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Abstract

In this paper, a Bayesian approach to the problem of constant hazard
with a change point is considered using noninformative priors. We
apply the model to a data set gathered from a group of patients with
breast cancer.
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1. Introduction

The distribution of survival times is usually described or characterized in terms of
three functions:

(1) The survival function,
(2) The probability density function, and
(3) The hazard function.

These three functions are mathematically equivalent - if one of them is given, the other
two can be derived [3,4,5].

Our aim in this study is to consider the constant hazard model with a change point
and use Bayesian analysis to estimate the parameters in this model. We also consider an
application with real data.

Often, researches in the medical area are interested in constant hazard models involv-
ing a single change point. Let T be a random variable representing the time to some
event, the constant hazard model with change point is given by:

(1.1) h(t) =

{
λ t ≤ τ

ρλ t > τ
,
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where λ, ρ, τ > 0. Here λ and ρλ are hazard rates and τ is the change point. The hazard
model h(t) is therefore assumed to be a constant λ until time τ and a constant ρλ after
time τ .

Model (1.1) has been extensively studied in the literature. Matthews and Farewell
[7] considered the model studied in this paper, using data obtained in the treatment of
leukemia patients. They considered the problem of testing the hypothesis τ = 0 based
on the likelihood ratio test statistic and used simulations to find the distribution of the
statistics of this model.

In another paper, Matthews, Farewell and Pyke [9] presented an asymptotic score
statistic processes to test for constant hazard τ = 0 against a change point alternative
τ > 0. Nguyen, Rogers and Walker [10] discussed the estimation of parameters in the
constant hazard model with a change point. In their paper a consistent estimator of the
change point was obtained by examining the properties of the density represented as a
mixture.

Yao [13] considered the problem of estimation of parameters in hazard rate models
with a change-point. Yao [13] proposed a maximum likelihood estimator of the change-
point subject to a natural constraint. Worsley [11] used maximum likelihood methods
to test for a change in a sequence of independent exponential family random variables,
with particular emphasis on the exponential distribution. The exact null and alternative
distributions of the test statistics were found, and the power was compared with a test
based on a linear trend statistic. Exact and approximate confidence regions for the
change-point were based on the values accepted by a level α likelihood ratio test.

Worsley [12] considered the test that the hazard rate of survival or failure-time data
is constant against the alternative of a change in hazard after an unspecified time. The
likelihood ratio was unbounded but the exact null distribution of a restricted likelihood-
ratio test statistic was found.

Loader [6] discussed inference based on the likelihood ratio process for a hazard rate
change point. Loader [6] derived approximate confidence regions for the change point and
joint confidence regions for the change point and size of change. The effect of censorship
was also discussed. The methods were illustrated using Stanford heart transplant data.

In the studies mentioned above the maximum likelihood estimate for the change point
τ is considered. As an alternative to these classical solutions, Achcar and Bolfarine [1]
presented a Bayesian analysis of the model (1.1) assuming τ as either known or unknown.
Achcar and Loibel [2] presented Bayesian inferences for the model (1.1) using different
prior densities.

2. The Probability Density, Survival and Likelihood Functions

The probability density and survival functions with change point for a random variable
T are, respectively

(2.1) f(t) =

{
λ exp(−λt) t ≤ τ

ρλ exp{−λτ − ρλ(t− τ)} t > τ

and

(2.2) S(t) =

{
exp(−λt) t ≤ τ

exp{−λt− ρλ(t− τ)} t > τ

[1,2,6,7,9,13].

Let T1, T2, . . . , Tn be a random sample from (1.1) and T 0
1 , T

0
2 , . . . , T

0
n the true survival

times of n individuals considered as a random sample of size n, and let C1, . . . , Cn
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be the fixed censoring times associated with each individual. The data are given by
Ti = min(T 0

i , Ci), i = 1, 2, . . . , n and ti is the observed survival time of the i th patient.
An indicator variable δi is defined by δi = 1 if Ti = T 0

i (failure) and δi = 0 if Ti ≤ T 0
i

(censoring). Let εi = 1 if Ti ≤ τ and εi = 0 if Ti > τ , i = 1, . . . , n. Then the likelihood
function is

L(λ, ρ, τ) =
n∏

i=1

{
(λe−λti)εi

[
λρ exp(−λτ − ρλ(ti − τ))

]1−εi
}δi

×

×
n∏

i=1

{
(e−λti)εi

[
exp(−λτ − ρλ(ti − τ))

]1−εi
}1−δi

(2.3)

that is,

(2.4) L(λ, ρ, τ) = λd3ρd3−d1(τ) exp{−λW1(τ)− ρλW2(τ)} exp{−λτ(1− ρ)(n− d2(τ)}

where

d1(τ) =

n∑

i=1

δiεi is the number of uncensored observations which satisfy Ti ≤ τ,

d2(τ) =
n∑

i=1

εi is the number of observations which satisfy T1 ≤ τ and

d3 =
n∑

i=1

δi is the number of uncensored observations,

W1(τ) =
n∑

i=1

δiεiti +
n∑

i=1

(1− δi)εiti is the sum of survival times of observations

which satisfy Ti ≤ τ.

Here,

n∑

i=1

δiεiti is the sum of failure times of uncensored observations satisfying Ti ≤ τ,

n∑

i=1

(1− δi)εiti is the sum of censoring times of uncensored observations with Ti ≤ τ.

Also,

W2(τ) =
n∑

i=1

δi(1− εi)ti +
n∑

i=1

(1− δi)(1− εi)ti is the sum of survival times of

observations which satisfy Ti ≤ τ

where

n∑

i=1

δi(1− εi)ti is the sum of failure times of uncensored observations satisfying Ti ≤ τ,

n∑

i=1

(1− δi)(1− εi)ti is the sum of censoring times of censored observations which

satisfy Ti > τ.

[1, 2, 10, 13].
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3. Maximum Likelihood Estimators for λ and ρ

Given τ , Achcar and Bolfarine [1], Loader [6], Nguyen, Rogers and Walker [10] and

Yao [13] found λ̂ and ρ̂ that maximize L(λ, ρ, τ) by deriving the loglikelihood with respect
to λ and ρ. From ∂L/∂λ = 0 and ∂L/∂ρ = 0, they obtained the maximum likelihood
estimators for λ and ρ as follows:

(3.1) λ̂ =
d1(τ)

W1(τ) + τ(n− d2(τ))

and

(3.2) ρ̂ =
(d3 − d1(τ))[W1(τ) + τ(n− d2(τ))]

d1(τ)[W2(τ)− τ(n− d2(τ))]
,

[1,6,10,13].

4. Bayesian Analysis

4.1. A Bayesian Analysis assuming τ and λ known. With τ and λ known, and
assuming that censoring is not present, the likelihood function for ρ is

(4.1) L(ρ) ∝ ρd3−d1(τ) exp{−λρZ(τ)},

where ρ > 0, d3, d1(τ) and d2(τ) are as given in (2.4), and Z(τ) =W2(τ)− (n− d2(τ)).

A noninformative prior density for ρ is ρ−1. Thus, the posterior density for ρ is

(4.2) π(ρ | D) ∝ ρd3−d1(τ)−1 exp{−ρλZ(τ)},

where ρ > 0, Z(τ) is as given in (4.1) and D denotes the data set. The value which
maximizes the posterior density is known as the mode of posterior density, and this
mode corresponds to the estimated value. Thus the mode of the posterior density given
in (4.2) is

(4.3) ρ̂ =
d3 − d1(τ)− 1

λZ(τ)
,

[1].

4.2. A Bayesian Analysis assuming τ known. With τ known, a noninformative
prior density for λ and ρ is given by

π(λ, ρ) ∝ 1/λρ,

where λ, ρ > 0 in the complete data case.

The posterior density for λ and ρ is then

π(λ, ρ | D) ∝ λd3−1ρd3−d1(τ)−1 exp{−λW1(τ)− ρλW2(τ)}·

exp{−λτ(1− ρ)(n− d2(τ))},
(4.4)

from which it follows that the mode of posterior density for ρ is given by

(4.5) ρ̂ =
(d3 − d1(τ)− 1)[W1(τ) + τ(n− d2(τ))]

(d1(τ) + 1)[W2(τ)− τ(n− d2(τ))]
.

From (4.4), it also follows that the mode of posterior density for λ is

(4.6) λ̂ =
(d1(τ)− 1

W1(τ) + τ(n− d2(τ))
,

[1].
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4.3. A Bayesian Analysis assuming τ unknown. Let us assume that τ is unknown
and take discrete values τi = ti, with prior probabilities π0(τi = ti), (i = 1, . . . , n), where
n is the sample size. Also assume that the data is uncensored. The prior density for λ,
ρ and τi is

π(λ, ρ, τi) = π(λ, ρ | τi = ti)π0(τi = ti).

Hence the posterior density for λ, ρ and τi is

π(λ, ρ, τi = ti | D) ∝ λd3−1ρd3−d1(τi)−1π0(τi = ti) exp{−λW1(τi)− ρλW2(τi)}·

exp{−λτi(1− ρ)(n− d2(τi))},
(4.7)

where λ, ρ > 0.

The posterior density for τi is given by

(4.8) π(τi = ti | D) ∝
Γ(d3 − d1(τi))π0(τi = ti)

[W2(τi)− τi(n− d2(τi))]d3−d1(τi)
·

Γ(d1(τi))

[W1(τi)− τi(n− d2(τi))]d1(τi)

where i = 1, 2, . . . , n. The value of t which maximizes this posterior density corresponds
to the estimation of τ [1].

5. Test of Change Point

Consider the likelihood ratio statistic used to test the hypothesis of no change point,
which Matthews and Farewell [7] denoted by τ = 0. Let the loglikelihood statistic be
L(λ1, ρ, τ). The loglikelihood test statistic for the null hypothesis τ = 0 is, therefore,

(5.1) ∆0 = L(λ̂1, ρ̂, τ̂)− L(λ̂, λ̂, 0),

where λ̂1, ρ̂ and τ̂ are the maximum likelihood estimators of λ1, ρ and τ , respectively.

Also λ̂ is the maximum likelihood estimator of the hazard rate in a simple exponential
model. Here, 2∆0 has a χ2 distribution with two degrees of freedom [7].

6. Application: Breast Cancer Data

We apply the model to a data set for a group of patients with breast cancer from
the Oncology Department in Hacettepe hospital, admitted between January 1980 and
September 1991. There are 124 patients. Survival time was calculated from the date
of diagnosis of breast cancer to date of death. Median follow-up is 43.5 (range 6-146)
months. The total number of deaths is 80. The other 44 women being considered as
censored in the analysis. We are interested in the age variable. The mean age is 50.59
±1.10 (range 25-78) years. The response variable is the time to death. Table 1 gives the
survival times of the 124 breast cancer patients.

Table 1. Survival times of the breast cancer patients (in months).

Uncensored observations (80 patients)

7 12 12 13 14 14 17 18 18 19 20 21 22 22 24 24 27 28 30 30

30 36 36 36 36 36 36 37 37 37 41 43 43 47 48 48 48 53 57 57

60 63 63 67 69 72 75 80 81 84 84 84 84 84 84 91 95 96 96 104

106 108 108 108 108 108 108 111 114 120 120 120 120 120 122 122 123 124 126 132

Censored observations (44 patients)

6 7 12 12 13 15 16 17 18 18 20 22 23 24 24 24 24 24 24 24 27 28

29 30 32 36 37 37 42 44 45 60 60 60 60 65 72 72 72 84 87 96 143 146
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The Kaplan-Meier method was used to obtain estimates of the survival functions. The
estimated value of the survival function on a cumulative 5-years survival was found to
be 59.35%.

The Kaplan-Meier method is a method for estimating the survival function developed
by Kaplan and Meier [3, 4, 5]. The Kaplan-Meier estimate is also known as the product-
limit estimate of the survival function [3].

In this study, for the cases of known and unknown τ , the estimations were first obtained
as follows. We have n = 124 and d3 = 80. Considering τ as unknown, the values of the
loglikelihood statistic is given in Table 2.

Table 2. The values of the loglikelihood statistic for τ

Loglikelihood Loglikelihood
τ statistic values τ statistic values

12 -605.0025 63 -470.4756

13 -600.2445 67 -470.0089

14 -596.5686 69 -469.8421

17 -587.5395 72 -468.9179

18 -583.6025 75 -471.0959

19 -576.8237 80 -471.9082

20 -572.7831 81 -476.2543

21 -568.7370 84 -478.6781

22 -564.6804 91 -505.5099

24 -556.5950 95 -507.5332

27 -547.7425 96 -512.2455

28 -543.7958 104 -515.7777

30 -538.9656 106 -519.3068

36 -524.6235 108 -522.7629

37 -505.8578 111 -556.9126

41 -494.0894 114 -560.4926

43 -489.7784 120 -559.8295

47 -481.2809 122 -591.3748

48 -477.7125 123 -603.4668

53 -473.6280 124 -609.1618

57 -471.7205 126 -614.5192

60 -471.4931 132 -619.2683

In Table 2, the value of τ which maximizes the loglikelihood is 72. Then, assuming that
τ is unknown, the mode of the loglikelihood for τ is τ̂ = 72. Since τ̂ = 72 corresponds to
age 44, this shows that the risk of breast cancer above the age of 44 is high.

The data has been analyzed to see if a change point is present. For this purpose
the test statistic given in equation (5.1), was used. We tested the null hypothesis of no
change, H0 : τ = 0, against the alternative hypothesis of a change, H1 : τ = 72. We used
L(λ, λ, 0) = λn exp(−λ

∑
ti) to obtain the maximum likelihood estimator of the hazard
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rate in a simple exponential model. This gave λ̂ = 0.0176915 for the maximum likelihood

estimator of λ. We thus obtained L(λ̂, λ̂, 0) = −624.298925.

Using equations (3.1) and (3.2) we obtained λ̂1 = 0.00787953 and ρ̂ = 3.4221024

for the maximum likelihood estimators of λ1 and ρ, respectively. Then, L(λ̂1, ρ̂, τ̂) =
−424.420026 was obtained from equation (2.4), giving ∆0 = 199.878899. The null hy-
pothesis H0 was rejected because 2∆0 > χ2

(2). That is, it can be said that the data has
a change point with a 0.95 confidence level.

Assuming τ is known (τ = 72), we have d1(τ) = 45, d2(τ) = 81, W1(τ) = 2615 and

W2(τ) = 4394. Then, λ̂ = 0.00787953 and ρ̂ = 3.4221024 are found from equations (3.1)
and (3.2). That is, the hazard rate is 0.00787953 until survival time 72 (age 44) and
0.0269646 after survival time 72 (age 44), with respect to the model (1.1).

Considering τ = 72 and λ = 0.00787953 to be known and using equation (4.3), the
estimation of the mode of posterior density for ρ is ρ̂ = 0.991721. That is, assuming the
hazard rate is 0.00787953 until survival time 72, this rate is 0.0078143 after survival time
72 with respect to the model (1.1) using Bayesian analysis.

Assuming only that τ = 72 is known, the mode of posterior density for ρ (from (4.5))

is ρ̂ = 3.25206. The mode of posterior density for λ (from (4.6)) is λ̂ = 0.0077. Then,
with respect to the model (1.1), the hazard rate is 0.0077 until survival time 72 (age 44)
and 0.025041 after survival time 72.

Finally, the ages of the patients were then separated into two groups according to
the change point at 72 months. The Kaplan-Meier method was used to find estimates
of the survival functions of each group. For the first group, the estimation value of the
survival functions on a cumulative 5-year survival was found to be 77.09%. The other
was 48.13%.

Figure 1. Kaplan-Meier estimates of the survival functions of the two
groups defined by the estimated change point.
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The significance of the observed difference between the groups was calculated by the
log-rank test and its significance value found to be p = 0.0082.

The Kaplan-Meier estimates of the survival functions and hazard functions of the
groups defined by the estimated change point are presented in Figure 1 and Figure 2,
respectively.

Figure 2. Hazard functions of the two groups defined by the estimated
change point.
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7. Conclusion

In this paper, the constant hazard model with change point, the probability den-
sity function, survival function and likelihood function are considered. The use of the
Bayesian approach and the likelihood ratio to test the hypothesis of a change point are
considered. Also a Bayesian approach to the parameters and the use of the likelihood
ratio test to examine the presence of a change point in the model are analyzed.

The likelihood ratio test, when applied to the data for 124 breast cancer patients
in the Oncology Department of Hacettepe University Hospital, shows the presence of a
change point in the data. Also, we obtained that the risk of breast cancer increases over
the age of 44.
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