\int Hacettepe Journal of Mathematics and Statistics Volume 44 (6) (2015), 1307 – 1314

M-Cofaithful modules and correspondences of closed submodules with coclosed submodules

T. Amouzegar^{*†} and Y. Talebi[‡]

Abstract

In this paper we introduce and investigate M-cofaithful modules. A module $N \in \sigma[M]$ is called M-cofaithful if for every $o \neq f \in Hom_R(N, X)$ with $X \in \sigma[M]$, $Hom_R(X, M)f \neq 0$. We show that if N is an M-cofaithful weak supplemented module and $Hom_R(N, M)$ a noe-therian S-module, then there exists an order-preserving correspondence between the cocolsed R-submodules of N and the closed S-submodules of $Hom_R(N, M)$, where $S = End_R(M)$. Some applications are: (1) the connection between M's being a lifting module and $End_R(M)$'s being an extending ring; (2) the equality between the hollow dimension of a quasi-injective coretractable module M and the uniform dimension of $End_R(M)$.

Keywords: *M*-Cofaithful modules, Coretractable modules, Closed and coclosed submodules.

Mathematics Subject Classification (2010): 16D10, 16S50.

1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with identity, M and N unitary right R-modules with $U = Hom_R(N, M)$ the set of Rhomomorphisms of N in M and $S = End_R(M)$ the ring of all R-endomorphisms of M; U is then a left S-module. By $\sigma[M]$ we mean the full subcategory of Mod-Rwhose objects are submodules of M-generated modules.

Following [5], a module $N \in \sigma[M]$ is said to be *M*-faithful if for every $0 \neq f \in Hom_R(X, N)$ with $X \in \sigma[M]$, $fHom_R(M, X) \neq 0$. When *M* is itself *M*-faithful, *M* is called a *self-faithful* module. Self-faithful modules have been studied by some authors (see, for example, [5, 6, 7, 8]). It is of obvious interest to investigate

^{*}Department of Mathematics, Quchan University of Advanced Technology, Quchan, Iran, Email: t.amoozegar@yahoo.com

[†]Corresponding Author.

[‡]Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran, Email: talebi@umz.ac.ir

the dual notion of M-faithful modules. We call a right R-module $N \in \sigma[M]$ Mcofaithful if for every $0 \neq f \in Hom_R(N, X)$ with $X \in \sigma[M]$, $Hom_R(X, M)f \neq 0$. When M is itself M-cofaithful, M is called a *self-cofaithful* module. Example of self-cofaithful modules is quasi-injective coretractable modules (Theorem 3.1). In this paper, we investigate M-cofaithful modules.

It is known that there exists a correspondence between the closed submodules of a suitably restricted module and the closed one-side ideal of its endomorphism ring. Such a correspondence is known to hold for semisimple modules, for free modules (see [2]), and for nonsingular modules M when $End_R(E(M))$ is the maximal right quotient ring of $End_R(M)$ (see [13]), hence in particular, for nonsingular retractable modules (see [9]). Some properties of the endomorphism rings of modules, such as being Baer, extending, etc., were then obtained by means of the above lattice isomorphism. Zelmanowitz showed in [12, Theorem 1.2] that when N is an M-faithful R-module, then there exists an order-preserving correspondence between the closed R-submodules of N and the closed S-submodules of $Hom_R(M, N)$, where $S = End_R(M)$. In this paper, we give conditions under which there exists a correspondence between the coclosed R-submodules of an M-cofaithful module N and the closed S-submodules of $Hom_R(N, M)$.

In section 2, we characterize M-cofaithful modules (Proposition 2.1) and study some properties of M-cofaithful modules. For an M-cofaithful module N, we show that $u.dim(_{S}U) = h.dim(N_R)$, where $U = Hom_R(N, M)$ (Theorem 2.12). We show that there is a correspondence between the coclosed R-submodules of an M-cofaithful weak supplemented module N and the closed S-submodules of $Hom_R(N, M)$ whenever $Hom_R(N, M)$ is a noetherian S-module. (Theorem 2.13). This result is used in proving that if $Hom_R(N, M)$ is a noetherian S-module, then an M-cofaithful M-cogenerated amply supplemented module N is a lifting right R-module if and only if $Hom_R(N, M)$ is a left extending S-module, where S = $End_R(M)$ (Theorem 2.15). In section 3, we show that M-coretractability characterizes M-cofaithfulness for some important families of modules and conclude that if either (i) M is an amply supplemented quasi-injective coretractable module and S is noetherian, or (ii) M is an amply supplemented \sum -self-cogenerator module and S is noetherian, then:

(a) There exist mutually inverse lattice correspondences between the coclosed submodules of M and the closed left ideals of $S = End_R(M)$.

(b) M is a lifting module if and only if S is a left extending ring.

We will use the notation $N \leq_e M$ to indicate that N is essential in M (i.e., $N \cap L \neq 0 \ \forall 0 \neq L \leq M$); $N \ll M$ means that N is small in M (i.e. $\forall L \leq M, L + N \neq M$). For $K \leq N_R$ and $A \leq_S U$ we denote: $An(K) = \{f \in Hom_R(N, M) \mid f(K) = 0\} (\simeq Hom_R(N/K, M)),$ $Ke(A) = \bigcap \{Keg \mid g \in A\}.$

A submodule N of M is called a *closed* submodule of M if it is not contained as a proper essential submodule of any other submodule of M. We recall that L is a *cosmall submodule of* K in M (denoted by $L \stackrel{cs}{\hookrightarrow} K$ in M) if $K/L \ll M/L$. Recall that a submodule L of M is called *coclosed* if L has no proper cosmall submodule (denoted by $L \stackrel{cc}{\hookrightarrow} M$). A *coclosure* of a submodule L of M (denoted by \tilde{L}) is a cosmall submodule of L in M which is also a coclosed submodule of M. If N and L are submodules of the module M, then N is called a *supplement* (*weak supplement*) of L, if N + L = M and $N \cap L \ll N$ ($N \cap L \ll M$). M is called *supplemented* (*weakly supplemented*) if each of its submodules has a supplement (weak supplement) in M. M is called *amply supplemented*, if for all submodules N and L of M with N + L = M, N contains a supplement of L in M.

2. *M*-Cofaithful Modules

A module $N \in \sigma[M]$ is called *M*-cofaithful if for every $0 \neq f \in Hom_R(N, X)$ with $X \in \sigma[M]$, $Hom_R(X, M)f \neq 0$.

2.1. Proposition. An *R*-module *N* is *M*-cofaithful if and only if $Hom_R(N, Ke(Hom_R(X, M))) = 0$ for every $X \in \sigma[M]$.

Proof. Let $h: N \to Ke(Hom_R(X, M))$ be a nonzero homomorphism. Composing with the natural inclusion map $i: Ke(Hom_R(X, M)) \to X$ we get a nonzero homomorphism $g: N \to X$ such that $\operatorname{Im} g \subseteq Ke(Hom_R(X, M))$. Then for every $f: X \to M$, $\operatorname{Im} g \subseteq Ke(Hom_R(X, M)) \subseteq \ker f$. Thus fg = 0 which is a contradiction.

Conversely, let $\forall X \in \sigma[M]$, $Hom_R(N, Ke(Hom_R(X, M))) = 0$ and $0 \neq g$: $N \to X$ be a nonzero homomorphism. If $Hom_R(X, M)g = 0$, then $\operatorname{Im} g \subseteq Ke(Hom_R(X, M))$. This gives a nonzero homomorphism $h: N \to Ke(Hom_R(X, M))$ which is a contradiction. \Box

2.2. Proposition. If N is an M-cofaithful module, then $Hom_R(N, \frac{KeAn(K)}{K}) = 0$ for every $K \leq N$.

Proof. It is a direct consequence of Proposition 2.1, because $\frac{KeAn(K)}{K} = Ke(Hom_R(\frac{N}{K}, M))$.

2.3. Proposition. Let M be an R-module. If M is a cogenerator in $\sigma[M]$, then every $N \in \sigma[M]$ is M-cofaithful.

Proof. Suppose that M is a cogenerator in $\sigma[M]$. Then for every $X \in \sigma[M]$, X is M-cogenerated. Thus $Ke(Hom_R(X, M)) = 0$. So $Hom_R(N, Ke(Hom_R(X, M))) = 0$ for every $N \in \sigma[M]$. Hence every $N \in \sigma[M]$ is M-cofaithful. \Box

2.4. Proposition. Let M be an R-module. Then every generator in $\sigma[M]$ is an M-cofaithful module if and only if every R-module in $\sigma[M]$ is an M-cofaithful module.

Proof. Let every generator in $\sigma[M]$ is an *M*-cofaithful module. Suppose that $N \in \sigma[M]$ and $0 \neq f \in Hom_R(N, X)$ is given with $X \in \sigma[M]$. Then there is a generator *F* and an epimorphism $g: F \to N$. Since *F* is *M*-cofaithful, there exists $h \in Hom_R(X, M)$ with $hfg \neq 0$. Thus $hf \neq 0$ and this proves that *N* is *M*-cofaithful. The converse is clear.

2.5. Proposition. Let $\{N_{\alpha} \mid \alpha \in I\}$ be a family of *M*-cofaithful modules. Then $N = \bigoplus_{\alpha \in I} N_{\alpha}$ is *M*-cofaithful.

Proof. Let $0 \neq f \in Hom_R(N, X)$ for $X \in \sigma[M]$. Since N_α is *M*-cofaithful for any $\alpha \in I$, hence there exists $h_\alpha : X \to M$ such that $h_\alpha fi_\alpha \neq 0$, where $i_\alpha : N_\alpha \to N$ is the natural injection map. Then $h_\alpha f \neq 0$ and so *N* is *M*-cofaithful.

2.6. Proposition. Let N be an M-cofaithful R-module. Then every supplement submodule of N is M-cofaithful.

Proof. Let K be a supplement submodule of N and $0 \neq g \in Hom_R(K, X)$ for $X \in \sigma[M]$. Then there exists $L \leq N$ such that K + L = N and $K \cap L \ll K$. Put $X' = g(K \cap L) \ll X$ and let g' denote the composition $N \xrightarrow{\pi} (K + L)/K \cong K/(K \cap L) \xrightarrow{g} X/X'$. Then $0 \neq g' : N \to X/X'$. By assumption, there exists $0 \neq h \in Hom_R(X/X', M)$ with $hg' \neq 0$. Then $hg \neq 0$ and so $Hom_R(X, M)g \neq 0$ because $h\pi' \neq 0$, where $\pi' : X \to X/X'$ denotes the natural map. \Box

2.7. Corollary. Let N be an M-cofaithful R-module. Then:

(i) Every direct summand of N is M-cofaithful.

(ii) Every weak supplement coclosed submodule of N is M-cofaithful.

Proof. (i) By Proposition 2.6.

(*ii*) Since every weak supplement coclosed submodule is a supplement submodule, it follows by Proposition 2.6. $\hfill \Box$

2.8. Lemma. Let N be an M-cofaithful R-module. Then for every proper submodule K of N, $K \stackrel{cs}{\hookrightarrow} KeAn(K)$ in N and $KeAn(K) \leq N$; in particular, $Hom_R(N/K, M) \neq 0$.

Proof. If $K \leq N$ and $\pi: N \to N/K$ is the natural epimorphism, then $Hom_R(N/K, M)\pi \neq 0$ since $N/K \in \sigma[M]$. Thus $KeAn(K) \leq N$. Let $K \leq L \leq N$, then $KeAn(K) + L \leq KeAn(L) \leq N$. Therefore $K \stackrel{cs}{\hookrightarrow} KeAn(K)$ in N.

2.9. Proposition. Assume that N is an M-cofaithful R-module. Let $K \leq N$ and L be a weak supplement coclosed submodule of N such that $L \subseteq KeAn(K)$. Then $L \subseteq K$. In particular, if K is a weak supplement coclosed submodule of N, then K is the unique coclosure of KeAn(K) in N.

Proof. Let $K \leq N$ and L be a weak supplement coclosed submodule of N such that $L \subseteq KeAn(K)$. Suppose that g denotes the composition $L \xrightarrow{\subseteq} KeAn(K) \xrightarrow{\pi} \frac{KeAn(K)}{K}$. Then by Proposition 2.2 and Corollary 2.7, g = 0, and so $L \subseteq K$. \Box

2.10. Proposition. Let N be an M-cofaithful R-module. Then the following conditions hold:

(1) For every finitely generated S-submodule $A \leq {}_{S}U, A \leq_{e} Hom_{R}(N/Ke(A), M)$ (equivalently, $A \leq_{e} AnKe(A)$).

(2) Let $L \leq K \leq N$. If $An(K) \leq_e An(L)$, then $L \xrightarrow{cs} K$ in N. The converse holds if $Hom_R(N, M)$ is a noetherian S-module.

(3) Let $A \leq B \leq {}_{S}U$ and $Hom_{R}(N, M)$ be a noetherian S-module. Then $A \leq_{e} B$ if and only if $Ke(B) \stackrel{cs}{\hookrightarrow} Ke(A)$ in N.

Proof. (1) Let $0 \neq f \in Hom_R(N/Ke(A), M)$. Set $A = Sg_1 + Sg_2 + ... + Sg_k$ with $g_i \in Hom_R(N, M)$. Then $Ke(A) = \bigcap_{i \leq k} Keg_i$. Let $P = \{(f(n + Ke(A)), (\prod_{i=1}^k g_i)(n + Ke(A))) \mid n \in N\}$ and let $\overline{i}_1 : M^{(k)} \to M \oplus M^{(k)} \to \frac{M \oplus M^{(k)}}{P}$ and $\overline{i}_2 : M \to M \oplus M^{(k)} \to \frac{M \oplus M^{(k)}}{P}$ be the canonical maps. We have the following

1310

commutative diagram:

$$\begin{array}{cccc} 0 \longrightarrow N/Ke(A) \xrightarrow{\prod_{i=1}^{k} g_i} & M^{(k)} \\ & \downarrow_{f} & \downarrow_{-\bar{i}_1} \\ & M \xrightarrow{\bar{i}_2} & (M \oplus M^{(k)})/P \end{array}$$

Then $0 \neq \bar{i_2}f = -\bar{i_1}(\prod_{i=1}^k g_i) : N/Ke(A) \to (M \oplus M^{(k)})/P$. By hypothesis, there exists $h \in Hom_R(\frac{M \oplus M^{(k)}}{P}, M)$ with $h\bar{i_2}f \neq 0$. We may consider $h(-\bar{i_1})$ as $\sum_{i=1}^k s_i$ for some $s_i \in S$. Thus $0 \neq h\bar{i_2}f = h(-\bar{i_1})(\prod_{i=1}^k g_i) = \sum_{i=1}^k s_ig_i \in A$. Therefore $A \leq_e Hom_R(N/Ke(A), M)$.

(2) Let $An(K) \leq_e An(L)$ for $L \leq K \leq N$. Suppose that K/L + X/L = N/L, where $L \leq X \leq N$. If $X \neq N$, then by hypothesis, there exists $0 \neq f \in U$ with f(X) = 0. Thus f(L) = 0 and so $0 \neq f \in An(L)$. As $An(K) \leq_e An(L)$, there exists $g \in S$ such that $0 \neq gf \in An(K)$. Hence gf(N) = gf(K + X) = 0, which is a contradiction. Therefore $L \stackrel{cs}{\hookrightarrow} K$ in N. Conversely, assume that $L \stackrel{cs}{\hookrightarrow} K$ in N and let $0 \neq A \leq An(L)$. Then $L \leq Ke(A) \leq N$ and so $K + Ke(A) \leq N$. Thus $0 \neq An(K + Ke(A)) = An(K) \cap AnKe(A)$. But $A \leq_e AnKe(A)$ from (1), so $An(K) \cap A \neq 0$. Therefore $An(K) \leq_e An(L)$.

(3) It is clear that A is essential in B if and only if AnKe(A) is essential in AnKe(B), by (1) (because A and B are finitely generated, so (1) can be applied). By using (2), the claimed property holds.

Recall that a module M is said to have uniform (or Goldie) dimension n, denoted by u.dim(M) = n for some $n \in \mathbb{N}$, if $sup\{k \in \mathbb{N} \mid M \text{ contains } k \text{ independent submodules }\} = n$ [4]. A module M is said to have hollow dimension n, denoting this by h.dim(M) = n for some $n \in \mathbb{N}$, if $sup\{k \in \mathbb{N} \mid M \text{ has } k \text{ coindependent submodules }\} = n$ [3].

2.11. Lemma. Let $N \in \sigma[M]$ be a nonzero *R*-module and $K, L \leq N$. If K + L = N, then $An(K \cap L) = An(K) + An(L)$.

Proof. It follows from [1, Lemma 4.9].

2.12. Theorem. Let N be an M-cofaithful module. Then $u.dim(_{S}U) = h.dim(N_{R})$.

Proof. Assume first that $Sf_1, Sf_2, ..., Sf_n$ is an independent family of submodules of $_{SU}$ and $0 \neq f_i \in _{SU}$ for all $1 \leq i \leq n$. Since $Sf_i \cap Sf_j = 0$ for any $i \neq j$, and $Sf_i \leq_e AnKe(Sf_i)$ for all $1 \leq i \leq n$, $AnKe(Sf_i) \cap AnKe(Sf_j) = 0$. Thus $An(Ke(Sf_i) + Ke(Sf_j)) = 0$. Since N is M-cofaithful, $Ke(Sf_i) + Ke(Sf_j) =$ N. By Lemma 2.11, $An(Ke(Sf_i) \cap Ke(Sf_j)) = AnKe(Sf_i) + AnKe(Sf_j)$ for each $i \neq j$. Let $i, j, k \in \{1, 2, ..., n\}$ be distinct. Since $Sf_i \cap (Sf_j + Sf_k) =$ 0 and $Sf_i \cap (Sf_j + Sf_k) \leq_e AnKe(Sf_i) \cap (AnKe(Sf_j) + AnKe(Sf_k))$, hence $0 = AnKe(Sf_i) \cap (AnKe(Sf_j) + AnKe(Sf_k)) = AnKe(Sf_i) \cap An(Ke(Sf_j) \cap$ $Ke(Sf_k)) = An(Ke(Sf_i) + (Ke(Sf_j) \cap Ke(Sf_k)))$. Therefore $Ke(Sf_i) + (Ke(Sf_j) \cap$ $Ke(Sf_k)) = N$. It is easy to see by induction that for every $1 \leq i \leq n$, $Ke(Sf_i) + (\bigcap_{j \neq i} Ke(Sf_j)) = N$. Hence $\{Ke(Sf_i), ..., Ke(Sf_n)\}$ is coindependent. Thus $u.dim(_{SU}) \leq h.dim(N_R)$. On the other hand, from [1, Proposition 4.10], $u.dim(_{SU}) \geq h.dim(N_R)$ and the proof is completed. \Box **2.13. Theorem.** Assume that N is an M-cofaithful weak supplemented module and $Hom_R(N, M)$ is a noetherian S-module. Then for every $A \leq^c {}_{S}U =$ $Hom_R(N, M)$, Ke(A) has a unique coclosure $\widetilde{Ke}(A)$ in N and the maps $K \rightarrow$ An(K) and $A \rightarrow \widetilde{Ke}(A)$ determine mutually inverse correspondences between the coclosed R-submodules of N and the closed S-submodules of $U = Hom_R(N, M)$.

Proof. Let $K \stackrel{cc}{\hookrightarrow} N$ and $An(K) \leq_e A \leq_S U$. By Zorn's Lemma, we may assume that A is closed in ${}_S U$. From Proposition 2.10, $Ke(A) \stackrel{cs}{\hookrightarrow} KeAn(K)$ in N. By Proposition 2.9, $K \stackrel{cs}{\hookrightarrow} Ke(A)$ in N. Hence $A \subseteq AnKe(A) \subseteq An(K)$. Thus A = An(K); that is, $An(K) \leq^c {}_S U$. Also, K = KeAn(K).

Assume that $A \leq^{c} {}_{S}U$. We show that Ke(A) has a unique coclosure in N. Let $K \stackrel{cc}{\hookrightarrow} N$ and $K \stackrel{cs}{\to} Ke(A)$ in N. By using Proposition 2.10, $A \leq_{e} AnKe(A) \leq_{e} An(K)$, and so A = An(K). Thus Ke(A) = KeAn(K). Therefore K is a unique coclosure of Ke(A) (by Proposition 2.9). So A = An(K) = An(Ke(A)).

2.14. Corollary. Let N be an M-cofaithful module and $Hom_R(N, M)$ be a noetherian S-module. Then, $\widetilde{Ke(A)} = Ke(A)$ for every $A \leq^c {}_{S}U$ if and only if every $K \stackrel{cc}{\hookrightarrow} N$ is M-cogenerated.

Proof. Assume that for every $A \leq^c {}_{S}U$, $\widetilde{Ke(A)} = Ke(A)$ and let $K \stackrel{cc}{\hookrightarrow} N$. Then $An(K) \leq^c {}_{S}U$. From Theorem 2.13 and hypothesis, $K = \widetilde{KeAn(K)} = KeAn(K)$. Thus K is M-cogenerated. Conversely, suppose that every $K \stackrel{cc}{\hookrightarrow} N$ is M-cogenerated and $A \leq^c {}_{S}U$. By Theorem 2.13, $A = An(\widetilde{Ke(A)})$. On the other hand, by hypothesis, $\widetilde{Ke(A)} = KeAn(\widetilde{Ke(A)})$. Therefore $\widetilde{Ke(A)} = Ke(A)$.

Recall that an *R*-module *M* is an *extending* module if for every submodule *K* of *M* there exists a direct summand *L* of *M* such that $K \leq_e L$, or equivalently, every closed submodule of *M* is a direct summand. A left extending ring is a ring which is a extending module over itself. Dually, a module *M* is called a *lifting* module if, every submodule *N* of *M* can be written in the form $N = K \oplus D$ where *K* is a direct summand of *M* and $D \ll M$. By [10, 4.8], *M* is lifting if and only if it is amply supplemented and its coclosed submodules are direct summands.

2.15. Theorem. Let N be an M-cofaithful module and $Hom_R(N, M)$ be a noe-therian S-module. If N_R is a lifting module, then ${}_SU$ is an extending module; and the converse holds when N is M-cogenerated and amply supplemented.

Proof. Let N be a lifting module and let $A \leq^c SU$. Then, by Theorem 2.13, $N = Ke(A) \oplus D$ for some $D \leq N$. Thus $U = An(Ke(A)) \oplus An(D) = A \oplus An(D)$. Conversely, suppose that N is M-cogenerated and amply supplemented and let SU be an extending module and $K \stackrel{cc}{\hookrightarrow} N$. Then, by Theorem 2.13 again, $U = An(K) \oplus B$ for some $B \leq SU$. Thus $0 = Ke(U) = KeAn(K) \cap Ke(B) = K \cap Ke(B)$. On the other hand, N = K + Ke(B) since if $K + Ke(B) \leq N$, then $0 \neq An(K + Ke(B)) = An(K) \cap AnKe(B)$, whence $An(K) \cap B \neq 0$, which is a contradiction. Therefore $N = K \oplus Ke(B)$ and so N is lifting.

3. Applications to coretractable modules

Recall that an *R*-module *N* is called *M*-coretractable if, for any proper submodule *K* of *N*, there exists a nonzero homomorphism $f: N \to M$ with f(K) = 0, that is, $Hom_R(N/K, M) \neq 0$. An *R*-module *M* is called *coretractable* if *M* is itself *M*-coretractable [3]. By Lemma 2.8, every *M*-cofaithful module *N* is *M*-coretractable.

3.1. Theorem. Let M be a quasi-injective R-module. Then $N \in \sigma[M]$ is M-cofaithful if and only if N is M-coretractable.

Proof. By Lemma 2.8, every *M*-cofaithful module *N* is *M*-coretractable. Conversely, suppose that *N* is *M*-coretractable. It suffices to show that for every $X \in \sigma[M]$, $Hom_R(N, Ke(Hom_R(X, M))) = 0$. Assume that there exists a nonzero homomorphism $f: N \to Ke(Hom_R(X, M))$. Then $0 \neq if: N \to X$, where $i: Ke(Hom_R(X, M)) \to X$ is the inclusion map. Since $if \neq 0$, there exists $Z = \text{Im}(if) \neq 0$. Now, $Hom_R(Z, M) \neq 0$ because *Z* is a quotient of *N* and *N* is *M*-coretractable. But every homomorphism $g: Z \to M$ can be extended to a homomorphism $h: X \to M$ because *M* is quasi-injective and $X \in \sigma[M]$ (by [11, 16.3]). Since $Z \subseteq Ke(Hom_R(X, M)) \subseteq X$, h(Z) = 0, which is a contradiction. \Box

3.2. Corollary. Let $S = End_R(M)$ be a noetherian ring and M an amply supplemented module with one of the following properties:

(i) M is a quasi-injective coretractable module;

(ii) M is a \sum -self-cogenerator module (that is, any direct sum of copies of M is a self-cogenerator). Then:

(a) There exist mutually inverse lattice correspondences between the coclosed submodules of M and the closed left ideals of $S = End_R(M)$.

(b) M is a lifting module if and only if S is a left extending ring.

Proof. By combining Theorems 2.13, 2.15, 3.1, and in the special case when N = M and U = S.

3.3. Corollary. Let M be an R-module. If any of the following conditions is satisfied, then the hollow dimension of M is equal to n if and only if the right uniform dimension of S is n:

- (i) M is a quasi-injective coretractable module.
- (ii) M is a \sum -self-cogenerator.

Proof. Using Theorems 2.12 and 3.1 in the special case when N = M and U = S.

Acknowledgment

The authors are very thankful to the referee for carefully reading this paper and his or her valuable comments and suggestions.

References

- Amini, B. Ershad, M. and Sharif, H. Coretractable modules, J. Aust. Math. Soc. 86, (3), 289-304, 2009.
- [2] Chatter, A. W. and Khuri, S. M. Endomorphism Rings of Modules over Nonsingular CS Rings, J. London Math. Soc. 21 (2), 434-444, 1980.

- [3] Clark, J. Lomp, C. Vanaja, N. and Wisbauer, R. Lifting Modules, Frontiers in Mathematics, Birkäuser Verlag, 2006.
- [4] Dung, N. V. Huynh, D. V. Smith, P. F. and Wisbauer, R. Extending Modules, Pitman Research Notes in Mathematics Series 313, Longman, Harlow (1994).
- [5] García Hernández J. L. and Gómez Pardo, J. L. Self-injective and PF endomorphism rings, Israel J. Math. 58, 324-350, 1987.
- [6] García, J. L. and Saorín, M. Endomorphism rings and category equivalences, J. Algebra 127, 182-205, 1989.
- [7] Gómez Pardo, J. L. Endomorphism rings and dual modules, J. Algebra 130, 477-493, 1990.
- [8] Kato, T. U-distinguished modules, J. Algebra 25, 15-24, 1973.
- Khuri, S.M. Nonsingular retractable modules and their endomorphism rings, Bull. Austral. Math. Soc., 43 (1), 63-71, 1991.
- [10] Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [11] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- [12] Zelmanowitz, J. M. Correspondences of closed submodules, Proc. Amer. Math. Soc. 124 (10), 2955-2960, 1996.
- [13] Zhou, Z.P. A lattice isomorphism theorem for nonsingular retractable modules, Canad. Math. Bull. 37 (1), 140-144, 1999.

1314