∅}. Suppose that B /∈
⋂

nτn − {∅}. Then B /∈ τn0 − {∅}



for some n0 and so X − B ∈
⋃

n 6=n0
τn, since (X, {τn}) is door. So we have A ∈ τn0

and A ∩ (X − B) = ∅, which contradicts the hyperconnectivity of (X, {τn}). Hence
B ∈

⋂
nτn − {∅}. Therefore,

⋂
nτn − {∅} is a filter. �

3.7. Theorem. If the (a)topological space (X, {τn}) is door and hyperconnected and the
topological spaces (X, τn), n ∈ N are door [6], then

⋂
nτn − {∅} is an ultrafilter.

Proof. By Theorem 3.6,
⋂

nτn−{∅} is a filter. If E is a nonempty set with E /∈
⋂

nτn−{∅},
then E /∈ τn0 −{∅} for some n0. Then X −E ∈ τn0 , since (X, τn0) is door. Therefore, E
/∈
⋃

n 6=n0
τn, since (X{τn}) is hyperconnected. And so E /∈ τn for all n 6= n0 ⇒ X−E ∈ τn

for all n 6= n0, since (X, τn), n ∈ N are door. Therefore X − E ∈
⋂

nτn − {∅}. Hence⋂
nτn − {∅} is an ultrafilter. �

3.8. Theorem. If (X, {τn}) is door and hyperconnected, then (X, {τn}) is minimal door
and maximal hyperconnected.

Proof. Let (X, {σn}) be a door space which is weaker than (X, {τn}). Suppose that
G ∈ τm − σm. Then X − G ∈

⋃
n6=mσn ⊂

⋃
n 6=mτn. But this is not possible, since

(X, {τn}) is hyperconnected. Hence σn = τn for all n.
Now let (X, {ρn}) be a hyperconnected space stronger than (X, {τn}). Suppose that

G ∈ ρm − τm. Then X −G ∈
⋃

n 6=mτn ⊂
⋃

n 6=mρn which is not possible, since (X, {ρn})
is hyperconnected. Thus ρn = τn for all n. �

The following example shows that for an (a)topological door space (X, {τn}), the
topological space (X, τn) may not be door even for a single n.

3.9. Example. Suppose R is the set of real numbers. Let τn be the topology on R, gener-
ated by the subbase {∅}∪{E ⊂ (−∞, n) | 0 ∈ E}∪{E ⊂ R | 0 ∈ E and E is not bounded
above}. Then the (a)topological space (X, {τn}) is door but for no n, the topological
space (X, τn) is door.

3.10. Definition. A set E in an (a)topological space (X, {τn}) is said to be (n 6=
n0)dense if

⋂
n6=n0

(τn)clE = X.

3.11. Definition. The space (X, {τn}) is said to be submaximal if for any n0, every
(n 6= n0)dense subset is (τn0)open.

3.12. Theorem. If the space (X, {τn}) is hyperconnected and submaximal, then it is
maximal hyperconnected.

Proof. Let (X, {σn}) be a hyperconnected space stronger than (X, {τn}). Let G be a
nonempty set belonging to σn0 for some n0. Then (σn)clG = X for all n 6= n0. Hence⋂

n 6=n0
(σn)clG = X ⇒

⋂
n 6=n0

(τn)clG = X. Therefore G is (n 6= n0)dense in (X, {τn})
and so G ∈ τn0 . Hence τn0 = σn0 . Thus τn = σn for all n. �

4. Extremally disconnected spaces
4.1. Definition. An (a)topological space (X, {τn}) is said to be extremally disconnected
if for any G ∈ τm and H ∈ τn with G ∩ H = ∅ and m 6= n, there exist k, l ∈ N with
m 6= k, n 6= l and k 6= l such that for some (τk)closed set F and (τl)closed set K, we
have G ⊂ F , H ⊂ K and F ∩K = ∅.

If the sequence {τn} consists of two topologies P and Q only, and if the bitopological
space (X,P,Q) is pairwise extremally disconnected [14], then the space (X, {τn}) is
extremally disconnected.



4.2. Theorem. The (a)topological space (X, {τn}) is extremally disconnected iff for any
(τm)open set G and (τn)closed set C with G ⊂ C and m 6= n, there exist k, l ∈ N with
m 6= k, n 6= l and k 6= l such that for some (τk)closed set F and (τl)open set U , we have
G ⊂ F ⊂ U ⊂ C.

Proof. Suppose the space X is extremally disconnected. Let us consider a (τm)open set
G and a (τn)closed set C with G ⊂ C and m 6= n. Then X − C is a (τn)open set
and G ∩ (X − C) = ∅. Therefore there exist k, l with m 6= k, n 6= l and k 6= l such
that for some (τk)closed set F and (τl)closed set K, we have G ⊂ F , X − C ⊂ K,
F ∩K = ∅ ⇒ G ⊂ F ⊂ U ⊂ C where U = X −K ∈ τl.

To prove the converse, suppose G ∈ τm and H ∈ τn with G ∩ H = ∅ and m 6= n.
Then G ⊂ X − H and X − H is (τn)closed. Therefore there exist k, l with m 6= k,
n 6= l and k 6= l such that for some (τk)closed set F and (τl)open set U , we have
G ⊂ F ⊂ U ⊂ X−H. If K = X−U , then K is (τl)closed, H ⊂ K and F ∩K = ∅. Thus
the space is extremally disconnected. �

4.3. Theorem. The space (X, {τn}) is extremally disconnected if for every m and for
every G ∈ τm, we have (τk)clG ∈ τm for all k 6= m.

Proof. LetG ∈ τm andH ∈ τn withG∩H = ∅ andm 6= n. Then ((τn)clG)∩H = ∅. Since
m 6= n, by the given condition we have (τn)clG ∈ τm. Therefore ((τn)clG)∩ ((τm)clH) =
∅. �

Let T denote the smallest topology on X containing τn for all n.

4.4. Theorem. Let (X, {τn}) be extremally disconnected. Then for any G ∈ τm and
H ∈ τn with m 6= n and G ∩H = ∅, there exists a function f : X → [0, 1] such that

(i) f(G)={0}, f(H) ={1}
(ii) f is (T )continuous.

Proof. Since G ⊂ X − H and C = X − H is (τn)closed, by Theorem 4.2, there exist
k( 1

2
), l( 1

2
) ∈ N with k( 1

2
) 6= m and l( 1

2
) 6= n such that for some (τk( 1

2
))closed set F ( 1

2
)

and (τl( 1
2
))open set U( 1

2
) we have G ⊂ F ( 1

2
) ⊂ U( 1

2
) ⊂ C. Again applying Theorem

4.2 to the pair (G,F ( 1
2
)) and (U( 1

2
), C) there exist k( 1

4
), l( 1

4
), k( 3

4
), l( 3

4
) ∈ N such

that for some (τk( 1
4
))closed set F ( 1

4
), (τk( 3

4
))closed set F ( 3

4
), (τl( 1

4
))open set U( 1

4
) and

(τl( 3
4
))open set U( 3

4
) we have G ⊂ F ( 1

4
) ⊂ U( 1

4
) ⊂ F ( 1

2
) ⊂ U( 1

2
) ⊂ F ( 3

4
) ⊂ U( 3

4
) ⊂ C

and k( 1
4
) 6= m, l( 1

4
) 6= k( 1

2
), k( 3

4
) 6= l( 1

2
), l( 3

4
) 6= n. By repeating the process, we obtain

t ∈ D = { i
2j
| 0 < i < 2j , i, j ∈ N}, a (τk(t))closed set F (t) and a (τl(t))open set U(t)

with k(t), l(t) ∈ N such that if s, t ∈ D with s < t, then F (s) ⊂ U(s) ⊂ F (t) ⊂ U(t)
and k(t) 6= l(s). If we take F (0) = ∅ and U(1) = X, then the above relation is true
when s, t coincide with 0 or 1. For t 6= 0, 1, we have, G ⊂ F (t) ⊂ U(t) ⊂ C. Now we
define the function f : X → [0, 1] by f(x) = sup{t | x /∈ U(t)}. Then f(x) = 0 for
x ∈ G and f(x) = 1 for x ∈ H. It is easy to verify that for a ∈ (0, 1), {x ∈ X | f(x) <
a} =

⋃
t<aU(t) and {x ∈ X | f(x) > a} =

⋃
t>a(X − F (t)). Since U(t) ∈ τl(t) ⊂ T and

X − F (t) ∈ τk(t) ⊂ T , it follows that f is (T )continuous. �
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