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Canan Hamurkaroğlu∗, Mehmet Mert∗ and Yasemin Saykan∗

Received 22 : 01 : 2003 : Accepted 23 : 02 : 2004

Abstract

This study concerns the use of r and Q control charts based on data
depth to control process involving multivariate quality measurements.
In this paper, firstly the concept of data depth is introduced in order
to construct quality control chart structures, the characteristics of data
depth are given and statistics based on this concept are obtained. Fol-
lowing this, the structures and interpretations of mainly nonparametric
r and Q control charts are explained for the Mahalanobis depth measure
used in statistical quality control by means of an example.

Keywords: Control Charts, r Chart, Q Chart, Multivariate statistical process control,
Depth function.

1. Introduction

In statistical process control, control charts are very important tools for monitoring
and/or controlling whether a manufacturing process is statistically in control or not.

Shewart’s (X,X) and CUSUM charts are widely used for this purpose. In addition
to their efficiency, these charts are preferred because they are simple to construct and
interpret. However, as these charts are based on an assumption of normality of the
quality variable and are used when there is only one quality variable, they are not always
appropriate. In many cases, two or more variables may need to be monitored, and
following these two (or more) quality variables separately may be misleading. The Type I
error α occurring when the variables are monitored separately differs from the Type I error
α occurring when the variables are monitored simultaneously. Therefore, multivariate
control charts are required when there is more than one quality variable. Monitoring the
process of related variables is usually called a multivariate quality control problem.

Studies of multivariate quality control were first carried out by Hotelling in 1947;
later, Hicks, Jackson, Crosier, Hawkins, Lowry, Montgomery, Pignatiello, Runger, Tracy,
Young, Mason, Wadsworth, Alt and others also carried out studies on this subject. The
work of these authors is given in [5], together with detailed references. The multivariate
control charts considered by these authors are also based on the normality assumption

∗Hacettepe University, Faculty of Science, Department of Statistics, Beytepe, Ankara, Turkey,
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for the quality variable. Widely used multivariate control charts are χ2 and Hotelling’s
T 2 charts.

Liu defined the new, mainly nonparametric, control charts (r, Q and S) by using a
depth data concept in order to monitor the process of multivariate quality measurements
[4]. These charts, like (X,X) and CUSUM charts, are important as they bring out the
shift in location and the increase in scale, in addition to having a two dimensional graphic
representation which makes them easy to interpret. Unlike χ2 and Hotelling’s T 2, the
normality assumption on the quality variable is not required, which is another advantage
of these charts. So, these charts serve as an important measure in quality assurance [5].

In this study, r and Q control charts based on the Mahalanobis depth for elliptical
distributions are given. Firstly, depth function, its properties and statistics obtained from
depth function to construct control charts based on Mahalanobis depth are explained.

2. Data Depth

Statistical depth functions are widely used in nonparametric derivations for multi-
variate data. A depth function suitable for a distribution F in Rp, denoted by D(F ;x),
brings out the non-central ranking of X in Rp with respect to F . A higher value of
D(F ;x) for X in Rp means that X based on the distribution F is deeper (more central),
and vice versa. That is, a smaller value of D(F ;x) for X in Rp shows that the sample
point is further away from the center with respect to F . Depth functions have some
important characteristics, which are given as follows:

Affine Invariance: Let z denote the family of distributions in Rp. If X is a random
vector having distribution function F in Rp, then D(FAx+b;Ax+ b) = D(F ;x).

Here, A is a non-singular p× p dimensional matrix and b is p-dimensional vector.

Maximality at the Center: When a F∈ z is symmetric around any point θ0 (that is, if
the distribution function of the random variable X is F , then (X−θ0) and (θ0−X) have
the same distribution), then

D(F ; θ0) = maxx∈Rp D(F ;x).

Monotonicity Relative to the Deepest Point: When F ∈ z is symmetric around a point
θ0, in other words θ0 is the deepest point of the distribution F , then D(F ;x) has the
monotonicity characteristic if D(F ;x) ≤ D(F ; θ0 + α(x− θ0)).

Here α ∈ [0, 1].

Vanishing at Infinity : For all F ∈ z, if ‖x‖ → ∞ then D(F ;x)→ 0 [6].

Many data depth concepts have been given having all of the above properties. Tukey’s
depth, Majority depth, Mahalanobis depth and simplicial depth are the most popular of
these.

In this study, as the control charts based on Mahalanobis depth are to be used, only
Mahalanobis depth is given in detail here.

Liu defined Mahalanobis depth as follows [4]:

Let X denote a random vector having distribution function F in Rp. Then the Maha-
lanobis measure of depth for any point x (a p× 1-dimensional vector) in Rp with respect
to the distribution F is defined as follows:

(1) MD(F ;x) =
1

[1 + (x− µF )́Σ−1(x− µF )]

In (1), µF and ΣF are the mean vector and covariance matrix of the distribution function
F , respectively. Hence, MD(F ;x) is a measure showing how ’deep’ or ’central’ x is with
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respect to the distribution F . When F is unknown and a sample taken from distribution
F is given, then the definition of Mahalanobis depth is:

(2) MD(Fm;x) =
1

[

1 + (x−X )́S−1(x−X)
]

In (2), X is a (p× 1) sample mean vector and S a (p× p) sample covariance matrix. The
depth function MD(F ; · ) is a depth function satisfying all of the above properties [3, 4].

3. Some Statistics Based on Data Depth used in Constructing

Control Charts

Let F and G be the distribution functions of two independent p-dimensional popula-
tions and X = {X1, . . . , Xm} be a sample taken from a population having distribution
F . In quality control, F can be thought of as a ’good population,’ in another words
considered as measurements of products produced by an in-control process.

Let Y = {Y1, . . . , Yn} be a random sample taken from a population having distribution
G (that is, new measurements taken from the process). In order to test whether the
process is in control, or if there is any deterioration in the quality of the product by using
the observations Yi’s, the distributions F and G need to be compared. If the Yi’s do not
approach to the distribution F , this means that the quality of product has deteriorated.
The hypotheses to test this can be given as follows:

Ho : F = G vs.

HA : There is a location shift and / or a scale increase from F to G(3)

To test this hypothesis, the statistic R(F ;Y ) which characterises the distance between
F and G with respect to data depth when X ∼ F and Y ∼ G for a Yi in R

p with respect
to the given data depth D( · ; · ) is defined as follows [2, 4]:

(4) R(F ;Yi) = PF {X : D(F ;X) ≤ D(F ;Yi)/X ∼ F}

When D(F ; · ) has affine- invariance, then R(F ;Y ) also has affine-invariance:

R(F ;Y ) = R(AY + b;FAY+b).

Under the hypothesis F = G, if the distribution of D(F ;Y ) is continuous, then the
distribution of R(F ;Y ) in (4) is uniformly distributed in [0, 1]:

(5) R(F ;Y ) ∼ U(0, 1).

The mean of the ratios R(F ;Y ) for all y generated from population G, denoted by
Q(F,G), is found as follows:

Q(F,G) = P {D(F ;X) ≤ D(F ;Y )/X ∼ F, Y ∼ G}(6)

( = EG[R(F ;Y )])

The parameter Q(F,G) given in (6) is called the ’quality index’ and takes values between
0 and 1 [2]. The quality index Q(F,G) shows whether or not there is a difference in
location and/or dispersion by comparing G and F .

When D(F ; · ) has affine-invariance, then Q(F,G) also has affine-invariance:

(7) Q(F,G) = Q(FAX+b;GAY+b).

In (7), A is a (p× p) non-singular matrix and b is a (p× 1) vector.

Let us denote by ell(h; θ,Σ) an elliptical distribution with parameters θ and Σ, where
h( . ) is a function from R to R and Σ is positive definite. When there is only a location
shift but no change in dispersion, the function Q(F ;G) decreases as θ1 moves away from
θ0 along any line when F ∼ ell(h; θ0,Σ0) and G ∼ ell(h; θ1,Σ0).
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When the locations are the same but there is a difference in dispersion, for F ∼

ell(h; θ0,Σ0)D(F ; · ) and G ∼ ell(h; θ0,Σ1), R(F ;Y )
ss

≤ R(F ;X) and Q(F ;G) ≤ 1
2
(here

“ss‘” denotes stochastically smaller). When there are both location shift and scale change,
then for F ∼ ell(h; θ0,Σ0) and G ∼ ell(h; θ1,Σ1), while the parameter θ1 moves away
from θ0 along any line, the function Q(F ;G) decreases uniformly [2].

The statistics obtained from (4) and (6) will be used while constructing the structure
of the control charts, and their limit distributions are given as follows:

a. Assuming the distribution F is known (meaning that F is either regarded as the
collection of one (or several) acceptable lot(s) or an elliptical distribution with µ and Σ
obtained from the measurements of a large acceptable batch).

When Y = {Y1, . . . , Yn} is a random sample taken from the distribution, Q(F ;G) is
the mean of the random variables R(F ;Y ):

(8) Q(F,Gn) =
1

n

n
∑

i=1

R(F ;Yi).

If D(F;X) has a continuous distribution, under hypothesis H0 the distribution of Q(F,Gn)

is the same as the distribution of
∑n

i=1
Ui

n
, when U1, U2, . . . , Un are independent and

uniformly distributed random variables in (0, 1).

As a result of the Central Limit Theorem,

(9) For n→∞ ,

[

Q(F,Gn)−
1

2

]

→k N(0,
1

12n
).

In (9), “k” means convergence in law.

b. If X = {X1, . . . , Xm} is a random sample taken from the unknown distribution
F and Y = {Y1, . . . , Yn} a random sample taken from the distribution G, then the
estimation of Q(F ;G) is:

(10) Q(Fm, Gn) =
1

n

n
∑

i=1

R(Fm;Yi).

In (10), R(Fm;Yi) is the ratio of the Xj ’s satisfying D(Fm;Xj) ≤ D(Fm;Yi) when the
distribution F is unknown:

(11) R(Fm;Yi) = # {D(Fm;Xj) ≤ D(Fm;Yi), j = 1, . . . ,m} /m.

Here the values of D(Fm; · ) are empirical depth values calculated with respect to Fm,
and if the distribution F is continuous, D(Fm; · ) converges to D(F ; · ) uniformly as
m→∞. Therefore:

(12) R(Fm;Yi)→
k U [0, 1] as m→∞, for all X.

The uniform convergence of D(Fm; · ) obtained by using Mahalanobis depth is valid when
F is an elliptical distribution and the second absolute moment of the distribution F exists
(

EF ‖X‖
2 <∞

)

.

As a result of this, when F is an elliptical distribution and
(

EF ‖X‖
2 <∞

)

, then
MD(Fm;x) converges to MD(F ;x) uniformly as m→∞ [2, 4].

In the same way, when D(F ;Y ) has continuous distribution, then it has also been
shown that Q(Fm, Gn) in (10) converges to Q(F ;G) as min(m,n)→∞.

Under the condition that (11) holds, the limit distribution of Q(Fm, Gn) is:

(13)

[

Q(Fm, Gn)−
1

2

]

→k N

(

0,

[

1

m
+
1

n

]/

12

)

, as min(m,n)→∞.
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In (13), if Q( . , . ) is used for the Mahalanobis depth then this equation is valid when F

is continuous and the forth absolute moment exists
(

EF ‖X‖
4 <∞

)

[2, 4].

4. r and Q Control Charts based on the Mahalanobis Depth

A r control chart is alike to a univariate X chart. An X control chart reveals whether
there is a deviation from a pre-determined process mean, or a trend or a non-random
pattern of an observation set. However, although this chart is very simple and efficient
when used to observe a univariate process, it cannot be easily generalized to a multivariate
process. In studies of the bivariate normal distribution, the control limits are given as
elliptical limits named as the control ellipse [1]. However, it cannot be said that they are
efficient for a multivariate data set as they require a normality assumption, Type I Error
α changes and the ranking of sample points with respect to time losses. An r control
chart with LCL = α corresponds to an α-level test of the following hypothesis:

H0 : F = G, vs.

HA : there is a location shift and/or a scale increase from F to G.

In order to construct a r control chart, the values of R(F ;Yi) are obtained using (4)
and (11) when the distribution F is known, or the values of R(Fm;Yi), i = 1, . . . , n
are calculated for X1, . . . , Xm only, when the distribution F is unknown. When the
distribution F is elliptical we denote by RMD(F, Yi) the value of R(F, Yi) obtained by
using the Mahalanobis depth given in (1) and (2). When the distribution F is known,
RMD(F, Yi) is given by:

(14) RMD(F ;Yi) = PF {X :MD(F ;X) ≤MD(F ;Y )/X ∼ F} ,

and when the distribution F is unknown, RMD(Fm;Yi) is given by:

(15) RMD(Fm;Yi) = # {MD(Fm;Xj) ≤MD(Fm;Yi), j = 1, . . . ,m} /m.

It is known from [4] that RMD(F ;Yi) has all the properties of R(F, Yi).

A r control chart is constructed by plotting the R(F, Yi)’s or the R(Fm, Yi)’s for sample
points i = 1, . . . , n.

The center line (CL) and the lower control limit (LCL) of the chart are:

CL = 0.5,

LCL = α.(16)

Equation (16) can be obtained from (4) and (12). As seen from these equations, the
expected values of R(F, Yi) and R(Fm, Yi) are 0.5. Therefore, in a r control chart it
is suitable to take CL as 0.5. Also, the values of the R(F, Yi) or the R(Fm, Yi) being
higher than 0.5 indicates a decrease in scale or an omittable shift in location. This is
thought of as a gain not a loss in the quality concept of statistical process control. The
process is not said to be out-of-control. Therefore, in a r control chart there exists only
a lower control limit LCL. However, although a UCL does not exist, CL plays the role
of a reference point enabling the observation of a possible trend or non-random pattern.
In a r control chart, when the values of R(F, Yi) or R(Fm, Yi) are in the region of α,
this means that process is statistically out-of-control. That is, there is signal of possible
quality deterioration or an out-of-control process. R(Fm, Yi) given in (11) shows how far
away from the center Y is with respect to the data set Xj . If the values of the R(Fm, Yi)
are small the ratio of the Xj ’s further from the center than Y is also small. So, Y is not
fitted centrally to a good data set. Therefore, under the assumption of Y ∼ G, a small
value of the values R(Fm, Yi) shows a possible deviation of G from F . As R(Fm, Yi) is
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defined with respect to data depth, a possible deviation means a shift in location and/or
an increase in scale [4].

The aim of a Q control chart is similar to that of a univariate X control chart. The
hypotheses for a Q control chart are:

H0 : F = G,Q(F,G) = 1
2

HA : Q(F,G) < 1
2

The acceptance of the hypothesis HA : Q(F,G) <
1
2
means that on average more

than 50% of the population F are deeper (more central) than any of the observations
Y generated from the distribution G. This shows a possible shift in location and/or an
increase in scale from F to G. If Q(F,G) > 1

2
, then G has a very small dispersion.

As a multivariate Q chart is similar to a univariate X control chart, in order to
construct Q control chart the mean of R(F, Yi) or of R(Fm,Yi) for k subgroups, each
of which have equal size, needs to be calculated. Assuming that the size of each subset
is t, the Q control chart for k × t = n, is constructed using (8) and (10) by plotting
{

Q(F,G1
t ), Q(F,G

2
t ), . . .

}

when F is known and
{

Q(Fm, G
1
t ), Q(Fm, G

2
t ) . . .

}

when F is

unknown. Here Gkt denotes the k
th (k = 1, 2, . . .) subgroup of the Yi’s with size t.

The values of the CL and the LCL of a Q chart depend on the choice of the size of the
subgroup. When t is large, the CL and LCL of the Q control chart for the

{

Q(F,Gkt )
}

’s
are obtained from (9):

(17) CL = 0.5 and LCL =

{

.5− zα

√

1

12t

}

,

and for the
{

Q(Fm, G
k
t )
}

’s they are obtained from (13):

(18) CL = 0.5 and LCL =

{

.5− zα

√

1

12t

[(

1

k
+
1

t

)]

}

.

This approach is valid until t=5. In applications, t can be taken as 3 or 4. In this case,
the parameters for the Q chart are given as follows [4]:

(19) CL = 0.5 and LCL =
(t!α)

1

t

t
.

The means of the ratios of Y ’s more out-of-centre thanX with respect to the Mahalanobis
depth given by (14) and (15) are respectively [4]:

(20) QMD(F,G
k
t ) =

1

t

t
∑

i=1

RMD(F ;Yi), k = 1, 2, . . .

and

(21) QMD(Fm, G
k
t ) =

1

t

t
∑

i=1

RMD(Fm;Yi), k = 1, 2, . . .

Hence, r control charts are constructed with respect to Mahalanobis depth by using
(14) and (15) and Q control chart by using (20) and (21). It is obvious that there is no
change in the central line and the control limits for these control charts obtained using
Mahalanobis depht.
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5. An Application

In this study, r and Q control charts based on Mahalanobis depth are obtained and
interpreted for a bivariate data set by taking into account the application in the study
of Liu [4]. Firstly, a random sample of size 540 is generated from the distribution F ∼
N [( 00 ) , (

1 0
0 1 )] using the MINITAB software. And then, a sample of size 40 is generated

from the distribution G ∼ N [( 22 ) , (
4 0
0 4 )]. Although the normality assumption is not

required for the construction of these charts, a normal distribution is chosen to make the
evaluation of the outcome easier.

The last 40 of the 540 sample points generated from distribution F are considered
as if they were generated from distribution G. So, in the charts constructed 40 sample
points generated from distribution F are expected to be in-control and 40 sample points
generated from distribution G are expected to reveal a shift in location and/or a change
in dispersion.

For every Xi, (i = 1, 2, . . . , 500) and Yi, (i = 1, 2, . . . , 80), the Mahalanobis measure
of depth is calculated using the EXCELL program. For Yi, (i = 1, 2, ..., 80), the values of
MD(Fm;Xi) and RMD(Fm;Xi) are given in Appendix 1. Using (16), a r control chart
is constructed using the 80 sample points, and are given in Figure 1. The value of LCL
is equal to 0.05. From Figure 1, it can be seen that the r control chart revails a shift in
the distribution mean and an increase in the scale as the last 40 sample points are out
of LCL.

A Q control chart is constructed for t = 4 and t = 10. The values of QMD(Fm, Gt)
obtained using (21) for t = 4 and for t = 10 are given in Appendix 2a and Appendix
2b, respectively. Figure 2 and Figure 3 show the Q control charts constructed for these
sample points. From Figure 2, it is seen that 10 of the last 40 sample points are beyond
the lower control limit for t = 4, and similarly it is seen that the last 4 sample points are
out-of-control for t = 10.

Figure 1. r control chart (n = 80)
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Figure 2. Q control chart (t = 4, k = 20)
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Figure 3. Q control chart (t = 10, k = 8)
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6. Concluding Remarks

r and Q control charts, mainly nonparametric, are constructed using the data depth
concept and are used for monitoring the process of multivariate quality measurements,
and can be interpreted just as easily as the well-known univariate X, X and CUSUM
charts. In addition they detect simultaneously the location shift and scale increase of the
process [4]. Unlike χ2 and Hotelling’s T 2 charts, one of the advantages of these charts is
that a normality assumption is not required.

It might be thought that r and Q control charts constructed using the Mahalanobis
depth are similar to a Hotelling T 2 chart, because both of them represent quadratic
distance of a point from its mean. However, while constructing r and Q control charts,
the Mahalanobis depth serves only as a tool to obtain the ranks of observations. The
charts are constructed with respect to the ranks of Mahalanobis depths, not with respect
to Mahalanobis depth itself. Also, to decide control limits in Hotelling’s T 2, the sample
distribution of Hotelling T 2 statistics is needed. For r and Q control charts based on
Mahalanobis depth, this is not required as the statistics are converted to ranks. There-
fore, the plotting of charts based on Mahalanobis depth is different from that based
on Hotelling’s T 2 and for an elliptical distributions r and Q control charts based on
Mahalanobis depth can be said to be more efficient
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7. Appendix 1

The values of MD(Fm;Yi) and RMD(Fm;Yi) for the last 40 sample points
generated from distribution F and for the 40 sample points generated

from distribution G

Yi MD(Fm;Yi) RMD(Fm;Yi) Yi MD(Fm;Yi) RMD(Fm;Yi)

1 0,6265 0,5080 41 0,0822 0,0000

2 0,6945 0,6140 42 0,1292 0,0020

3 0,5649 0,4220 43 0,1025 0,0000

4 0,1556 0,0020 44 0,0660 0,0000

5 0,5801 0,4360 45 0,2684 0,0620

6 0,4383 0,2740 46 0,2885 0,0840

7 0,8158 0,7660 47 0,1213 0,0020

8 0,7316 0,6500 48 0,0506 0,0000

9 0,6500 0,5460 49 0,0671 0,0000

10 0,2844 0,0840 50 0,0172 0,0000

11 0,3439 0,1440 51 0,0828 0,0000

12 0,2527 0,0480 52 0,2007 0,0160

13 0,9355 0,9220 53 0,1406 0,0020

14 0,4718 0,3200 54 0,0106 0,0000

15 0,2701 0,0620 55 0,0396 0,0000

16 0,5790 0,4360 56 0,1729 0,0040

17 0,9088 0,8860 57 0,0557 0,0000

18 0,9331 0,9180 58 0,0404 0,0000

19 0,4874 0,3360 59 0,2460 0,0400

20 0,5430 0,4020 60 0,0598 0,0000

21 0,5530 0,4080 61 0,0970 0,0000

22 0,6695 0,5840 62 0,1549 0,0020

23 0,2982 0,0860 63 0,2841 0,0840

24 0,6426 0,5320 64 0,7861 0,7120

25 0,2766 0,0760 65 0,0255 0,0000

26 0,6797 0,5920 66 0,2930 0,0840

27 0,8883 0,8620 67 0,0250 0,0000

28 0,6291 0,5120 68 0,1058 0,0020

29 0,8109 0,7600 69 0,0791 0,0000

30 0,8326 0,7920 70 0,0479 0,0000

31 0,3610 0,1720 71 0,0860 0,0000

32 0,3766 0,1880 72 0,0996 0,0000

33 0,4111 0,2400 73 0,0762 0,0000

34 0,7803 0,7080 74 0,0559 0,0000

35 0,8633 0,8360 75 0,0845 0,0000

36 0,7307 0,6440 76 0,1920 0,0120

37 0,8883 0,8620 77 0,0325 0,0000

38 0,2242 0,0300 78 0,0541 0,0000

39 0,6697 0,5840 79 0,0526 0,0000

40 0,4763 0,3280 80 0,0386 0,0000
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8. Appendix 2

a. The values of QMD(Fm, Gt) for t = 4

Subgroups QMD(Fm, Gt)

(k) for t = 4

1 0,3865

2 0,5315

3 0,2055

4 0,4350

5 0,6355

6 0,4025

7 0,5105

8 0,4780

9 0,6070

10 0,4510

11 0,0005

12 0,0370

13 0,0040

14 0,0015

15 0,0100

16 0,1995

17 0,0215

18 0,0000

19 0,0030

20 0,0000

b. The values of QMD(Fm, Gt) for t = 10

Subgroups QMD(Fm, Gt)

(k) for t = 10

1 0,4302

2 0,4474

3 0,5204

4 0,4592

5 0,0150

6 0,0062

7 0,0884

8 0,0012


