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Around Poisson�Mehler summation formula

Paweª J. Szabªowski ∗

Abstract

We study polynomials in x and y of degree n+m :
{Qm,n (x, y|t, q)}n,m≥0 that are related to the generalization of Poisson�

Mehler formula i.e. to the expansion
∑
i≥0

ti

[i]q !
Hi+n (x|q)Hm+i(y|q)

= Qn,m(x, y|t, q)
∑
i≥0

ti

[i]q !
Hi (x|q)Hm(y|q), where

{Hn (x|q)}n≥−1 are the so-called q−Hermite polyno-

mials (qH). In particular we show that the spaces
span {Qi,n−i (x, y|t, q) : i = 0, . . . , n}n≥0 are orthogonal with respect

to a certain measure (two-dimensional (t, q)−Normal distribution)
on the square

{
(x, y) : |x|, |y| ≤ 2/

√
1− q

}
being a generalization

of two-dimensional Gaussian measure. We study structure of these
polynomials showing in particular that they are rational functions
of parameters t and q. We use them in various in�nite expansions
that can be viewed as simple generalization of the Poisson-Mehler
summation formula. Further we use them in the expansion of the
reciprocal of the right hand side of the Poisson-Mehler formula.
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1. Introduction and auxiliary results

1.1. Preface. We consider various generalizations of the celebrated Poisson�Mehler for-
mula (see e.g. [10], (13.1.24) or [1], (10.11.17)):

(1.1)
∑
n≥0

ρn

[n]q!
Hn (x|q)Hn (y|q) =

(
ρ2
)
∞∏∞

j=0 ω
(
x
√

1− q/2, y
√

1− q/2|ρqj
) ,

where {Hn}n≥0 denote q−Hermite polynomials and ω (x, y|t) are certain polynomials

symmetric in x and y of degree two. These polynomials as well as symbols [n]q! and(
ρ2
)
∞are de�ned and explained in Sections 1.2 and 1.3. There exist many proofs of (1.1)

(e.g. see [10], [1], [2], [21]). In [22] a certain generalization of (1.1) has been proved by the
author. It was used in calculating moments of the so called Askey�Wilson distribution.

In the paper we consider functions

(1.2) γi,j (x, y|ρ, q) =
∑
n≥0

ρn

[n]q!
Hn+i (x|q)Hn+j (y|q) .

for all i, j ≥ 0. It was shown by the author in [21] (Lemma 3) that:

(1.3) γi,j (x, y|ρ, q) = Qi,j (x, y|ρ, q) γ0,0 (x, y|ρ, q) ,

where Qi,j (x, y|ρ, q) is a certain polynomial in x, y of degree i + j. Hence (1.3) can be
viewed as a generalization of (1.1).

The main object of the paper is to study the properties and later the rôle of the poly-
nomials Qi,j (x, y|ρ, q) in obtaining a family of two dimensional orthogonal polynomials
as well as various expansions that can be viewed as either generalizations of (1.1) or
expansions more or less directly related to this formula.

In particular we �nd generating function of these polynomials, we express them as
linear combinations of polynomials belonging to families of polynomials of one variable.

We also analyze the measure (the so-called (ρ, q)− 2Normal measure) on the square
S (q)×S (q) with the density de�ned by (2.5) below, that can be easily constructed from
the densities of measures that make q−Hermite and the so-called Al-Salam�Chihara
polynomials orthogonal and which can viewed as a generalization of bivariate Normal
distribution. Interval S (q) is de�ned by (1.5). The probabilistic aspects of this distri-
bution were presented in [19]. We point out the rôle of the polynomials Qn,m in further
analysis of this measure. In particular we introduce spaces of functions of two variables

(1.4) Λn(x, y|ρ, q) = span {Qi,n−i(x, y, |ρ, q), i = 0, . . . , n} , n ≥ 0

and show that they are orthogonal with respect to (ρ, q) − 2Normal measure. Hence
these spaces form the direct sum decomposition of the space of functions that are square
integrable with respect to (ρ, q)− 2Normal measure.

Further we use these polynomials to obtain various in�nite expansions. In particular
we obtain an expansion of the reciprocal of the right hand side of (1.1) in an in�nite
series. In [21], (formula 5.3) one such expansion was presented. The expansions was
non-symmetric in x and y (for each �nite sum). This time the expansion is symmetric
in x and y.

Among other possible views one can look at the results of paper as the generalization
of the results of the two papers of Van der Jeugt et al. [12], [13]. The authors of these
papers introduced convolutions of known families of classical orthogonal polynomials such
as Hermite or Laguerre considered at two variables thus obtaining bivariate polynomials.
They applied their results in Lie algebra and its generalizations.
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Our "convolutions" concern generalizations of Hermite polynomials (q-Hermite, and
Al-Salam�Chihara). As possible applications we mean the ones in analysis, two dimen-
sional orthogonal polynomials theory or probability.

Since in our paper appear kernels built of mostly q−Hermite and Al-Salam�Chihara
one should remark that some of the technics used in the proofs resemble those used in
e.g. [8]. But by no means results are the same.

The paper is organized as follows. In the next two Subsections (i.e. 1.2 and 1.3)
we provide simple introduction to q−series theory presenting typical notation used and
presenting a few typical families of the so called basic orthogonal polynomials. The word
basic comes from the base which is the parameter in most cases denoted by q. We do
this since notation and terminology used in q−series theory is somewhat speci�c and not
widely known to those not working within this �eld. We are also purposely not using
notation based on hypergeometric series since it is mostly known to specialists of special
functions theory. We believe that the results presented in the paper can be applied
in various �elds of traditional analysis like the theory of Fourier expansions, theory of
reproducing kernels, orthogonal polynomials theory and last but not least probability
theory. Then in Section 2 we present our main results, open questions and remarks are
in Section 3 while laborious proofs are in Section 4.

1.2. Notation. We use notation traditionally used in the so called q−series theory.
Since not all readers are familiar with it we will recall now this notation.

Throughout the paper, q is a parameter. We will assume that −1 < q ≤ 1 unless
otherwise stated. Let us de�ne [0]q = 0; [n]q = 1 + q+ . . .+ qn−1, [n]q! =

∏n
j=1 [j]q , with

[0]q! = 1 and[
n

k

]
q

=

{
[n]q !

[n−k]q ![k]q !
, n ≥ k ≥ 0

0 , otherwise
.

It will be useful to use the so called q−Pochhammer symbol for n ≥ 1 :

(a; q)n =

n−1∏
j=0

(
1− aqj

)
,

(a1, a2, . . . , ak; q)n =

k∏
j=1

(aj ; q)n ,

with (a; q)0 = 1. Often (a; q)n as well as (a1, a2, . . . , ak; q)n will be abbreviated to (a)n
and (a1, a2, . . . , ak)n respectively, if it will not cause misunderstanding.

It is easy to notice that for |q| < 1 we have (q)n = (1− q)n [n]q! and[
n
k

]
q

=

{
(q)n

(q)n−k(q)k
, n ≥ k ≥ 0

0 , otherwise
.

Notice that [n]1 = n, [n]1! = n!,
[
n
k

]
1

=
(
n
k

)
, (a; 1)n = (1− a)n and [n]0 =

{
1 if n ≥ 1
0 if n = 0

,

[n]0! = 1,
[
n
k

]
0

= 1, (a; 0)n =

{
1 if n = 0

1− a if n ≥ 1
.

In the sequel we shall also use the following useful notation:

S (q) =

{
[− 2√

1−q ,
2√
1−q ] if |q| < 1

R if q = 1
,(1.5)

IA (x) =

{
1 if x ∈ A
0 if x /∈ A .(1.6)
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1.3. Polynomials.

1.3.1. q−Hermite. Let {Hn (x|q)}n≥0 denote the family of the so called q− Hermite

(brie�y qH) polynomials. That is the one parameter family of orthogonal polynomials
satisfying the following three term recurrence:

(1.7) Hn+1 (x|q) = xHn (x|q)− [n]qHn−1 (x|q) ,

with H−1 (x|q) = 0 and H0 (x|q) = 1. In fact in the literature (see e.g. [1], [10], [15]) we
encounter more often the re-scaled versions of these polynomials. Namely more often ap-
pear under the name of q−Hermite polynomials the following polynomials {hn (x|q)}n≥0

de�ned by their three term recurrence:

(1.8) hn+1 (x|q) = 2xhn (x|q)− (1− qn)hn−1 (x|q) ,

with h−1 (x|q) = 0 and h0 (x|q) = 1. These polynomials are related to one another by
the relationship ∀n ≥ −1:

(1.9) Hn (x|q) =
hn
(
x
√

1− q/2|q
)

(1− q)n/2
,

for |q| < 1. For q = 1 we have hn(x|1) = 2nxn while Hn (x|1) = Hn (x), where polyno-
mials Hn (x) are the so called 'probabilistic' Hermite polynomials i.e. classical, monic†

polynomials orthogonal with respect to exp
(
−x2/2

)
. Observe further that hn (x|0) =

Un (x) and Hn(x|0) = Un(x/2), where Un denotes the so called Chebyshev polynomial
of the second kind (for details see e.g. [1]).

The polynomials Hn have nice probabilistic interpretation (see e.g. [22]) and besides
they constitute the real generalization of the ordinary Hermite polynomials. That is why
we will use them in this paper. The results presented here can be easily adopted and
expressed in terms of polynomials hn.

The generating function of these polynomials is given by the following formula that
is in fact adapted to our setting formula (14.26.1) of [15]

(1.10) ϕH (x|ρ, q) =
∑
n≥0

ρn

[n]q!
Hn (x|q) =

1∏∞
j=0 v

(
x
√

1− q/2|ρqj
√

1− q
) ,

convergent for |ρ(1− q)| < 1, x ∈ S (q) , where we denoted

(1.11) v (x|t) = 1− 2xt+ t2.

Let us observe that ∀x ∈ [−1, 1], t ∈ R : v (x|t) ≥ 0.
Adapting formula (14.26.2) of [15] to our setting we have:

(1.12)

∫
S(q)

Hn (x|q)Hm (x|q) fN (x|q) dx = [n]q!δmn,

with

(1.13) fN (x|q) =

√
(1− q)(4− (1− q)x2) (q)∞

2π

∞∏
j=1

l
(
x
√

1− q/2|qj
)
,

for x ∈ S (q) , where

(1.14) l (x|a) = (1 + a)2 − 4ax2.

†i.e. polynomials with leading coe�cient equal to 1.
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Ismail et al. showed that (see [11])

lim
q→1−

fN (x|q) =
1√
2π

exp
(
−x2/2

)
,(1.15)

lim
q→1−

ϕH(x|ρ, q) = exp
(
xρ− x2/2

)
.(1.16)

Apart from q−Hermite polynomials we will need the so called big q−Hermite (brie�y
bqH) polynomials {Hn (x|a, q)}n≥−1 with a ∈ R. They are de�ned through their three
term recurrence:

(1.17) Hn+1 (x|a, q) = (x− aqn)Hn (x|a, q)− [n]qHn−1 (x|a, q) ,
with H−1 (x|a, q) = 0, H0 (x|a, q) = 1. To support intuition let us remark that Hn(x|a, 1)
= Hn (x− a) and Hn (x|a, 0) = Un (x/2)− aUn−1 (x/2) .

One knows its relationship with the q−Hermite polynomials:

Hn (x|a, q) =
n∑
k=0

[
n

k

]
q

(−a)kq(
k
2)Hn−k (x|q) ,

and that (see e.g. [15], (14.18.2) with an obvious modi�cation for polynomials Hn):∫
S(q)

Hn (x|a, q)Hm (x|a, q) fbN (x|a, q) dx = [n]q!δmn,∑
n≥0

tn

[n]q!
Hn (x|a, q) = ϕH (x|t, q) ((1− q)at)∞ ,

where

(1.18) fbN (x|a, q) = fN (x|q)ϕH (x|a, q) .
We will need the following Lemma concerning another relationship between polyno-

mials Hn (x|q) and Hn (x|a, q) .

1.1. Lemma. Let us de�ne for

∀n ≥ 0;x ∈ S (q) ; (1− q)t2 < 1 : ηn (x|t, q) =
∑
j≥0

tj

[j]q !
Hj+n (x|q) . Then

ηn (x|t, q) = Hn (x|t, q)ϕH(x|t, q),
where Hn (x|t, q) is the bqH polynomial de�ned by (1.17).

Proof. In a version with continuous q−Hermite polynomials h de�ned by (1.8) and
hn(x|t, q) are the big q−Hermite polynomials as de�ned in [15] (14.18.4) this formula
has been proved as a particular case in [25] (2.1). We notice that η0 (x|t, q) = ϕH(x|t, q).
To switch to polynomials Hn using (1.9) is elementary. �

1.2. Remark. Let us remark that Carlitz in [7] considered similar shifted characteristic

functions of the form
∑
j≥0

tj

(q)j
wn+j(x|q) with Rogers�Szegö polynomials wn (see dis-

cussion below following formula (2.3)). From this result of Carlitz one can also deduce
assertion of Lemma 1.1.

1.3.2. Al-Salam�Chihara. Next family of polynomials that we are going to consider
depends on 2 (apart from q) parameters denoted by a and b, that satisfy the following
three term recurrence (see e.g. [15],(14.8.4)):

(1.19) An+1 (x|a, b, q) = (2x−(a+b)qn)An (x|a, b, q)−(1−abqn−1)(1−qn)An−1 (x|y, ρ, q) ,
with A−1 (x|a, b, q) = 0, A0 (x|a, b, q) = 1. These polynomials will be called Al-Salam�
Chihara polynomials {An (x|a, b, q)}n≥−1 (brie�y ASC). We will assume in the sequel
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that |ab| < 1. This assumption together with |q| ≤ 1 guarantees that the measure that
makes these polynomials orthogonal is positive. It follows directly follows from Favard's
theorem since then (1− abqn−1)(1− qn) > 0.

In the sequel in fact we will consider these polynomials with complex parameters form-

ing a conjugate pair and also re-scaled. Namely we will take a =
√

1−q
2

ρ(y−i
√

4
1−q − y2),

b =
√
1−q
2

ρ(y + i
√

4
1−q − y2), with y ∈ S (q) and |ρ| < 1. More precisely we will consider

polynomials {Pn (x|y, ρ, q)}n≥0 de�ned by:

An

(
x

√
1− q
2
|a, b, q

)
/(1− q)n/2 = Pn (x|y, ρ, q) .

One can easily notice that a+ b = ρy
√

1− q, ab = ρ2 and thus that the polynomials Pn
satisfy the following three term recurrence:

(1.20) Pn+1 (x|y, ρ, q) = (x− ρyqn)Pn (x|y, ρ, q)− [n]q(1− ρ2qn−1)Pn−1 (x|y, ρ, q) ,

with P−1 (x|y, ρ, q) = 0, P0 (x|y, ρ, q) = 1.

1.3. Remark. To support intuition let us remark (following e.g. [22]) that Pn (x|y, ρ, 1) =

Hn

(
x−ρy√
1−ρ2

)(
1− ρ2

)n/2
. On the other hand Pn (x|y, ρ, 0) = Un (x/2) − ρyUn−1 (x/2)

+ ρ2Un−2 (x/2) , where Un (x) denotes Chebyshev polynomial of the second kind.

It is known see e.g. [15], (formula (14.8.13) adapted to our setting), [6], [22] that the
polynomials Pn have the following generating function:

ϕP (x|y, ρ, t, q) =
∑
n≥0

tn

[n]q!
Pn (x|y, ρ, q) =

∞∏
j=0

v
(
y
√

1− q/2|ρtqj
√

1− q
)

v
(
x
√

1− q/2|tqj
√

1− q
) ,

convergent for
∣∣t√1− q

∣∣ , |ρ| < 1, x, y ∈ S (q).
We also have (see e.g. [22]) or :

(1.21)

∫
S(q)

Pn(x|y, ρ, q)Pm (x|y, ρ, q) fCN (x|y, ρ, q) dx = δnm [n]q!(ρ
2)n,

where

fCN (x|y, ρ, q) = fN (x|q)
(
ρ2
)
∞∏∞

j=0 ω
(
x
√

1− q/2, y
√

1− q/2|ρqj
) ,

with

(1.22) ω (x, y|ρ) =
(
1− ρ2

)2 − 4ρ(1 + ρ2)xy + 4ρ2
(
x2 + y2

)
.

1.4. Remark. It was shown in [26](Lemma 1, (v)) that for |q| < 1 function
|fCN (x|y, ρ, q)/fN (x|q)| is bounded both from below and above hence square integrable
on the square S(q)×S (q) with respect to the measure fN (x|q) fCN (x|y, ρ, q) dxdy. This
will guarantee existence and convergence of some Fourier expansions considered in the
next section.

We will call the densities fN and fCN respectively q−Normal and (q, ρ)−Conditional
Normal. The names are justi�ed by the nice probabilistic interpretations of these densities
presented e.g. in [3], [4], [5], [6], [22] or [19]. Besides in [11] it was shown also that:

(1.23) lim
q→1−

fCN (x|y, ρ, q) = exp

(
− (x− ρy)2

2(1− ρ2)

)
/
√

2π(1− ρ2).
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1.5. Remark. Notice that convergence (1.15) and (1.23) in distribution of appropri-
ate measures with these densities can be easily seen since we have limq−→1− Hn (x|q) =

Hn (x) and limq−→1− Pn (x|y, ρ, q) = Hn

(
x−ρy√
1−ρ2

)(
1− ρ2

)n/2
, hence we have conver-

gence of appropriate moments. As stated above rigorous proofs of convergence of the
densities can be found in [11].

We end up this section by recalling an auxiliary simple result that will be used in
following sections many times. It has been formulated and proved in [25] Proposition 2.

1.6. Proposition. Let σn (ρ|q) =
∑
j≥0

ρj

[j]q !
ξn+j for |ρ| < 1, −1 < q ≤ 1 and certain

sequence {ξm}m≥0 such that σn exists for every n. Then

(1.24) σn (ρqm|q) =

m∑
k=0

(−1)k
[
m

k

]
q

q(
k
2) (1− q)k ρkσn+k(ρ|q).

1.7. Remark. Notice that this Proposition is trivially true for both q = 0 and q = 1.

2. Main Results

One of our main interests in this paper are the generalizations of the Poisson-Mehler
formula (1.1).

It is well known that convergence in (1.1) takes place for x, y ∈ S (q) , |ρ| < 1 and for
|q| < 1 is uniform. For q = 1 we have almost uniform convergence.

As a immediate corollary of Proposition 1.6 we have:

2.1. Corollary. For |q| < 1 we have:

γi,j (x, y|ρqm, q) =

m∑
k=0

(−1)k
[
m

k

]
q

q(
k
2) (1− q)k ρkγi+k,j+k (x, y|ρ, q) ,(2.1)

Hi (x|q)Hj (y|q) =
∑
k≥0

(−1)k q(
k
2) ρk

(q)k
γi+k,j+k (x, y|ρ, q) ,(2.2)

where γi,j(x, y|ρ, q) is de�ned by (1.2). Formula (2.1) is also true trivially for q = 1.

Proof. First assertion we get by applying directly (1.24) by setting σi,j = γi,j . Second
assertion we get by passing in the �rst one with m to in�nity and then noticing �rstly

that limm→∞
[
m
k

]
q

= 1
[k]q !

and �nally that (1−q)k
[k]q !

= 1
(q)k

. �

Now let us turn to polynomials Qi,j (x, y|ρ, q) de�ned by (1.3). It was shown in [22]
that for all −1 < q ≤ 1, |ρ| < 1, x, y ∈ R :

(2.3) Qi,j (x, y|ρ, q) =

j∑
s=0

(−1)sq(
s
2)

[
j

s

]
q

ρsHj−s (y|q)Pi+s (x|y, ρ, q) /
(
ρ2
)
i+s

,

and Qi,j (x, y|ρ, q) = Qj,i (y, x|ρ, q) .

2.2. Remark. It has to be remarked that Carlitz in [7] considered the sum ξk,j(x, y|ρ, q)
=
∑
n≥0

ρn

(q)n
wn+k (x|q)wn+j (y|q) , where wn(x|q) are the so called Rogers�Szegö poly-

nomials related to polynomials hn(x|q) by the formula: hn(x|q) = eniθwn(e−2iθ|q) with x
= cos θ, i−imaginary unit. Indeed it turned out that functions ξk,j also have the property
that

ξk,j(x, y|ρ, q) = νk,j(x, y|ρ, q)ξ0,0(x, y|ρ, q),



1736

where νk,j are polynomials of degree k+j in x and y.However to show that νk,j(e
−iθ, e−iη|ρ, q)

can be expressed as Qk,j(cos θ, cos η|ρ, q) is not an easy task. Discussion on this subject
is in [23]. In particular see the proof of Proposition 5.

In particular we have

(2.4) Qk,0 (x, y|ρ, q) = Pk (x|y, ρ, q) /
(
ρ2
)
k
.

To analyze further properties of polynomials Qk,j let us introduce the following 2

dimensional density de�ned for S2 (q)
df
= S (q)× S (q) .

(2.5) f2D (x, y|ρ, q) = fCN (x|y, ρ, q) fN (y|q) .

Measure that has density f2D will be called (ρ, q)−bivariate Normal (brie�y (ρ, q) −
2N). Obviously f2D (x, y|ρ, q) = γ0,0 (x, y|ρ, q) fN (x|q) fN (y|q) . Its applications in the-
ories of probability and Markov stochastic processes have been presented in [19] and
[20].

Here below we give another interpretation of the polynomials Qn,m in particular its
connection with the big q−Hermite polynomials.

2.3. Proposition. For |q| < 1, |ρ| < 1, x, y ∈ R we have:
i) ∀i, j,m, k, i+ j 6= m+ k,∫

S2(q)

Qi,j (x, y|ρ, q)Qm,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy = 0,

ii) ∀i, j,m, k, i+ j = m+ k, k > j :∫
S2(q)

Qn−j,j (x, y|q)Qn−k,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy =

(−1)k−j
ρk−jq(

k−j
2 ) [j]q! [n− j]q!

(ρ2)n

j∑
s=0

qs(s−1)+ns

[
k

k − j + s

]
q

×

[
n− j + s

s

]
q

ρ2s
(
ρ2qn−j+s

)
j−s

.

iii)

∑
n,m≥0

tnsm

[n]q! [m]q!
Qn,m (x, y|ρ, q) =

fbN (x|t, q) fbN (y|s, q)
f2D(x, y|ρ, q)

∑
k≥0

ρk

[k]q!
Hk (x|t, q)Hk (y|s, q) ,

where function fbN is de�ned by (1.18). The above mentioned formulae are also true for
q = 1.

iv) ∀m ≥ 0 :

Qi,j (x, y|ρqm, q)
m−1∏
i=0

ω
(
x
√

1− q/2, y
√

1− q/2|ρqi
)

=(2.6)

(
ρ2
)
2m

m∑
k=0

(−1)k
[
m

k

]
q

q(
k
2) (1− q)k ρkQi+k,j+k (x, y|ρ, q) ,
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where polynomial ω is de�ned by (1.22). In particular we have:

n−1∏
j=0

ω
(
x
√

1− q/2, y
√

1− q/2|ρqj
)

=(2.7)

(
ρ2
)
2n

n∑
k=0

(−1)k
[
n

k

]
q

q(
k
2) (1− q)k ρkQk,k (x, y|ρ, q) ,

and

q(
n
2)ρn(1− q)nQn,n (x, y|ρ, q) =(2.8)

n∑
k=0

(−1)k q(
n−k

2 )

[
n

k

]
q

∏k−1
j=0 ω

(
x
√

1− q/2, y
√

1− q/2|ρqj
)

(ρ2)2k
,

with understanding that
∏k−1
j=0 for k = 0 is equal to 1.

Proof. Is shifted to section 4. �

Our main results follow in fact directly the results presented above.

2.4. Theorem. Either for |q| < 1;x, y ∈ S (q) ; |ρ| < 1 we have:
i)

Hi (x|q)Hj (y|q)
∏∞
k=0 ω

(
x
√

1− q/2, y
√

1− q/2|ρqk
)

(ρ2)∞

=

∞∑
k=0

(−1)k q(
k
2) ρk

[k]q!
Qi+k,j+k (x, y|ρ, q) .

In particular we get:
ii)

1/
∑
n≥0

ρn

[n]q!
Hn (x|q)Hn (y|q) =

∏∞
k=0 ω

(
x
√

1− q/2, y
√

1− q/2|ρqk
)

(ρ2)∞

=

∞∑
k=0

(−1)k q(
k
2) ρk

[k]q!
Qk,k (x, y|ρ, q) .(2.9)

The last formula is valid also for x, y ∈ R, q = 1 and |ρ| < 1/2.

Proof. To get i) we pass in (2.6) with m to in�nity noting by (2.3) and (1.20) that
Qn,m(x, y|0, q) = Hn (x|q)Hm (y|q). On the way we observe that limm→∞

[
m
k

]
q

= 1
(q)k

=

(1− q)−k 1
[k]q !

. As far as the case q = 1 is concerned denote by gN (x, y, ρ) density of the

bivariate Normal density with parameters σ1 = σ2 = 1, correlation coe�cient ρ. Then
notice that function exp(− 1

2
(x2 + y2))/gN (x, y, ρ) is square integrable on the plane with

respect to gN (x, y, ρ) if |ρ| < 1/2. �

3. Open problems and comments

3.1. Remark. The non-symmetric kernels constructed of bqH polynomials were given
in [18]. Formula ii) of Proposition 2.3 gives its new interpretation. Besides, recall that
these kernels were expressed using basic hypergeometric function 3φ2. Expansion on the
left hand side of Proposition 2.3ii) gives new outlook on the properties of this function.
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Notice also that for q = 1 we have η(x|t, 1) = exp(xt − t2

2
), Hn (x|t, 1) = Hn (x− t)

and ∑
n≥0

ρn

n!
Hn (x)Hn(y) = exp(

x2

2
− (x− ρy)2

2(1− ρ2)
),

hence generating function of polynomials Qi,j can be calculated explicitly.
Similarly for q = 0 we have η(x|t, 0) = 1

1−xt+t2 (characteristic function of the Cheby-

shev polynomials) and Hn (x|t, 0) = Un (x/2)− tUn−1 (x/2) (see e.g. [24]) hence also in
this case we can get explicit form of the characteristic function of polynomials Qi,j .

3.2. Remark. First of all notice that the left hand side of (2.9) is equal to 1/γ0,0 (x, y|ρ, q)
= fN (x|q) /fCN (x|y, ρ, q) and that it is a symmetric ( with respect to x and y) func-
tion. In [21] there was presented (formula 5.3) an expansion of this function involving
polynomials Pn and certain polynomials related to q−Hermite ones. The expansion was
non-symmetric for every partial sum. Thus we get another expansion of known important
special function.

3.3. Remark. Assertion i) of Proposition 2.3 states that polynomials Qn,m and Qi,j
are orthogonal with respect to two dimensional measure µ2D with the density given by
(2.5) if only the n + m 6= i + j. Let us de�ne space L =L2

(
S2 (q) ,B, µ2D

)
of functions

f : S2 (q) −→ R square integrable with respect to the measure µ2D. Do polynomials Qm,n
constitute a base of this space? It seems that yes, but not orthogonal. We can de�ne
subspaces of Λm = span {Qm,0, . . . , Q0,m} of polynomials that are linear combinations
of polynomials Qi,j such that i+ j = m. Subspaces Λm are mutually orthogonal. Besides

following argument that polynomials are dense in L we deduce that L =

∞⊕
n=0

Λn. What

is the orthogonal base of L? We have calculated covariances between polynomials Qi,j
from Λm following (2.3) and (1.21). Thus we can follow Gram-Schmidt orthogonalization
procedure within the spaces Λm. Is the union of orthogonal bases of Λm an orthogonal
base of L? Again it seems that yes. It would be interesting to �nd this base. Note that
orthogonal polynomials on the plane are not an easy extension of the one-dimesional
case. There are problems in de�ning them. For details see e.g. [14], [17], [16]. Recently
in [9] there was de�ned a family of two dimensional polynomials that are two dimensional
analogies of q−Hermite polynomials. Analogy is in the sense that many properties of the
one-dimesional q−Hermite polynomials are retained in its two dimensional version.

3.4. Remark. In 2001 Wünsche in [27] considered Hermite and Laguerre polynomials
on the plane. He has not however related his Hermite polynomials to any particular
measure on the plane. In particular he de�ned Hermite polynomials depending on pa-
rameters forming a 2x2 matrix. This matrix is however not connected in any way to the
covariance matrix of the measure with respect to which these polynomials are supposed
to be orthogonal.

On the other hand de�nition of polynomials Qi,j depends heavily on the measure with
the density f2D. For q = 1 following (2.3), we have

Qi,j (x, y|ρ, 1) =

j∑
k=0

(−1)k
(
j

k

)
Hj−k (y)Hk+i

(
x− ρy√

1− ρ2

)
/
(√

1− ρ2
)k+i

.

Hence polynomials Qi,j (x, y, ρ, 1) are in fact another (di�erent from that of Wünsche's)
family of two dimensional generalization of Hermite polynomials.
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4. Proofs

Proof of Proposition 2.3. i) We use (2.3), assume that i > m. We have:∫
S2(q)

Qi,j (x, y|q)Qm,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy =

j∑
s=0

k∑
t=0

(−1)s+t q(
s
2)q(

t
2)

[
j

s

]
q

[
k

t

]
q

ρs+t
1

(ρ2)i+s (ρ2)m+t

×
∫
S(q)

Hj−s (y|q)Hk−t (y|q) fN (y|q)

×
∫
S(q)

Pi+s (x|y, ρ, q)Pm+t (x|y, ρ, q) fCN (x|y, ρ, q) dxdy =

(−1)i−m ρi−m
j∧k+m−i∑
s=0∨m−i

q(
s
2)+(i−m+s

2 )

[
j

s

]
q

[
k

i+ s−m

]
q

×

ρ2s
[i+ s]q!

(ρ2)i+s

∫
S(q)

Hj−s (y|q)Hk+m−i−s (y|q) fN (y|q) dy = 0,

if j − s 6= k +m− i− s i.e. if j + i 6= k +m.
Now for j + i = k +m and assuming that k ≥ j we get:∫

S2(q)

Qn−j,j (x, y|q)Qn−k,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy =

j∑
s=0

k∑
t=0

(−1)s+t q(
s
2)q(

t
2)

[
j

s

]
q

[
k

t

]
q

ρs+t
1

(ρ2)n−j+s (ρ2)n−k+t

×
∫
S(q)

Hj−s (y|q)Hk−t (y|q) fN (y|q)

×
∫
S(q)

Pn−j+s (x|y, ρ, q)Pn−k+t (x|y, ρ, q) fCN (x|y, ρ, q) dxdy =

(−1)k−j ρk−j
j∑
s=0

q(
s
2)+(k−j+s

2 )

[
j

s

]
q

[
k

k − j + s

]
q

ρ2s
[n− j + s]q!

(ρ2)n−j+s

×
∫
S(q)

Hj−s (y|q)Hj−s (y|q) fN (y|q) dy

= (−1)k−j ρk−j
j∑
s=0

q(
s
2)+(k−j+s

2 )

[
j

s

]
q

[
k

k − j + s

]
q

ρ2s
[n− j + s]q!

(ρ2)n−j+s
[j − s]q!

= (−1)k−j
ρk−jq(

k−j
2 ) [j]q! [n− j]q!

(ρ2)n

j∑
s=0

qs(s−1)+ns

[
k

k − j + s

]
q

×

[
n− j + s

s

]
q

ρ2s
(
ρ2qn−j+s

)
j−s

we use here s(s− 1)/2 + (s+ n)(s− 1 + n)/2− s(s− 1)− n(n− 1)/2 = ns
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ii) We have

∑
i≥0,j≥0

sitj

[i]q! [j]q!
Qi,j (x, y|ρ, q) =

1

γ0,0 (x, y|ρ, q)
∑

i≥0,j≥0

tisj

[i]q! [j]q!

∑
n≥0

ρn

[n]q!
Hi+n (x|q)Hn+j (y|q)

=
∑
n≥0

ρn

[n]q!

∞∑
j=0

sj

[j]q!
Hn+j (y|q)

∑
i≥0

ti

[i]q!
Hn+i (x|q) .

Now we use Lemma 1.1 twice and get

∑
i≥0,j≥0

sitj

[i]q! [j]q!
Qi,j (x, y|ρ, q) =

ϕH(x|t, q)ϕH (y|s, q)
γ0,0(x, y|ρ, q)

∑
n≥0

ρn

[n]q!
Hn (x|t, q)Hn(y|s, q)

=
1

(ρ2)∞

∞∏
j=0

ω
(
x
√

1− q/2, y
√

1− q/2|ρqj
)

v
(
x
√

1− q/2|t
√

1− qqj
)
v
(
y
√

1− q/2|s
√

1− qqj
)

×
∑
n≥0

ρn

[n]q!
Hn (x|t, q)Hn(y|s, q).

iii) First we notice that from (1.3) it follows that for x, y ∈ S (q) ; ρ2 < 1,−1 < q ≤ 1 :

γi,j (x, y|ρqm, q) = Qi,j (x, y|ρqm, q)
(
ρ2q2m

)
∞∏∞

i=0 ω
(
x
√

1− q/2, y
√

1− q/2|ρqm+i
)

= Qi,j (x, y|ρqm, q)
∏m−1
i=0 ω

(
x
√

1− q/2, y
√

1− q/2|ρqi
)

(ρ2)2m
γ0,0 (x, y, ρ, q) ,

and also that γ0,0 (x, y|ρ, q) =
(ρ2)∞∏∞

i=0 ω(x
√
1−q/2,y

√
1−q/2|ρqi)

. Then we apply (2.1) to γi,j

above and then use (1.24) and cancel out γ0,0 on both sides of (2.1). Finally we observe
that on both sides we have polynomials hence one can extend the identity for all values
of the variables. To get other formula of this assertion we argue by induction checking
that the equality is true for n = 0. Then we put (2.7) into (2.8) and get:

n∑
k=0

(−1)k q(
n−k

2 )

[
n

k

]
q

∏k−1
i=0 ω

(
x
√

1− q/2, y
√

1− q/2|ρqi
)

(ρ2)2k
=

n∑
k=0

(−1)k q(
n−k

2 )

[
n

k

]
q

k∑
j=0

(−1)j
[
k

j

]
q

q(
j
2)ρjQj,j (x, y|ρ, q) =

n∑
j=0

(−1)jq(
j
2)

[
n

j

]
q

ρjQj,j (x, y|ρ, q)
n∑
k=j

(−1)k q(
n−k

2 )

[
n− j
k − j

]
q

=

n∑
j=0

(−1)jq(
j
2)

[
n

j

]
q

ρjQj,j (x, y|ρ, q)
n−j∑
m=0

(−1)m+j q(
m
2 )

[
n− j
m

]
q

=

q(
n
2)ρn (1− q)nQn,n (x, y|ρ, q)

since ∀n ≥ 1 :
∑n
i=0(−1)iq(

i
2)
[
n
i

]
q

= 0. �
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