
Hacettepe Journal of Mathematics and Statistics
Volume 34 S (2005), 1 – 6
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Abstract

The determination of set-theoretic operations on genuine sets, other

than the operations ⊆g,=g,gc ,
g

∩ and
g

∪ presented in the author’s pa-
per Genuine sets (Fuzzy Sets and Systems 105 (1999), 377-384), is
proposed as an open question in his paper Some notices on genuine

sets (Fuzzy Sets and Systems 110 (2000), 275-278). The present paper
gives a desirable answer to this problem, and introduces a general tech-
nique for the construction of set-theoretic operations on genuine sets.
Furthermore, two examples are designed to demonstrate two significant
special classes of set-theoretic operations on genuine sets.

Keywords: Fuzzy sets, Fuzzy Logic, Various kinds of fuzzy set, Type-m fuzzy sets,
Genuine sets.
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1. Introduction

The notion of genuine set was introduced in [2] with the aim of establishing a general
theory of fuzzily defined objects. It was demonstrated in [4] that genuine sets can be
used to describe various notions of fuzzy set; for example, intuitionistic fuzzy sets, interval
valued fuzzy sets, type-m fuzzy sets, rough sets and fuzzy rough sets, within the same
framework.

Not only do genuine sets unify various kinds of fuzzy set within the same framework,
but they also allow us to model various kinds of uncertainties comprehensively [4]. A
special interest to the topological aspects of genuine sets is paid in [1].

The set-theoretic operations play a significant role in the development of the theory
of genuine sets. The criteria behind the selection of set-theoretic operations on genuine
sets is introduced in [3], and the construction problem of set-theoretic operations other
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than the set-theoretic operations ⊆g,=g,gc ,
g

∩ and
g

∪ given in [2], is proposed in [3]. In
this paper, utilizing the results in [3], we introduce a general technique for the building
of set-theoretic operations on genuine sets, and establish two useful special classes of

set-theoretic operations on genuine sets that include ⊆g,=g,gc ,
g

∩ and
g

∪ as special cases.

2. Preliminaries

In the present paper, the notations N, N+, X, I and IX always denote the set of all
natural numbers, the set of all positive integers, a nonempty set, the real unit interval
[0, 1] and the family of all fuzzy subsets of X, respectively.

In this section, we first recall some definitions and results presented in [2, 3], which
will be needed later on. For n ∈ N+, an n-th order genuine sets A in X is characterized
by the reality function gA : X × In → I. The family of all n-th order genuine sets in X

is denoted by GX
n .

A fuzzy subset of X is a 0-th order genuine set in X with the reality function as its
membership function, i.e. GX

0 = IX .

The set-theoretic operations of equality, inclusion, complement, intersection and union
for fuzzy subsets of X and n-th order genuine sets in X will be denoted by the symbols
=f , ⊆f , fc, ∩f and ∪f ; and by the symbols =n, ⊆n, c(n), ∩n and ∪n, respectively. The
relation = of absolute equality on GX

n is defined in the usual manner, i.e.

A = B ⇐⇒ gA(x, ϕ1, ϕ2, . . . , ϕn) = gB(x, ϕ1, ϕ2, . . . , ϕn),

∀x ∈ X, ∀ϕ1, ϕ2, . . . , ϕn ∈ I, ∀A,B ∈ G
X
n .

For an n-th order genuine set A in X (n ∈ N), the (n + 1)-th order identification of A,
denoted by In+1

n (A), is the (n + 1)-th order genuine set in X whose reality function is
given by

g
I

n+1
n (A)

(x, ϕ1, ϕ2, . . . , ϕn+1) =

{

0 : ϕn+1 6= gA(x, ϕ1, ϕ2, . . . , ϕn),

1 : ϕn+1 = gA(x, ϕ1, ϕ2, . . . , ϕn),

∀x ∈ X, ∀ϕ1, ϕ2, . . . , ϕn+1 ∈ I.

An n-th order genuine set A in X (n ∈ N), and its (n+1)-th order identification In+1
n (A)

can regarded as being the same thing. Under this simple assumption, GX
n becomes a

subfamily of GX
n+1.

2.1. Definition. Let Q be a class of some objects, and S a subclass of Q . Suppose that
the set-theoretic operations of equality, inclusion, complement, intersection and union
for the objects of Q and for the objects of S are defined and represented by the symbols
=Q , ⊆Q , Qc,

⋂Q ,
⋃Q and =S , ⊆S , Sc,

⋂S and
⋃S , respectively. Then, (Q ,=Q , ⊆Q , Qc,

∩Q , ∪Q) is said to be an extension of (S ,=S , ⊆S , Sc, ∩S , ∪S ) iff

(i) (∀A, ∀B ∈ S) (A =Q B ⇐⇒ A =S B),
(ii) (∀A, ∀B ∈ S) (A ⊆Q B ⇐⇒ A ⊆S B),
(iii) (∀A, ∀B ∈ S) (A =Q BQc ⇐⇒ A =S BSc),

(iv) (∀A ∈ S)(∀ {Ai : i ∈ J} ⊆ S)(A =Q
⋂

i∈J

Q
Ai ⇐⇒ A =S

⋂S

i∈J

Ai),

(v) (∀A ∈ S)(∀ {Ai : i ∈ J} ⊆ S)(A =Q
⋃

i∈J

Q
Ai ⇐⇒ A =S

⋃S

i∈J

Ai).

If (Q ,=Q , ⊆Q , Qc, ∩Q , ∪Q) is an extension of (S ,=S , ⊆S , Sc, ∩S ,
⋃S ), then =S , ⊆S ,

Sc, ∩S , ∪S can be replaced by =Q , ⊆Q , Qc, ∩Q , ∪Q , respectively.

Definition 2.1 provides a reasonable criteria for the construction of set-theoretic op-
erations =n, ⊆n, c(n), ∩n and ∪n on GX

n , in other words, it is reasonable to expect that
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for each m,n ∈ N with m < n, (GX
n , =n, ⊆n, c(n), ∩n, ∪n) should be an extension of

(GX
m, =m, ⊆m, c(m), ∩m, ∪m). The question as to whether or not it may be of interest

to consider additional conditions in this context is left open in the present paper.

For each n ∈ N, if =n, ⊆n, c(n), ∩n and ∪n are chosen in particular to be the set-

theoretic operations =g, ⊆g, gc,
g

∩ and
g

∪, respectively, of [2], it is shown in [3] that this

expectation is satisfied. The determination of set-theoretic operations =n, ⊆n, c(n), ∩n

and ∪n other than =g, ⊆g, gc,
g

∩ and
g

∪ is proposed in [3] as an open question, and is
still somewhat problematic. In the forthcoming section, we are interested in the solution
of this problem, and establish some satisfactory results in this direction.

3. Results

3.1. Theorem. For each m,n ∈ N with m < n, (GX
n , =n, ⊆n, c(n), ∩n,

⋃n) is an

extension of (GX
m, =

m, ⊆m, c(m), ∩m, ∪m) iff the following conditions are satisfied:

(GG1)
(

∀A, B ∈ GX
k

)

(Ik+1
k (A) =k+1 Ik+1

k (B) ⇐⇒ A =k B),

(GG2)
(

∀A, B ∈ GX
k

)

(Ik+1
k (A) ⊆k+1 Ik+1

k (B) ⇐⇒ A ⊆k B),

(GG3)
(

∀A, B ∈ GX
k

)

(Ik+1
k (A) =k+1 (Ik+1

k (B))c(k+1) ⇐⇒ A =k Bc(k)),

(GG4) (∀A ∈ GX
k ) (∀ {Ai : i ∈ J} ⊆ GX

k ),

(

I
k+1
k (A) =k+1

⋂

i∈J

k+1
I
k+1
k (Ai) ⇐⇒ A =k

k
⋂

i∈J

Ai

)

,

(GG5) (∀A ∈ GX
k ) (∀ {Ai : i ∈ J} ⊆ GX

k ),

(

I
k+1
k (A) =k+1

⋃

i∈J

k+1
I
k+1
k (Ai) ⇐⇒ A =k

k
⋃

i∈J

Ai

)

,

for each k ∈ N.

Proof. This is an immediate consequence of Theorem 2.1 and [3, Corollary 1]. ¤

3.2. Theorem. For n ∈ N+ and k = 1, . . . , n, let Rk : GX
k → GX

k−1 be a function

satisfying Rk(Ikk−1(A)) = A for each A ∈ GX
k−1. Let us denote by Gk the composition

function R1 ◦R2 ◦ · · · ◦Rk : GX
k → IX for k ∈ N+ and the identity map idIX : IX → IX

for k = 0. For each k ∈ N, if the set-theoretic operations ⊆k,=k,c(k) ,∩k and ∪k on GX
k

are defined by the following equivalences:

(i) (∀A, B ∈ GX
k ), (A =k B ⇐⇒ Gk(A) =f Gk(B)),

(ii) (∀A, B ∈ GX
k ), (A ⊆k B ⇐⇒ Gk(A) ⊆f Gk(B)),

(iii) (∀A, B ∈ GX
k ), (A =k Bc(k) ⇐⇒ Gk(A) =f (Gk(B))fc),

(iv) (∀A ∈ GX
k ) (∀ {Ai : i ∈ K} ⊆ GX

k ),
(

A =k
⋂

i∈K

k

Ai ⇐⇒ G
k(A) =f

⋂

i∈K

f

G
k(Ai)

)

,

(v) (∀A ∈ GX
k ) (∀ {Ai : i ∈ K} ⊆ GX

k ),
(

A =k
⋃

i∈K

k

Ai ⇐⇒ G
k(A) =f

⋃

i∈K

f

G
k(Ai)

)

,

then for each m,n ∈ N with m < n, (GX
n , =

n, ⊆n, c(n), ∩n, ∪n) is an extension of (GX
m,

=m, ⊆m, c(m), ∩m, ∪m).
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Proof. To prove the required result, we invoke Theorem 3.1. Let us assume that the set-
theoretic operations ⊆k,=k,c(k) ,∩k and ∪k on GX

k are given by the equivalences (i–v),
respectively. It is sufficient to see that the conditions (GG1–GG5) in Theorem 3.1 are
satisfied. For each k ∈ N+ and for each A,B ∈ GX

k , by considering the definition of the
map Gk, the hypothesis on Rk, and using (i), we observe that

I
k+1
k (A) =k+1

I
k+1
k (B) ⇐⇒ G

k+1(Ik+1
k (A)) =f

G
k+1(Ik+1

k (B).

However,

G
k+1(Ik+1

k (A)) = [R1 ◦R2 ◦ · · · ◦Rk ◦Rk+1](Ik+1
k (A))

= [R1 ◦R2 ◦ · · · ◦Rk](Rk+1(Ik+1
k (A))

= [R1 ◦R2 ◦ · · · ◦Rk](A)

= G
k(A),

and likewise,

G
k+1(Ik+1

k (B)) = [R1 ◦R2 ◦ · · · ◦Rk ◦Rk+1](Ik+1
k (B))

= [R1 ◦R2 ◦ · · · ◦Rk](Rk+1(Ik+1
k (B))

= [R1 ◦R2 ◦ · · · ◦Rk](B)

= G
k(B).

Hence

I
k+1
k (A) =k+1

I
k+1
k (B) ⇐⇒ G

k(A) =f
G
k(B) ⇐⇒ A =k

B.

Thus (GG1) is verified. In a similar fashion, one can easily deduce from (ii), (iii), (iv)
and (v) the conditions (GG2), (GG3), (GG4) and (GG5), respectively. For this reason,
the proof of the properties (GG2–GG5) is skipped here. ¤

As a consequence of Theorem 3, the construction problem for set-theoretic operations
on genuine sets turns into the determination of mappings Rk : GX

k → GX
k−1 fulfilling

the condition Rk(Ikk−1(A)) = A for each A ∈ GX
k−1 and for each k ∈ N+. The following

examples are designed to demonstrate some special classes of mappings Rk : GX
k → GX

k−1

satisfying the above condition.

3.3. Example. Let h : I → I be a bijective function with h(0) = 0 and h(1) = 1, and let
T be a t-norm [5], i.e. T : I × I → I is a mapping for which ([0, 1], T ) is a commutative
monoid with identity element 1 and T satisfies the isotonicity:

((α1 ≤ β1) and (α2 ≤ β2)) =⇒ T (α1, α2) ≤ T (β1, β2), ∀α1, α2, β1, β2 ∈ I.

It is easy to see that the map Rk
h : GX

k → GX
k−1, A ∈ GX

k 7→ Rk
h(A) ∈ GX

k−1, defined by

gRk
h
(A)(x, λ1, λ2, . . . , λk−1) = h

−1

(

sup
λk∈I

{

T (h(gA(x, λ1, λ2, . . . , λk)), h(λk))

})

,

∀ k ∈ N+
, ∀A ∈ G

X
k , ∀x ∈ X, ∀λ1, λ2, . . . , λk−1 ∈ I,

satisfies the equality gRk
h
(Ik

k−1
(A)) = gA, i.e. R

k
h(I

k
k−1(A)) = A for each k ∈ N+ and for

each A ∈ GX
k−1. Let

G
k
h =

{

R1
h ◦R

2
h ◦ · · · ◦R

k
h if k ∈ N+

idIX if k = 0
∀k ∈ N.

Theorem 3.2 gives us that for the operations ⊆k, =k, c(k), ∩k and ∪k defined by the
equivalences (i–v) in Theorem 3.2, and for each m,n ∈ N with m < n, we have that



Operations on Genuine Sets 5

(GX
n , =

n, ⊆n, c(n), ∩n, ∪n) forms an extension of (GX
m, =

m, ⊆m, c(m), ∩m, ∪m). For
the particular t-norm T = min = ∧, if h : I → I is taken as an order isomorphism, we
observe that

gRk
h
(A)(x, λ1, λ2, . . . , λk−1) = h

−1

(

sup
λk∈I

{

h(gA(x, λ1, λ2, . . . , λk)) ∧ h(λk)

})

= h
−1

(

sup
λk∈I

{

h(gA(x, λ1, λ2, . . . , λk) ∧ λk)

})

= h
−1

(

h

(

sup
λk∈I

{

gA(x, λ1, λ2, . . . , λk) ∧ λk

}))

= sup
λk∈I

{

gA(x, λ1, λ2, . . . , λk) ∧ λk

}

.

Therefore we get

gGk
h
(A)(x) = supλ1,λ2,...,λk∈I{gA(x, λ1, λ2, . . . , λk) ∧ λ1 ∧ λ2 ∧ . . . ∧ λk},

∀ k ∈ N+
, ∀x ∈ X.

Thus, for T = ∧ and for an order isomorphism h : I → I fulfilling h(0) = 0 and h(1) = 1,

the operations ⊆k,=k,c(k) ,∩k and ∪k given by (i–v) in Theorem 3.2 are nothing but the

operations ⊆g,=g,gc ,
g

∩ and
g

∪, respectively, presented in [2].

3.4. Example. As in the previous example, let h : I → I stand for a bijection satisfying
the properties h(0) = 0 and h(1) = 1, and let S be a s-conorm [5], i.e. S : I × I → I

is a mapping for which ([0, 1], S) is a commutative monoid with identity element 0,
and S satisfies the isotonicity property. Let us define the map Rk

h : GX
k → GX

k−1,

A ∈ GX
k 7→ Rk

h(A) ∈ GX
k−1, by

gRk
h
(A)(x, λ1, λ2, . . . , λk−1) = 1− h

−1

(

inf
λk∈I

{

S(h(1− gA(x, λ1, λ2, . . . , λk)),

h(1− λk))

})

,

∀ k ∈ N+
, ∀A ∈ G

X
k , ∀x ∈ X, ∀λ1, λ2, . . . , λk−1 ∈ I.

In a similar fashion to Example 3.3, it is easy to observe that gRk
h
(Ik

k−1
(A)) = gA, i.e.

Rk
h(I

k
k−1(A)) = A for each k ∈ N+ and for each A ∈ GX

k−1. Similarly, for the particular
s-conorm S = max = ∨ and for an order isomorphism h, we easily obtain

gRk
h
(A)(x, λ1, λ2, . . . , λk−1) = sup

λk∈I

{

gA(x, λ1, λ2, . . . , λk) ∧ λk

}

,

and so we have

gGk
h
(A)(x) = sup

λ1,λ2,...,λk∈I

{

gA(x, λ1, λ2, . . . , λk) ∧ λ1 ∧ λ2 ∧ . . . ∧ λk

}

,

∀ k ∈ N+
, ∀x ∈ X.

Hence, for S = ∨ and for an order isomorphism h : I → I fulfilling h(0) = 0 and h(1) = 1,

the operations ⊆k,=k,c(k) ,∩k and ∪k defined by (i–v) in Theorem 3.2 will also be the

operations ⊆g,=g,gc ,
g

∩ and
g

∪, respectively.
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1-8).



6 M. Demirci

References
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