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M-Cofaithful modules and correspondences of
closed submodules with coclosed submodules

T. Amouzegar>i<Jr and Y. Talebit

Abstract

In this paper we introduce and investigate M-cofaithful modules. A
module N € o[M] is called M-cofaithful if for every o # f €
Hompg(N, X) with X € o[M], Homgr(X, M)f # 0. We show that if N
is an M-cofaithful weak supplemented module and Homg (N, M) a noe-
therian S-module, then there exists an order-preserving correspondence
between the cocolsed R-submodules of N and the closed S-submodules
of Homgr(N, M), where S = Endr(M). Some applications are: (1) the
connection between M's being a lifting module and Endr(M)'s being
an extending ring; (2) the equality between the hollow dimension of a
quasi-injective coretractable module M and the uniform dimension of
E’I’LdR (M) .

Keywords: M-Cofaithful modules, Coretractable modules, Closed and coclosed
submodules.
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1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with iden-
tity, M and N unitary right R-modules with U = Hompg(N, M) the set of R-
homomorphisms of N in M and S = Endg(M) the ring of all R-endomorphisms
of M; U is then a left S-module. By o[M] we mean the full subcategory of Mod-R
whose objects are submodules of M-generated modules.

Following [5], a module N € ¢[M] is said to be M -faithful if for every 0 # f €
Homp(X,N) with X € o[M], fHomg(M,X) # 0. When M is itself M-faithful,
M is called a self-faithful module. Self-faithful modules have been studied by
some authors (see, for example, [5, 6, 7, 8]). It is of obvious interest to investigate
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the dual notion of M-faithful modules. We call a right R-module N € o[M] M-
cofaithful if for every 0 # f € Homp(N, X) with X € o[M], Homgr(X, M) f # 0.
When M is itself M-cofaithful, M is called a self-cofaithful module. Example of
self-cofaithful modules is quasi-injective coretractable modules (Theorem 3.1). In
this paper, we investigate M-cofaithful modules.

It is known that there exists a correspondence between the closed submodules
of a suitably restricted module and the closed one-side ideal of its endomorphism
ring. Such a correspondence is known to hold for semisimple modules, for free
modules (see [2]), and for nonsingular modules M when Endg(E(M)) is the max-
imal right quotient ring of Endgr(M) (see [13]), hence in particular, for nonsin-
gular retractable modules (see [9]). Some properties of the endomorphism rings
of modules, such as being Baer, extending, etc., were then obtained by means of
the above lattice isomorphism. Zelmanowitz showed in [12, Theorem 1.2] that
when N is an M-faithful R-module, then there exists an order-preserving corre-
spondence between the closed R-submodules of N and the closed S-submodules
of Homgr(M,N), where S = Endgr(M). In this paper, we give conditions un-
der which there exists a correspondence between the coclosed R-submodules of an
M-cofaithful module N and the closed S-submodules of Hompg(N, M).

In section 2, we characterize M-cofaithful modules (Proposition 2.1) and study
some properties of M-cofaithful modules. For an M-cofaithful module N, we
show that w.dim(sU) = h.dim(Ng), where U = Hompg(N, M) (Theorem 2.12).
We show that there is a correspondence between the coclosed R-submodules of
an M-cofaithful weak supplemented module N and the closed S-submodules of
Hompg(N, M) whenever Homp (N, M) is a noetherian S-module. (Theorem 2.13).
This result is used in proving that if Hompr(N, M) is a noetherian S-module, then
an M-cofaithful M-cogenerated amply supplemented module N is a lifting right
R-module if and only if Homg(N, M) is a left extending S-module, where S =
Endr(M) (Theorem 2.15). In section 3, we show that M-coretractability charac-
terizes M-cofaithfulness for some important families of modules and conclude that
if either (i) M is an amply supplemented quasi-injective coretractable module and
S is noetherian, or (i¢) M is an amply supplemented > -self-cogenerator module
and S is noetherian, then:

(a) There exist mutually inverse lattice correspondences between the coclosed
submodules of M and the closed left ideals of S = Endr(M).

(b) M is a lifting module if and only if S is a left extending ring.

We will use the notation N <. M to indicate that N is essential in M (i.e.,
NNL #0VY0 # L < M); N < M means that N is small in M (i.e. VL <
M,L+ N # M). For K < Ng and A < gU we denote:

An(K) = {f € Homp(N, M) | f(K) = 0}(= Homp(N/K, M),
Ke(A) =({Keg | g € A}.

A submodule N of M is called a closed submodule of M if it is not contained as
a proper essential submodule of any other submodule of M. We recall that L is a
cosmall submodule of K in M (denoted by L €3 K in M) if K/L < M/L. Recall
that a submodule L of M is called coclosed if L has no proper cosmall submodule
(denoted by L <5 M). A coclosure of a submodule L of M (denoted by L) is a
cosmall submodule of L in M which is also a coclosed submodule of M.
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If N and L are submodules of the module M, then N is called a supplement
(weak supplement) of L,if N+ L =M and NNL < N (NNL < M). M is called
supplemented (weakly supplemented) if each of its submodules has a supplement
(weak supplement) in M. M is called amply supplemented, if for all submodules
N and L of M with N+ L = M, N contains a supplement of L in M.

2. M-Cofaithful Modules

A module N € o[M] is called M -cofaithful if for every 0 # f € Homg(N, X)
with X € o[M], Homg(X,M)f # 0.

2.1. Proposition. An R-module N is M -cofaithful if and only if Homg(N,
Ke(Homg(X,M))) =0 for every X € o[M].

Proof. Let h: N — Ke(Hompg(X, M)) be a nonzero homomorphism. Composing
with the natural inclusion map i : Ke(Homg(X,M)) — X we get a nonzero
homomorphism g : N — X such that Img C Ke(Hompg(X, M)). Then for every
f:X — M, Img C Ke(Homgr(X,M)) C ker f. Thus fg = 0 which is a
contradiction.

Conversely, let VX € o[M], Homp(N,Ke(Homp(X,M))) = 0 and 0 # g :
N — X be a nonzero homomorphism. If Hompr(X,M)g = 0, then Img C
Ke(Hompg(X, M)). This gives a nonzero homomorphism h : N — Ke(Hompg(X, M))
which is a contradiction. O

2.2. Proposition. If N is an M -cofaithful module, then Hompg(N, %”(K)) =0
for every K < N.

Proof. It is a direct consequence of Proposition 2.1, because %”(K) = Ke(Homp(%, M)).

2.3. Proposition. Let M be an R-module. If M is a cogenerator in o[M], then
every N € o[M] is M-cofaithful.

Proof. Suppose that M is a cogenerator in o[M]. Then for every X € o[M],
X is M-cogenerated. Thus Ke(Hompg(X,M)) = 0. So Homgr(N, Ke(Hompg(X,
M))) = 0 for every N € o[M]. Hence every N € o[M] is M-cofaithful. O

2.4. Proposition. Let M be an R-module. Then every generator in o[M] is an
M -cofaithful module if and only if every R-module in o[M] is an M -cofaithful
module.

Proof. Let every generator in o[M] is an M-cofaithful module. Suppose that
N € g[M] and 0 # f € Homgr(N,X) is given with X € o[M]. Then there is
a generator F' and an epimorphism ¢ : ' — N. Since F' is M-cofaithful, there
exists h € Homp(X, M) with hfg # 0. Thus hf # 0 and this proves that N is
M-cofaithful. The converse is clear. O

2.5. Proposition. Let {N, | a € I} be a family of M-cofaithful modules. Then
N = ®ac1 Ny is M -cofaithful.

Proof. Let 0 # f € Hompg(N, X) for X € o[M]. Since N, is M-cofaithful for any
a € I, hence there exists hy : X — M such that h, fi, # 0, where i, : No, — N
is the natural injection map. Then h,f # 0 and so IV is M-cofaithful. (|



1310

2.6. Proposition. Let N be an M -cofaithful R-module. Then every supplement
submodule of N is M -cofaithful.

Proof. Let K be a supplement submodule of N and 0 # g € Homg(K,X) for
X € o[M]. Then there exists L < N such that K + L = N and KN L <« K.
Put X' = g(K N L) < X and let ¢’ denote the composition N & (K + L)/K
K/(KNL) % X/X'. Then 0 # ¢ : N — X/X’. By assumption, there exists
0+# h € Homgr(X/X', M) with hg' # 0. Then hg # 0 and so Homg(X,M)g # 0
because ht! # 0, where 7' : X — X /X’ denotes the natural map. O

2.7. Corollary. Let N be an M-cofaithful R-module. Then:
(i) Every direct summand of N is M-cofaithful.
(13) Fvery weak supplement coclosed submodule of N is M -cofaithful.

Proof. (i) By Proposition 2.6.
(%) Since every weak supplement coclosed submodule is a supplement submod-
ule, it follows by Proposition 2.6. O

2.8. Lemma. Let N be an M -cofaithful R-module. Then for every proper submod-
ule K of N, K &3 KeAn(K) in N and KeAn(K) < N; in particular, Homg(N/K, M) #
0.

Proof. f K < N and 7 : N — N/K is the natural epimorphism, then Homg(N/K, M7 #
0 since N/K € o[M]. Thus KeAn(K) < N. Let K < L < N, then KeAn(K) +
L < KeAn(L) £ N. Therefore K 3 KeAn(K) in N. O

2.9. Proposition. Assume that N is an M -cofaithful R-module. Let K < N and
L be a weak supplement coclosed submodule of N such that L C KeAn(K). Then
L C K. In particular, if K is a weak supplement coclosed submodule of N, then
K is the unique coclosure of KeAn(K) in N.

Proof. Let K < N and L be a weak supplement coclosed submodule of N such

that L C KeAn(K). Suppose that g denotes the composition L 5 KeAn(K) 5
%"(K). Then by Proposition 2.2 and Corollary 2.7, g =0,andso LC K. O

2.10. Proposition. Let N be an M -cofaithful R-module. Then the following
conditions hold:

(1) For every finitely generated S-submodule A < sU, A <. Homg(N/Ke(A), M)
(equivalently, A <. AnKe(A)).

(2) Let L < K < N. If An(K) <. An(L), then L <3 K in N. The converse
holds if Homp(N, M) is a noetherian S-module.

(3) Let A < B < gU and Homg(N,M) be a noetherian S-module. Then
A <. B if and only if Ke(B) £ Ke(A) in N.
Proof. (1) Let 0 # f € Homgr(N/Ke(A),M). Set A = Sg; + Sg2 + ... +
Sgi with g; € Homp(N,M). Then Ke(A) = (), Keg;. Let P = {(f(n +
Ke(A)), (TT5, ) (n+Ke(A))) | n € N} and let iy : M®) — MaM®*) - MeM®
and iy : M — M@M® — W%W be the canonical maps. We have the following
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commutative diagram:

H?Zl gi (k)
0 — N/Ke(A) =" M
by A3

M 2 (MoM®)/P.

Then 0 # iof = —i1([Ti_, i) : N/Ke(A) — (M ® M®)/P. By hypothesis,
there exists h € HomR(]\/@#M(k), M) with higf # 0. We may consider h(—i1) as
Ele s; for some s; € S. Thus 0 # hisf = h(—z_l)(Hle gi) = Zle sigi € A.
Therefore A <, Hompr(N/Ke(A), M).

(2) Let An(K) <. An(L) for L < K < N. Suppose that K/L + X/L = N/L,
where L < X < N. If X # N, then by hypothesis, there exists 0 # f € U with
f(X)=0. Thus f(L) =0 and so 0 # f € An(L). As An(K) <. An(L), there
exists g € S such that 0 # gf € An(K). Hence gf(N) = gf(K + X) = 0, which
is a contradiction. Therefore L £ K in N. Conversely, assume that L <3 K in
N and let 0 # A < An(L). Then L < Ke(A) < N and so K + Ke(4) < N.
Thus 0 # An(K + Ke(A)) = An(K) N AnKe(A). But A <., AnKe(A) from (1),
so An(K) N A # 0. Therefore An(K) <. An(L).

(3) It is clear that A is essential in B if and only if AnKe(A) is essential in
AnKe(B), by (1) (because A and B are finitely generated, so (1) can be applied).
By using (2), the claimed property holds. O

Recall that a module M is said to have uniform (or Goldie) dimension n, de-
noted by u.dim(M) = n for some n € N, if sup{k € N | M contains k independent
submodules } = n [4]. A module M is said to have hollow dimension n, denoting
this by h.dim(M) = n for some n € N, if sup{k € N | M has k coindependent
submodules } = n [3].

2.11. Lemma. Let N € o[M] be a nonzero R-module and K, L < N. If K+ L =
N, then An(K N L) = An(K) + An(L).

Proof. Tt follows from [1, Lemma 4.9]. O

2.12. Theorem. Let N be an M -cofaithful module. Then u.dim(sU) = h.dim(Ng).

Proof. Assume first that S f1, Sf, ..., S f, is an independent family of submodules
of U and 0 # f; € gU for all 1 < ¢ < n. Since Sf; NSf; = 0 for any @ # 7,
and Sf; <. AnKe(Sf;) for all 1 < i < n, AnKe(Sf;) N AnKe(Sf;) = 0. Thus
An(Ke(Sf;) + Ke(Sf;)) = 0. Since N is M-cofaithful, Ke(Sf;) + Ke(Sf;) =
N. By Lemma 2.11, An(Ke(Sf;) N Ke(Sf;)) = AnKe(Sf;) + AnKe(Sf;) for
each i # j. Let i,j,k € {1,2,..,n} be distinct. Since Sf; N (Sf; + Sfi) =
0 and Sfi N (Sf; + Sfe) <e AnKe(Sfi) N (AnKe(Sf;) + AnKe(Sf)), hence
0 = AnKe(Sf;) N (AnKe(Sf;) + AnKe(Sfi)) = AnKe(Sfi) N An(Ke(Sf;) N
Ke(Sfr)) = An(Ke(Sf;)+(Ke(Sfj)NKe(Sfr))). Therefore Ke(S f;)+(Ke(Sf;)N
Ke(Sfr)) = N. It is easy to see by induction that for every 1 < ¢ < n,
Ke(Sfi) + (M Ke(Sf;)) = N. Hence {Ke(Sf;), ..., Ke(Sfn)} is coindependent.
Thus w.dim(sU) < h.dim(Ng). On the other hand, from [1, Proposition 4.10],
w.dim(gU) > h.dim(Ng) and the proof is completed. O
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2.13. Theorem. Assume that N is an M-cofaithful weak supplemented mod-
ule and Homp(N, M) is a noetherian S-module. Then for every A <¢ gU =

—~—

Homp(N,M), Ke(A) has a unique coclosure Ke(A) in N and the maps K —

—_—

An(K) and A — Ke(A) determine mutually inverse correspondences between the
coclosed R-submodules of N and the closed S-submodules of U = Homg(N, M).

Proof. Let K £ N and An(K) <., A < gU. By Zorn's Lemma, we may assume
that A is closed in sU. From Proposition 2.10, Ke(A) & KeAn(K) in N. By
Proposition 2.9, K €3 Ke(A) in N. Hence A C AnKe(A) € An(K). Thus A =
An(K); that is, An(K) <¢ sU. Also, K = KeAn(K).

Assume that A <° gU. We show that Ke(A) has a unique coclosure in N. Let
K& N and K £ Ke(A) in N. By using Proposition 2.10, A <. AnKe(A) <,
An(K), and so A = An(K). Thus Ke(A) = KeAn(K). Therefore K is a unique

coclosure of Ke(A) (by Proposition 2.9). So A = An(K) = An(Ke(A)). O

2.14. Corollary. Let N be an M -cofaithful module and Homg(N, M) be a noe-

e~

therian S-module. Then, Ke(A) = Ke(A) for every A <¢ gU if and only if every
K & N is M-cogenerated.

—_—~—

Proof. Assume that for every A <¢ gU, Ke(A) = Ke(A) and let K < N. Then

—_~—

An(K) <¢ gU. From Theorem 2.13 and hypothesis, K = KeAn(K) = KeAn(K).
Thus K is M-cogenerated. Conversely, suppose that every K < N is M-cogenerated

and A <¢ gU. By Theorem 2.13, A = An(Ke(A)). On the other hand, by hypoth-

—_~

esis, Ke(A) = KeAn(Ke(A)). Therefore Ke(A) = Ke(A). O

Recall that an R-module M is an extending module if for every submodule K
of M there exists a direct summand L of M such that K <. L, or equivalently,
every closed submodule of M is a direct summand. A left extending ring is a ring
which is a extending module over itself. Dually, a module M is called a lifting
module if, every submodule N of M can be written in the form N = K @& D where
K is a direct summand of M and D < M. By [10, 4.8], M is lifting if and only if
it is amply supplemented and its coclosed submodules are direct summands.

2.15. Theorem. Let N be an M-cofaithful module and Homg(N, M) be a noe-
therian S-module. If Ny is a lifting module, then sU is an extending module; and
the converse holds when N is M -cogenerated and amply supplemented.

Pmof./L\(Et/N be a lifting module and let A <° i(\]_/ Then, by Theorem 2.13,
N =Ke(A)® D for some D < N. Thus U = An(Ke(A))® An(D) = A® An(D).
Conversely, suppose that N is M-cogenerated and amply supplemented and let
sU be an extending module and K £ N. Then, by Theorem 2.13 again, U =
An(K) @ B for some B < gU. Thus 0 = Ke(U) = KeAn(K) N Ke(B) = KN
Ke(B). On the other hand, N = K + Ke(B) since if K + Ke(B) < N, then
0 # An(K + Ke(B)) = An(K) N AnKe(B), whence An(K) N B # 0, which is a
contradiction. Therefore N = K & Ke(B) and so N is lifting. O
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3. Applications to coretractable modules

Recall that an R-module N is called M -coretractable if, for any proper submod-
ule K of N, there exists a nonzero homomorphism f : N — M with f(K) = 0,
that is, Homg(N/K, M) # 0. An R-module M is called coretractable if M is
itself M-coretractable [3]. By Lemma 2.8, every M-cofaithful module N is M-
coretractable.

3.1. Theorem. Let M be a quasi-injective R-module. Then N € o[M] is M-
cofaithful if and only if N is M -coretractable.

Proof. By Lemma 2.8, every M-cofaithful module N is M-coretractable. Con-
versely, suppose that N is M-coretractable. It suffices to show that for every
X € o[M], Homg(N,Ke(Homp(X,M))) = 0. Assume that there exists a nonzero
homomorphism f : N — Ke(Hompgr(X,M)). Then 0 # if : N — X, where
i Ke(Homp(X,M)) — X is the inclusion map. Since if # 0, there exists
Z =TIm(if) # 0. Now, Homg(Z, M) # 0 because Z is a quotient of N and N
is M-coretractable. But every homomorphism g : Z — M can be extended to a
homomorphism h : X — M because M is quasi-injective and X € o[M] (by [11,
16.3]). Since Z C Ke(Homp(X,M)) C X, h(Z) = 0, which is a contradiction. [

3.2. Corollary. Let S = Endr(M) be a noetherian ring and M an amply sup-
plemented module with one of the following properties:

(1) M is a quasi-injective coretractable module;

(14) M is a > -self-cogenerator module (that is, any direct sum of copies of M
is a self-cogenerator). Then:

(a) There exist mutually inverse lattice correspondences between the coclosed
submodules of M and the closed left ideals of S = Endg(M).

(b) M s a lifting module if and only if S is a left extending ring.

Proof. By combining Theorems 2.13, 2.15, 3.1, and in the special case when N =
M and U = S. O

3.3. Corollary. Let M be an R-module. If any of the following conditions is
satisfied, then the hollow dimension of M is equal to n if and only if the right
uniform dimension of S is n:

(1) M is a quasi-injective coretractable module.

(i) M is a Y -self-cogenerator.

Proof. Using Theorems 2.12 and 3.1 in the special case when N = M and U =
S. O
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