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Abstract

This paper compares two methods involving the uniform association
model and the quasi-independence model. These models can be de-
scribed in terms of the association parameters for the analysis of trian-
gular contingency tables having ordered categories. A simulation study
based on 30,000 random triangular tables was performed for this com-
parison. Proportions of the rejected and accepted hypothesis under
these models were obtained. From the results of the simulation study,
the behaviour of the association parameters was discussed with respect
to their coefficient of variations. The homogeneity of the coefficients of
variance was also tested.

Keywords: Triangular contingency tables, Uniform association model, Quasi-inde-
pendence model.

1. Introduction

Triangular contingency tables are a special class of incomplete contingency table which
contain structural zeros in one or more cells above or below their main diagonals.

Triangular contingency tables were first analyzed in [7] by partitioning the table into a
set of rectangular sub-tables, each of which can be analyzed in an elementary way. Bishop
and Fienberg [4] illustrated this kind of table using the classical example of disability of
stroke patients.

Altham [2], Mantel [11] and Bishop et.al. [5] also discussed the quasi-independence
model. Goodman [10] introduced various tests of the quasi-independence model against
an alternative hypothesis of positive or negative quasi-dependence. We consider R × R

tables, where the row and the column categories are ordinal, numbered from 1 to R, and
denote the probability that an observation falls in the ith row and jth column of the
table.

Sarkar [12] defined four types of triangular contingency table using the following con-
ditions: An upper-right (left) triangular (URT (ULT) ) table is described by the condition
that πij = 0 for i > j (for i+ j > R+1), and a lower-left (right) triangular (LLT (LRT) )
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table by the condition πij = 0 for i < j (for i + j < R + 1). Each type can be trans-
formed into the other by interchanging the row and column variables and/or reversing
the category ordering. In this paper we make use of URT tables.

Due to the incompleteness of these tables, independence between the row and column
variables is tested by the quasi-independence(QI) model first proposed in [7].

The QI model in a URT table is given as

πij = αiβj (i ≤ j)(1)

= 0 (i > j)

where αi and βj are positive constants for i = 1, . . . , R and j = 1, . . . , R.

For testing the QI model, Goodman [7], Bishop and Fienberg [4] used the usual chi-
squared tests based on the Pearson and log-likelihood ratio statistics. On the other hand,
Sarkar [12], considered testing the QI model in terms of ordinal associations based on
concordant and discordant pairs of observations given by

Cπ = 2
∑

i<k

∑

j<l

πij πkl, Dπ = 2
∑

i>k

∑

j>l

πij πkl.

The presence of the QI model can be described by ηπ = 0, where

ηπ = Cπ −Dπ − Cπ∗ +Dπ∗

= 2
∑

i<k≤

∑

j<l

(πijπkl − πilπkj).(2)

Hence the QI model can be interpreted by testing the null hypothesis H0 : ηπ = 0 against
the positive/negative likelihood ratio dependence HA : ηπ > 0 (ηπ < 0).

An appropriate asymptotic test for testing H0 against HA is provided by a right-tail

test based on z =

√
nηπ̂

σ̂π̂
, whose asymptotic null distribution is N(0, 1), where σ̂π̂ is the

maximum likelihood estimate of σ2
π under H0 is true [12].

For the analysis of a two-way cross classification table having ordered categories,
Goodman[8] considered various kinds of association model. Suppose that both column
and row variables of a two-dimensional table are ordinal, with row variable denoted by
X and column variable denoted by Y . We assume that scores {ui} and {vj} are assigned
to the rows and the columns, where u1 < u2 < · · · < uR, v1 < v2 < · · · < vR. The
arithmetic means will be denoted by u and v, respectively.

A simple loglinear model that uses the ordinal information, but which has only one
more parameter than the usual independence model is given by

(3) logmij = µ+ λ
X
i + λ

Y
j + β

XY (ui − u) (vj − v)

We will refer to this model as the linear association model. The parameter β in model
(3) that describes the association between X and Y can be interpreted as the common
value of the local log odds ratio. The independence model is the special case βXY = 0.
Goodman [8] suggested that model for the special case {ui = i}, {vj = j}, in which the
local odds ratio θij for adjacent rows i and i + 1, and adjacent columns j and j + 1,
is uniformly exp(β). He referred to that special case as the uniform association (UA)
model. A classic triangular table discussed by Bishop and Fienberg[4] given in Table 1
has been analyzed by several authors. In this table, the initial and final disability states
of 121 stroke patients are graded on a five point scale A–E of increasing severity. None
of the patients whose condition was worse than at admission were discharged.
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Table 1. Initial and final ratings on disability of 121 stroke patients

Final

Initial E D C B A

E 8 15 12 23 11

D - 1 4 10 9

C - - 4 4 6

B - - - 5 4

A - - - - 5

On analysing the data, the LR statistic is found to be 9.60 with 6 d.f. for the QI model.
This value is significant at the level of 5%. For the uniform association model with integer
scores, the Pearson statistic is 5.7438 based on 5 d.f. which is significant at the 1% level,
and the maximum likelihood estimate of β is obtained as 0.2849 with estimated standard

error of 0.1528. Here exp(β̂) = 1.329 can be interpreted as the local odds ratio. When
the method proposed in [12] is used, ηπ̂ is found to be 0.0766 with estimated standard
error 0.0345, and the z statistic is obtained as 2.2179. This value rejects H0 : ηπ = 0
against HA : ηπ > 0 at the level of 5%. This means that positive dependence occurs for
the data.

2. Simulation Study

Although various methods have been discussed for analysing triangular tables, choos-
ing the proper method is still of interest.

The method for triangular contingency tables should take into account the ordinal
nature of the table. We perform a simulation study to compare the UA and QI meth-
ods, through association. For generating the random tables, we have used the bivariate
normal distribution approach [9]. Samples drawn from a bivariate normal distribution
with known correlation coefficient were transformed into contingency tables by making
equal-interval frequency tables. After data discretization, simulation parameters were
set as: sample size n = 100, 250, 500, 1000, correlation coefficients ρ = 0.0; 0.2; 0.4 and
dimensions R = 4, 5, 6, 7, and 8.

To generate non correlated data, correlation coefficients were taken to be small. At
the beginning of the simulation study, no statistically significant difference was found
between ρ = 0.0 and ρ = 0.2; ρ = 0.3 and ρ = 0.4. Hence, ρ was taken to be 0.0, 0.2 and
0.4. After 500 replications in each combination, 30,000 URT tables were generated [1].
The UA and QI models were applied to these tables and the proportion of rejected to
accepted hypothesis were found for each of the 500 replications. These are shown under
the QI and UA models in Table 2 and Table 3.

The maximum likelihood estimates of β and ηπ are summarized, together with their
standard errors for each sample, in Table 4. Correlation coefficients between the two
parameter estimates are presented in Table 5.

The Coefficient of Variation (CV) for the parameter estimates were also obtained to
see the variation. The homogeneity of two coefficients of variation were tested by the
likelihood ratio test [3,6] as shown in Table 6. The mean squared errors of both estimates
are also given in Table 7. The UA model was assessed using the SAS statistical package
release 6.12, using the GENMOD procedure to correct the degrees of freedom with respect
to the cells containing structural zeros. Each row denotes the table combinations with
respect to the sample size, correlation coefficient and the dimension.
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Table 2. Proportions of accepted Table 3. Proportions of accepted

hypotheses under the QI model hypotheses under the UA model

n ρ R % n ρ R %

100 0.0 4 79 500 0.0 4 24

100 0.0 5 74 500 0.0 5 20

100 0.0 6 79 500 0.0 6 23

100 0.0 7 81 500 0.0 7 29

100 0.0 8 87 500 0.0 8 30

100 0.2 4 77 500 0.2 4 25

100 0.2 5 76 500 0.2 5 18

100 0.2 6 82 500 0.2 6 22

100 0.2 7 83 500 0.2 7 22

100 0.2 8 91 500 0.2 8 34

100 0.4 4 79 500 0.4 4 22

100 0.4 5 82 500 0.4 5 16

100 0.4 6 82 500 0.4 6 19

100 0.4 7 81 500 0.4 7 30

100 0.4 8 91 500 0.4 8 52

250 0.0 4 53 1000 0.0 4 3

250 0.0 5 50 1000 0.0 5 2

250 0.0 6 58 1000 0.0 6 1

250 0.0 7 63 1000 0.0 7 1

250 0.0 8 70 1000 0.0 8 2

250 0.2 4 51 1000 0.2 4 3

250 0.2 5 53 1000 0.2 5 2

250 0.2 6 58 1000 0.2 6 1

250 0.2 7 60 1000 0.2 7 1

250 0.2 8 71 1000 0.2 8 2

250 0.4 4 52 1000 0.4 4 2

250 0.4 5 51 1000 0.4 5 1

250 0.4 6 56 1000 0.4 6 1

250 0.4 7 64 1000 0.4 7 1

250 0.4 8 73 1000 0.4 8 2

n ρ R % n ρ R %

100 0.0 4 92 500 0.0 4 90

100 0.0 5 89 500 0.0 5 81

100 0.0 6 86 500 0.0 6 82

100 0.0 7 90 500 0.0 7 73

100 0.0 8 90 500 0.0 8 54

100 0.2 4 94 500 0.2 4 92

100 0.2 5 88 500 0.2 5 76

100 0.2 6 91 500 0.2 6 73

100 0.2 7 91 500 0.2 7 54

100 0.2 8 91 500 0.2 8 58

100 0.4 4 93 500 0.4 4 90

100 0.4 5 91 500 0.4 5 72

100 0.4 6 89 500 0.4 6 65

100 0.4 7 89 500 0.4 7 71

100 0.4 8 91 500 0.4 8 78

250 0.0 4 91 1000 0.0 4 85

250 0.0 5 79 1000 0.0 5 60

250 0.0 6 82 1000 0.0 6 55

250 0.0 7 80 1000 0.0 7 47

250 0.0 8 80 1000 0.0 8 42

250 0.2 4 90 1000 0.2 4 89

250 0.2 5 84 1000 0.2 5 66

250 0.2 6 81 1000 0.2 6 53

250 0.2 7 76 1000 0.2 7 21

250 0.2 8 79 1000 0.2 8 36

250 0.4 4 90 1000 0.4 4 89

250 0.4 5 77 1000 0.4 5 67

250 0.4 6 77 1000 0.4 6 38

250 0.4 7 79 1000 0.4 7 30

250 0.4 8 81 1000 0.4 8 30

P > 0.05

3. Conclusion

The QI model does not take into account the ordinal nature of the row and column
variables. In order to avoid this problem we applied the UA model to the generated tables,
taking integer scores and interpreting the QI model in terms of the ordinal association.
Table 2 and Table 3 present the proportions of accepted hypothesis under the QI and
UA models for the 500 replications. It can be seen that, when the sample size increases
the proportion of accepted hypothesis decreases for both models.
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Table 4. Estimated parameters and their standard errors

No. n ρ R β̂ SE of β̂ ηπ̂ SE of ηπ̂ No. n ρ R β̂ SE of β̂ ηπ̂ SE of ηπ̂

1 100 0.0 4 0.5004 0.0160 0.0621 0.0018 31 500 0.0 4 0.5171 0.0064 0.0488 0.00057

2 100 0.0 5 0.3409 0.0120 0.0714 0.0022 32 500 0.0 5 0.4066 0.0052 0.0696 0.00078

3 100 0.0 6 0.2418 0.0082 0.0725 0.0022 33 500 0.0 6 0.3058 0.0036 0.0745 0.00074

4 100 0.0 7 0.1810 0.0066 0.0739 0.0024 34 500 0.0 7 0.2230 0.0029 0.0755 0.00078

5 100 0.0 8 0.1268 0.0044 0.0676 0.0021 35 500 0.0 8 0.1677 0.0025 0.0731 0.00093

6 100 0.2 4 0.5272 0.0160 0.0654 0.0018 36 500 0.2 4 0.5218 0.0070 0.0482 0.00062

7 100 0.2 5 0.3213 0.0110 0.1399 0.0210 37 500 0.2 5 0.4127 0.0057 0.0692 0.0009

8 100 0.2 6 0.2456 0.0076 0.0729 0.0200 38 500 0.2 6 0.3129 0.0042 0.0730 0.00084

9 100 0.2 7 0.1809 0.0063 0.0722 0.0021 39 500 0.2 7 0.2262 0.0032 0.0757 0.00092

10 100 0.2 8 0.1286 0.0046 0.0680 0.0022 40 500 0.2 8 0.1692 0.0024 0.0738 0.00086

11 100 0.4 4 0.4959 0.0150 0.0634 0.0018 41 500 0.4 4 0.5404 0.0076 0.0497 0.00068

12 100 0.4 5 0.3426 0.0120 0.0690 0.0021 42 500 0.4 5 0.4291 0.0057 0.0713 0.0009

13 100 0.4 6 0.2362 0.0076 0.0700 0.0021 43 500 0.4 6 0.3034 0.0043 0.0730 0.00087

14 100 0.4 7 0.1713 0.0059 0.0233 0.0024 44 500 0.4 7 0.2254 0.0028 0.0754 0.00073

15 100 0.4 8 0.1282 0.0042 0.0676 0.0020 45 500 0.4 8 0.1705 0.0021 0.0740 0.00073

16 250 0.0 4 0.5184 0.0110 0.0555 0.0011 46 1000 0.0 4 0.5424 0.0052 0.0425 0.00042

17 250 0.0 5 0.3738 0.0077 0.0698 0.0013 47 1000 0.0 5 0.4342 0.0047 0.0671 0.00063

18 250 0.0 6 0.2768 0.0059 0.0737 0.0014 48 1000 0.0 6 0.3378 0.0031 0.0725 0.00053

19 250 0.0 7 0.1997 0.0040 0.0724 0.0012 49 1000 0.0 7 0.2557 0.0024 0.0761 0.00051

20 250 0.0 8 0.1493 0.0036 0.0698 0.0014 50 1000 0.0 8 0.1967 0.0019 0.0763 0.00054

21 250 0.2 4 0.5099 0.0110 0.0551 0.0011 51 1000 0.2 4 0.5529 0.0051 0.0438 0.00042

22 250 0.2 5 0.3728 0.0076 0.0696 0.0013 52 1000 0.2 5 0.4368 0.0043 0.0675 0.00057

23 250 0.2 6 0.2815 0.0055 0.0749 0.0013 53 1000 0.2 6 0.3337 0.0032 0.0713 0.00054

24 250 0.2 7 0.1992 0.0044 0.0727 0.0014 54 1000 0.2 7 0.2417 0.0028 0.0749 0.00068

25 250 0.2 8 0.1553 0.0035 0.0730 0.0014 55 1000 0.2 8 0.1927 0.0019 0.0713 0.00059

26 250 0.4 4 0.5179 0.0110 0.0555 0.0011 56 1000 0.4 4 0.5543 0.0047 0.0435 0.00037

27 250 0.4 5 0.3739 0.0082 0.0702 0.0014 57 1000 0.4 5 0.4428 0.0041 0.0699 0.00053

28 250 0.4 6 0.2753 0.0056 0.0742 0.0013 58 1000 0.4 6 0.3222 0.0038 0.0714 0.00069

29 250 0.4 7 0.2063 0.0043 0.0748 0.0013 59 1000 0.4 7 0.2536 0.0029 0.0763 0.00069

30 250 0.4 8 0.1517 0.0030 0.0726 0.0012 60 1000 0.4 8 0.1872 0.0021 0.0743 0.0062

The proportion of accepted hypotheses under the UA model is much higher than for
the QI model. Hypotheses are not effected by the correlation coefficient and dimension.

In Table 4, ηπ̂ is seen to be closer to zero than β̂ under the assumption of no correlation.

Although β̂ has been affected by the sample size and dimension, ηπ̂ has not; note that β̂
increases as the dimension increases, but ηπ̂ remains stable.

In Table 5, we investigate the correlation between the two estimates and it is clear

that β̂ and ηπ̂ are highly correlated and statistically significant with respect to their
probabilities. In sample numbers 35 and 55, an incongruity from the expected is observed.
It is thought that the random sampling may have caused these results.

From the results in Table 6, the homogeneity tests for each sample are almost non-

significant, which means that there is no statistical difference between the CV of β̂ and
that of ηπ̂.

From the results of Table 7, we conclude that the minimummean squared error is found
for the QI model. As a result of the simulation study, we can say that ηπ̂ gives better
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estimates under the assumption that the quasi-independence model holds true. Both
estimates are highly correlated. Hence ηπ̂ can be considered as giving better estimates
for the analysis of triangular tables. In further studies both estimates will be compared
using different criteria.

Table 5. Pearson correlation coefficients between the two estimates

Sample No r Prob Sample No r Prob

1 0.9530 0.00 31 0.8770 0.00

2 0.9500 0.00 32 0.1130 0.01

3 0.9360 0.00 33 0.8970 0.00

4 0.9390 0.00 34 0.8900 0.00

5 0.9330 0.00 35 -0.1490 0.00

6 0.9580 0.00 36 0.9050 0.00

7 0.4550 0.00 37 0.9300 0.00

8 0.9350 0.00 38 0.9260 0.00

9 0.9300 0.00 39 0.9010 0.00

10 0.9150 0.00 40 0.8960 0.00

11 0.9600 0.00 41 0.9050 0.00

12 0.9400 0.00 42 0.9190 0.00

13 0.9360 0.00 43 0.9290 0.00

14 0.2080 0.00 44 0.8910 0.00

15 0.9200 0.00 45 0.8980 0.00

16 0.9270 0.00 46 0.8410 0.00

17 0.9240 0.00 47 0.8960 0.00

18 0.9280 0.00 48 0.8570 0.00

19 0.9110 0.00 49 0.8590 0.00

20 0.9280 0.00 50 0.8600 0.00

21 0.9310 0.00 51 0.8140 0.00

22 0.9220 0.00 52 0.8770 0.00

23 0.9220 0.00 53 0.8640 0.00

24 0.9150 0.00 54 0.8750 0.00

25 0.9150 0.00 55 -0.0640 0.16

26 0.9410 0.00 56 0.7690 0.00

27 0.9300 0.00 57 0.8800 0.00

28 0.9250 0.00 58 0.9030 0.00

29 0.9110 0.00 59 0.8760 0.00

30 0.9270 0.00 60 0.8730 0.00
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Table 6. Coefficients of Variation for β̂ and ηπ̂ and the homogeneity test

Sample No CV of β̂ CV of ηπ̂ Z Sample No CV of β̂ CV of ηπ̂ Z

1 3.1974 2.8985 -0.5841 31 1.2761 1.1680 -0.4341

2 3.5210 3.0812 -0.7575 32 1.2788 1.1207 -0.9859

3 3.3912 3.0345 -0.6367 33 1.1772 0.9933 -1.2765

4 3.6464 3.2476 -0.6381 34 1.3004 1.0331 -1.7051

5 3.4700 3.1065 -0.6209 35 1.4907 1.2722 -1.1544

6 3.0349 2.7523 -0.5950 36 1.3415 1.2448 -0.5558

7 3.4236 15.0107 2.5449* 37 1.3811 1.3006 -0.4439

8 0.0945 27.4348 1.8174** 38 1.1507 1.3423 -1.1414

9 3.4826 2.9086 3.4826* 39 1.2153 1.4146 -1.1161

10 3.5769 3.2353 -0.5540 40 1.1653 1.4184 -1.4410

11 3.0248 2.8391 -0.3834 41 1.3682 1.4064 -0.2027

12 3.5026 3.0435 -0.8022 42 1.2623 1.3284 -0.3787

13 3.2176 3.000 -0.4076 43 1.1918 1.4170 -1.2750

14 3.4442 10.3004 2.8240* 44 0.9682 1.2422 -1.8538

15 3.2761 2.9586 -0.5870 45 0.9865 1.2317 -1.6528

16 2.1219 1.9819 -0.4650 46 0.9882 0.9587 0.2319

17 2.0599 1.8625 -0.6914 47 0.9388 1.0824 -1.0794

18 2.1315 1.8996 -0.7818 48 0.7310 0.9177 -1.7361

19 2.0030 1.6574 2.0030* 49 0.6702 0.9386 -2.5402*

20 2.4112 2.0057 -1.2053 50 0.7077 0.9659 -2.3460

21 2.1573 1.9964 -0.5265 51 0.9589 0.9224 0.2973

22 2.0386 1.8678 -0.6012 52 0.9844 0.8444 -1.1716

23 1.9538 1.7356 -0.8214 53 0.7574 0.9589 -1.7958**

24 2.2088 1.9257 -0.9207 54 0.9078 1.1584 -1.8258**

25 2.2537 1.9178 -1.0766 55 0.8275 0.9859 -1.3329

26 2.1239 1.8018 -1.1291 56 0.8506 0.8479 0.0240

27 2.1931 1.9943 -0.6410 57 0.7582 0.9259 -1.5289

28 2.0341 1.7520 -1.0275 58 0.9964 1.1794 -1.4952

29 2.0843 1.7379 -1.2418 59 0.8257 1.1435 -2.4265*

30 1.9776 1.6529 -1.2381 60 0.8344 1.1218 -2.2116*

*P < 0.05 **P < 0.10
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Table 7. Mean Squared Errors for β̂ and ηπ̂

Sample No MSE of β̂ MSE of ηπ̂ Sample No MSE of β̂ MSE of ηπ̂

1 0.374968 0.005497 31 0.288275 0.002552

2 0.183961 0.007511 32 0.179305 0.005161

3 0.091849 0.007698 33 0.100029 0.005831

4 0.054451 0.008281 34 0.054093 0.006031

5 0.025952 0.006732 35 0.031298 0.005781

6 0.399906 0.005829 36 0.297219 0.002519

7 0.163074 0.021906 37 0.187153 0.005201

8 0.089326 0.007352 38 0.106927 0.005692

9 0.052391 0.007518 39 0.056521 0.006170

10 0.027264 0.006975 40 0.031585 0.005836

11 0.359125 0.005637 41 0.321211 0.002709

12 0.188951 0.007061 42 0.200871 0.005505

13 0.084586 0.007040 43 0.101697 0.005726

14 0.047112 0.003363 44 0.054838 0.005969

15 0.025167 0.006661 45 0.031300 0.005752

16 0.324791 0.003651 46 0.308443 0.001897

17 0.169587 0.005714 47 0.200111 0.004710

18 0.094307 0.006388 48 0.119148 0.005411

19 0.047849 0.006018 49 0.068421 0.005937

20 0.028718 0.005901 50 0.040491 0.005979

21 0.316045 0.003602 51 0.319547 0.002013

22 0.168035 0.005643 52 0.200246 0.004731

23 0.094511 0.006416 53 0.116698 0.005242

24 0.049470 0.006226 54 0.062507 0.005862

25 0.030388 0.006293 55 0.039071 0.005985

26 0.331705 0.003701 56 0.318998 0.001961

27 0.173888 0.005882 57 0.204865 0.004631

28 0.091685 0.006353 58 0.111306 0.005348

29 0.051706 0.006400 59 0.068617 0.006072

30 0.027708 0.006048 60 0.037404 0.005725

References
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