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M-Cofaithful modules and correspondences of
closed submodules with coclosed submodules

T. Amouzegar∗† and Y. Talebi‡

Abstract
In this paper we introduce and investigate M -cofaithful modules. A
module N ∈ σ[M ] is called M -cofaithful if for every o 6= f ∈
HomR(N,X) with X ∈ σ[M ], HomR(X,M)f 6= 0. We show that if N
is anM -cofaithful weak supplemented module andHomR(N,M) a noe-
therian S-module, then there exists an order-preserving correspondence
between the cocolsed R-submodules of N and the closed S-submodules
of HomR(N,M), where S = EndR(M). Some applications are: (1) the
connection between M

,

s being a lifting module and EndR(M)
,

s being
an extending ring; (2) the equality between the hollow dimension of a
quasi-injective coretractable module M and the uniform dimension of
EndR(M).
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submodules.
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1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with iden-
tity, M and N unitary right R-modules with U = HomR(N,M) the set of R-
homomorphisms of N in M and S = EndR(M) the ring of all R-endomorphisms
ofM ; U is then a left S-module. By σ[M ] we mean the full subcategory of Mod-R
whose objects are submodules of M -generated modules.

Following [5], a module N ∈ σ[M ] is said to be M -faithful if for every 0 6= f ∈
HomR(X,N) with X ∈ σ[M ], fHomR(M,X) 6= 0. When M is itself M -faithful,
M is called a self-faithful module. Self-faithful modules have been studied by
some authors (see, for example, [5, 6, 7, 8]). It is of obvious interest to investigate
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the dual notion of M -faithful modules. We call a right R-module N ∈ σ[M ] M -
cofaithful if for every 0 6= f ∈ HomR(N,X) with X ∈ σ[M ], HomR(X,M)f 6= 0.
When M is itself M -cofaithful, M is called a self-cofaithful module. Example of
self-cofaithful modules is quasi-injective coretractable modules (Theorem 3.1). In
this paper, we investigate M -cofaithful modules.

It is known that there exists a correspondence between the closed submodules
of a suitably restricted module and the closed one-side ideal of its endomorphism
ring. Such a correspondence is known to hold for semisimple modules, for free
modules (see [2]), and for nonsingular modules M when EndR(E(M)) is the max-
imal right quotient ring of EndR(M) (see [13]), hence in particular, for nonsin-
gular retractable modules (see [9]). Some properties of the endomorphism rings
of modules, such as being Baer, extending, etc., were then obtained by means of
the above lattice isomorphism. Zelmanowitz showed in [12, Theorem 1.2] that
when N is an M -faithful R-module, then there exists an order-preserving corre-
spondence between the closed R-submodules of N and the closed S-submodules
of HomR(M,N), where S = EndR(M). In this paper, we give conditions un-
der which there exists a correspondence between the coclosed R-submodules of an
M -cofaithful module N and the closed S-submodules of HomR(N,M).

In section 2, we characterize M -cofaithful modules (Proposition 2.1) and study
some properties of M -cofaithful modules. For an M -cofaithful module N , we
show that u.dim(SU) = h.dim(NR), where U = HomR(N,M) (Theorem 2.12).
We show that there is a correspondence between the coclosed R-submodules of
an M -cofaithful weak supplemented module N and the closed S-submodules of
HomR(N,M) whenever HomR(N,M) is a noetherian S-module. (Theorem 2.13).
This result is used in proving that if HomR(N,M) is a noetherian S-module, then
an M -cofaithful M -cogenerated amply supplemented module N is a lifting right
R-module if and only if HomR(N,M) is a left extending S-module, where S =
EndR(M) (Theorem 2.15). In section 3, we show that M -coretractability charac-
terizesM -cofaithfulness for some important families of modules and conclude that
if either (i) M is an amply supplemented quasi-injective coretractable module and
S is noetherian, or (ii) M is an amply supplemented

∑
-self-cogenerator module

and S is noetherian, then:
(a) There exist mutually inverse lattice correspondences between the coclosed

submodules of M and the closed left ideals of S = EndR(M).
(b) M is a lifting module if and only if S is a left extending ring.
We will use the notation N ≤e M to indicate that N is essential in M (i.e.,

N ∩ L 6= 0 ∀0 6= L ≤ M); N � M means that N is small in M (i.e. ∀L �
M,L+N 6= M). For K ≤ NR and A ≤ SU we denote:
An(K) = {f ∈ HomR(N,M) | f(K) = 0}(' HomR(N/K,M)),
Ke(A) =

⋂
{Keg | g ∈ A}.

A submodule N ofM is called a closed submodule ofM if it is not contained as
a proper essential submodule of any other submodule of M . We recall that L is a
cosmall submodule of K in M (denoted by L cs

↪→ K in M) if K/L�M/L. Recall
that a submodule L of M is called coclosed if L has no proper cosmall submodule
(denoted by L cc

↪→M). A coclosure of a submodule L of M (denoted by L̃) is a
cosmall submodule of L in M which is also a coclosed submodule of M .
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If N and L are submodules of the module M , then N is called a supplement
(weak supplement) of L, if N +L = M and N ∩L� N (N ∩L�M). M is called
supplemented (weakly supplemented) if each of its submodules has a supplement
(weak supplement) in M . M is called amply supplemented, if for all submodules
N and L of M with N + L = M , N contains a supplement of L in M.

2. M-Cofaithful Modules

A module N ∈ σ[M ] is called M -cofaithful if for every 0 6= f ∈ HomR(N,X)
with X ∈ σ[M ], HomR(X,M)f 6= 0.

2.1. Proposition. An R-module N is M -cofaithful if and only if HomR(N,
Ke(HomR(X,M))) = 0 for every X ∈ σ[M ].

Proof. Let h : N → Ke(HomR(X,M)) be a nonzero homomorphism. Composing
with the natural inclusion map i : Ke(HomR(X,M)) → X we get a nonzero
homomorphism g : N → X such that Im g ⊆ Ke(HomR(X,M)). Then for every
f : X → M, Im g ⊆ Ke(HomR(X,M)) ⊆ ker f . Thus fg = 0 which is a
contradiction.

Conversely, let ∀X ∈ σ[M ], HomR(N,Ke(HomR(X,M))) = 0 and 0 6= g :
N → X be a nonzero homomorphism. If HomR(X,M)g = 0, then Im g ⊆
Ke(HomR(X,M)). This gives a nonzero homomorphism h : N → Ke(HomR(X,M))
which is a contradiction. �

2.2. Proposition. If N is an M -cofaithful module, then HomR(N, KeAn(K)
K ) = 0

for every K ≤ N .

Proof. It is a direct consequence of Proposition 2.1, because KeAn(K)
K = Ke(HomR(NK ,M)).

�

2.3. Proposition. Let M be an R-module. If M is a cogenerator in σ[M ], then
every N ∈ σ[M ] is M -cofaithful.

Proof. Suppose that M is a cogenerator in σ[M ]. Then for every X ∈ σ[M ],
X is M -cogenerated. Thus Ke(HomR(X,M)) = 0. So HomR(N,Ke(HomR(X,
M))) = 0 for every N ∈ σ[M ]. Hence every N ∈ σ[M ] is M -cofaithful. �

2.4. Proposition. Let M be an R-module. Then every generator in σ[M ] is an
M -cofaithful module if and only if every R-module in σ[M ] is an M -cofaithful
module.

Proof. Let every generator in σ[M ] is an M -cofaithful module. Suppose that
N ∈ σ[M ] and 0 6= f ∈ HomR(N,X) is given with X ∈ σ[M ]. Then there is
a generator F and an epimorphism g : F → N . Since F is M -cofaithful, there
exists h ∈ HomR(X,M) with hfg 6= 0. Thus hf 6= 0 and this proves that N is
M -cofaithful. The converse is clear. �

2.5. Proposition. Let {Nα | α ∈ I} be a family of M -cofaithful modules. Then
N = ⊕α∈INα is M -cofaithful.

Proof. Let 0 6= f ∈ HomR(N,X) for X ∈ σ[M ]. Since Nα is M -cofaithful for any
α ∈ I, hence there exists hα : X → M such that hαfiα 6= 0, where iα : Nα → N
is the natural injection map. Then hαf 6= 0 and so N is M -cofaithful. �



1310

2.6. Proposition. Let N be an M -cofaithful R-module. Then every supplement
submodule of N is M -cofaithful.

Proof. Let K be a supplement submodule of N and 0 6= g ∈ HomR(K,X) for
X ∈ σ[M ]. Then there exists L ≤ N such that K + L = N and K ∩ L � K.
Put X ′ = g(K ∩ L) � X and let g′ denote the composition N π→ (K + L)/K ∼=
K/(K ∩ L)

g→ X/X ′. Then 0 6= g′ : N → X/X ′. By assumption, there exists
0 6= h ∈ HomR(X/X ′,M) with hg′ 6= 0. Then hg 6= 0 and so HomR(X,M)g 6= 0
because hπ′ 6= 0, where π′ : X → X/X ′ denotes the natural map. �

2.7. Corollary. Let N be an M -cofaithful R-module. Then:
(i) Every direct summand of N is M -cofaithful.
(ii) Every weak supplement coclosed submodule of N is M -cofaithful.

Proof. (i) By Proposition 2.6.
(ii) Since every weak supplement coclosed submodule is a supplement submod-

ule, it follows by Proposition 2.6. �

2.8. Lemma. Let N be anM -cofaithful R-module. Then for every proper submod-
ule K of N , K cs

↪→ KeAn(K) in N and KeAn(K) � N ; in particular, HomR(N/K,M) 6=
0.

Proof. IfK � N and π : N → N/K is the natural epimorphism, thenHomR(N/K,M)π 6=
0 since N/K ∈ σ[M ]. Thus KeAn(K) � N . Let K ≤ L � N , then KeAn(K) +

L ≤ KeAn(L) � N . Therefore K cs
↪→ KeAn(K) in N . �

2.9. Proposition. Assume that N is an M -cofaithful R-module. Let K ≤ N and
L be a weak supplement coclosed submodule of N such that L ⊆ KeAn(K). Then
L ⊆ K. In particular, if K is a weak supplement coclosed submodule of N , then
K is the unique coclosure of KeAn(K) in N .

Proof. Let K ≤ N and L be a weak supplement coclosed submodule of N such
that L ⊆ KeAn(K). Suppose that g denotes the composition L ⊆→ KeAn(K) π→
KeAn(K)

K . Then by Proposition 2.2 and Corollary 2.7, g = 0, and so L ⊆ K. �

2.10. Proposition. Let N be an M -cofaithful R-module. Then the following
conditions hold:

(1) For every finitely generated S-submodule A ≤ SU , A ≤e HomR(N/Ke(A),M)
(equivalently, A ≤e AnKe(A)).

(2) Let L ≤ K ≤ N . If An(K) ≤e An(L), then L
cs
↪→ K in N . The converse

holds if HomR(N,M) is a noetherian S-module.
(3) Let A ≤ B ≤ SU and HomR(N,M) be a noetherian S-module. Then

A ≤e B if and only if Ke(B)
cs
↪→ Ke(A) in N .

Proof. (1) Let 0 6= f ∈ HomR(N/Ke(A),M). Set A = Sg1 + Sg2 + ... +
Sgk with gi ∈ HomR(N,M). Then Ke(A) =

⋂
i≤kKegi. Let P = {(f(n +

Ke(A)), (
∏k
i=1 gi)(n+Ke(A))) | n ∈ N} and let ī1 : M (k) →M⊕M (k) → M⊕M(k)

P

and ī2 : M →M⊕M (k) → M⊕M(k)

P be the canonical maps. We have the following
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commutative diagram:

0 −→ N/Ke(A)
↓ f

∏k
i=1 gi−→ M (k)

↓ −ī1

M
ī2−→ (M ⊕M (k))/P .

Then 0 6= ī2f = −ī1(
∏k
i=1 gi) : N/Ke(A) → (M ⊕M (k))/P . By hypothesis,

there exists h ∈ HomR(M⊕M
(k)

P ,M) with hī2f 6= 0. We may consider h(−ī1) as∑k
i=1 si for some si ∈ S. Thus 0 6= hī2f = h(−ī1)(

∏k
i=1 gi) =

∑k
i=1 sigi ∈ A.

Therefore A ≤e HomR(N/Ke(A),M).
(2) Let An(K) ≤e An(L) for L ≤ K ≤ N . Suppose that K/L + X/L = N/L,

where L ≤ X ≤ N . If X 6= N , then by hypothesis, there exists 0 6= f ∈ U with
f(X) = 0. Thus f(L) = 0 and so 0 6= f ∈ An(L). As An(K) ≤e An(L), there
exists g ∈ S such that 0 6= gf ∈ An(K). Hence gf(N) = gf(K + X) = 0, which
is a contradiction. Therefore L cs

↪→ K in N . Conversely, assume that L cs
↪→ K in

N and let 0 6= A ≤ An(L). Then L ≤ Ke(A) � N and so K + Ke(A) � N .
Thus 0 6= An(K + Ke(A)) = An(K) ∩ AnKe(A). But A ≤e AnKe(A) from (1),
so An(K) ∩A 6= 0. Therefore An(K) ≤e An(L).

(3) It is clear that A is essential in B if and only if AnKe(A) is essential in
AnKe(B), by (1) (because A and B are finitely generated, so (1) can be applied).
By using (2), the claimed property holds. �

Recall that a module M is said to have uniform (or Goldie) dimension n, de-
noted by u.dim(M) = n for some n ∈ N, if sup{k ∈ N | M contains k independent
submodules } = n [4]. A module M is said to have hollow dimension n, denoting
this by h.dim(M) = n for some n ∈ N, if sup{k ∈ N | M has k coindependent
submodules } = n [3].

2.11. Lemma. Let N ∈ σ[M ] be a nonzero R-module and K,L ≤ N . If K +L =
N , then An(K ∩ L) = An(K) +An(L).

Proof. It follows from [1, Lemma 4.9]. �

2.12. Theorem. Let N be anM -cofaithful module. Then u.dim(SU) = h.dim(NR).

Proof. Assume first that Sf1, Sf2, ..., Sfn is an independent family of submodules
of SU and 0 6= fi ∈ SU for all 1 ≤ i ≤ n. Since Sfi ∩ Sfj = 0 for any i 6= j,
and Sfi ≤e AnKe(Sfi) for all 1 ≤ i ≤ n, AnKe(Sfi) ∩ AnKe(Sfj) = 0. Thus
An(Ke(Sfi) + Ke(Sfj)) = 0. Since N is M -cofaithful, Ke(Sfi) + Ke(Sfj) =
N . By Lemma 2.11, An(Ke(Sfi) ∩ Ke(Sfj)) = AnKe(Sfi) + AnKe(Sfj) for
each i 6= j. Let i, j, k ∈ {1, 2, ..., n} be distinct. Since Sfi ∩ (Sfj + Sfk) =
0 and Sfi ∩ (Sfj + Sfk) ≤e AnKe(Sfi) ∩ (AnKe(Sfj) + AnKe(Sfk)), hence
0 = AnKe(Sfi) ∩ (AnKe(Sfj) + AnKe(Sfk)) = AnKe(Sfi) ∩ An(Ke(Sfj) ∩
Ke(Sfk)) = An(Ke(Sfi)+(Ke(Sfj)∩Ke(Sfk))). ThereforeKe(Sfi)+(Ke(Sfj)∩
Ke(Sfk)) = N . It is easy to see by induction that for every 1 ≤ i ≤ n,
Ke(Sfi) + (

⋂
j 6=iKe(Sfj)) = N. Hence {Ke(Sfi), ...,Ke(Sfn)} is coindependent.

Thus u.dim(SU) ≤ h.dim(NR). On the other hand, from [1, Proposition 4.10],
u.dim(SU) ≥ h.dim(NR) and the proof is completed. �
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2.13. Theorem. Assume that N is an M -cofaithful weak supplemented mod-
ule and HomR(N,M) is a noetherian S-module. Then for every A ≤c SU =

HomR(N,M), Ke(A) has a unique coclosure K̃e(A) in N and the maps K →
An(K) and A→ K̃e(A) determine mutually inverse correspondences between the
coclosed R-submodules of N and the closed S-submodules of U = HomR(N,M).

Proof. Let K cc
↪→ N and An(K) ≤e A ≤ SU . By Zorn

,

s Lemma, we may assume
that A is closed in SU . From Proposition 2.10, Ke(A)

cs
↪→ KeAn(K) in N . By

Proposition 2.9, K cs
↪→ Ke(A) in N . Hence A ⊆ AnKe(A) ⊆ An(K). Thus A =

An(K); that is, An(K) ≤c SU . Also, K = ˜KeAn(K).
Assume that A ≤c SU . We show that Ke(A) has a unique coclosure in N . Let

K
cc
↪→ N and K

cs
↪→ Ke(A) in N . By using Proposition 2.10, A ≤e AnKe(A) ≤e

An(K), and so A = An(K). Thus Ke(A) = KeAn(K). Therefore K is a unique
coclosure of Ke(A) (by Proposition 2.9). So A = An(K) = An(K̃e(A)). �

2.14. Corollary. Let N be an M -cofaithful module and HomR(N,M) be a noe-
therian S-module. Then, K̃e(A) = Ke(A) for every A ≤c SU if and only if every
K

cc
↪→ N is M -cogenerated.

Proof. Assume that for every A ≤c SU , K̃e(A) = Ke(A) and let K cc
↪→ N . Then

An(K) ≤c SU . From Theorem 2.13 and hypothesis, K = ˜KeAn(K) = KeAn(K).
ThusK isM -cogenerated. Conversely, suppose that everyK cc

↪→ N isM -cogenerated
and A ≤c SU . By Theorem 2.13, A = An(K̃e(A)). On the other hand, by hypoth-
esis, K̃e(A) = KeAn(K̃e(A)). Therefore K̃e(A) = Ke(A). �

Recall that an R-module M is an extending module if for every submodule K
of M there exists a direct summand L of M such that K ≤e L, or equivalently,
every closed submodule of M is a direct summand. A left extending ring is a ring
which is a extending module over itself. Dually, a module M is called a lifting
module if, every submodule N of M can be written in the form N = K⊕D where
K is a direct summand of M and D �M . By [10, 4.8], M is lifting if and only if
it is amply supplemented and its coclosed submodules are direct summands.

2.15. Theorem. Let N be an M -cofaithful module and HomR(N,M) be a noe-
therian S-module. If NR is a lifting module, then SU is an extending module; and
the converse holds when N is M -cogenerated and amply supplemented.

Proof. Let N be a lifting module and let A ≤c SU . Then, by Theorem 2.13,
N = K̃e(A)⊕D for some D ≤ N . Thus U = An(K̃e(A))⊕An(D) = A⊕An(D).
Conversely, suppose that N is M -cogenerated and amply supplemented and let
SU be an extending module and K

cc
↪→ N . Then, by Theorem 2.13 again, U =

An(K) ⊕ B for some B ≤ SU . Thus 0 = Ke(U) = KeAn(K) ∩ Ke(B) = K ∩
Ke(B). On the other hand, N = K + Ke(B) since if K + Ke(B) � N , then
0 6= An(K + Ke(B)) = An(K) ∩ AnKe(B), whence An(K) ∩ B 6= 0, which is a
contradiction. Therefore N = K ⊕Ke(B) and so N is lifting. �
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3. Applications to coretractable modules

Recall that an R-module N is calledM -coretractable if, for any proper submod-
ule K of N , there exists a nonzero homomorphism f : N → M with f(K) = 0,
that is, HomR(N/K,M) 6= 0. An R-module M is called coretractable if M is
itself M -coretractable [3]. By Lemma 2.8, every M -cofaithful module N is M -
coretractable.

3.1. Theorem. Let M be a quasi-injective R-module. Then N ∈ σ[M ] is M -
cofaithful if and only if N is M -coretractable.

Proof. By Lemma 2.8, every M -cofaithful module N is M -coretractable. Con-
versely, suppose that N is M -coretractable. It suffices to show that for every
X ∈ σ[M ],HomR(N,Ke(HomR(X,M))) = 0. Assume that there exists a nonzero
homomorphism f : N → Ke(HomR(X,M)). Then 0 6= if : N → X, where
i : Ke(HomR(X,M)) → X is the inclusion map. Since if 6= 0, there exists
Z = Im (if) 6= 0. Now, HomR(Z,M) 6= 0 because Z is a quotient of N and N
is M -coretractable. But every homomorphism g : Z → M can be extended to a
homomorphism h : X → M because M is quasi-injective and X ∈ σ[M ] (by [11,
16.3]). Since Z ⊆ Ke(HomR(X,M)) ⊆ X, h(Z) = 0, which is a contradiction. �

3.2. Corollary. Let S = EndR(M) be a noetherian ring and M an amply sup-
plemented module with one of the following properties:

(i) M is a quasi-injective coretractable module;
(ii) M is a

∑
-self-cogenerator module (that is, any direct sum of copies of M

is a self-cogenerator). Then:
(a) There exist mutually inverse lattice correspondences between the coclosed

submodules of M and the closed left ideals of S = EndR(M).
(b) M is a lifting module if and only if S is a left extending ring.

Proof. By combining Theorems 2.13, 2.15, 3.1, and in the special case when N =
M and U = S. �

3.3. Corollary. Let M be an R-module. If any of the following conditions is
satisfied, then the hollow dimension of M is equal to n if and only if the right
uniform dimension of S is n:

(i) M is a quasi-injective coretractable module.
(ii) M is a

∑
-self-cogenerator.

Proof. Using Theorems 2.12 and 3.1 in the special case when N = M and U =
S. �
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