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Abstract

Mobility models are very useful in explaining the movements of people
over socio-economic and job categories. Occupational mobility deals
with the movements of individuals over job categories during their
employment periods. Since the time interval between successive job
changes is a random variable, different occupational mobility models
have been developed by scientists using modified Markov and semi-
Markov processes. This phenomenon can be modelled by considering
the underlying factors such as job satisfaction, salary, distance of the
work place, family requirements and others. Unlike most of the pre-
vious works in this area, the present study suggests a new measure
of occupational mobility based on the distribution of wages. Here a
general occupational mobility model has been developed to study the
pattern of mobility during the service life of employees. First the prob-
ability distribution of the number of job changes in the entire employ-
ment life of individuals has been obtained considering the inter-job
offer times (within an interval) and the associated wages as random
variables. Then a measure of occupational mobility based on this dis-
tribution has been developed. The results are obtained under both
frequentist and Bayesian frameworks. As an application of the pro-
posed model the results in this paper have been illustrated by using
data from a recent survey among the staff members of the University
of Southern Queensland, Australia.
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1. Introduction

In recent years there has been growing interest in the study of manpower planning.
Occupational mobility plays a central role in manpower planning. In broader terms, it
refers to the movement of employees between jobs. As a consequence of globalization
and the expansion of the job market in the non-traditional sectors, the phenomenon of
changing jobs has gained greater attention of the researchers and planners.

Unlike social mobility (cf. Prais, [18]), there is no fixed time interval between suc-
cessive moves in occupational mobility. Hodge [16] studied occupational mobility as a
probability process. Stewman [20] discussed occupational mobility using a Markov model.
A comprehensive summary of the theoretical developments and practical applications of
occupational mobility have been provided by Stewman [21]. Ginsberg [7–12] has made
several attempts to describe occupational mobility patterns in terms of semi-Markov
processes.

Bartholomew [2] suggested measures of occupational mobility based on the matrix
of transition probabilities and the stochastic process [m(t)], where m(t) is the random
number of time points at which individuals decide to change their existing employment
during the interval (0, t). Mukherjee and Chattopadhyay [16] developed a measure by
considering successive changes in occupation of an individual as constituting a renewal
process. Later, Mukherjee and Chattopadhyay [17] proposed a measure based on the
reward structure. Chattopadhyay and Baidya [3] considered salary based occupational
categories to study social mobility. Khan and Chattopadhyay [14] developed a predic-
tive measure of occupational mobility based on the number of job offers. None of the
measures available in the literature has taken into account the explicit role of the re-
ward (remuneration) associated with job offer that directly influences the pattern of job
changes.

In this study we propose a new measure of occupational mobility based on the num-
ber of job changes and the associated wages. The distribution of the total number of
job changes during an individual’s entire service life up to the point of study has been
derived by considering times between consecutive job offers (within an interval) and the
corresponding wages to be independent random variables. The proposed measure of oc-
cupational mobility based on the number of job offers and wage distribution has been
suggested primarily in the general setup and then it’s value has been derived for special
situations where some specific assumptions regarding the number of job offers and wage
distributions has been made, both under frequentist and Bayesian frameworks.

A survey has been conducted among the staff members of the University of Southern
Queensland, Australia to collect data on occupational mobility. The proposed model has
been fitted to the survey data to explain the occupational mobility pattern among the
employees of the University. For this particular application of the occupational mobility
model the number of job offers has been found to best fit the geometric distribution, and
the wages best fit a gamma distribution.

The occupational mobility model has been defined and discussed in section 2. The
distribution of the number of job changes is obtained in section 3. Section 4 derives a
measure of occupational mobility under the general distributional setup. Some special
cases for particular choices of number of job offers and wages distributions have been
discussed in sections 5 and 6, under frequentist and Bayesian frameworks, respectively.
Section 7 is devoted to the analysis of the survey data, and its fitting to the proposed
model and measure.
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2. The Model

Let the service life of an individual be comprised of k intervals of equal fixed width, t.
The individual gets at least one job offer within each such interval, the worth of an offer
being determined by the associated salary (reward). The individual (assumed to be in
service already) decides to leave the present job or not, at the end of each interval. One
moves to a new job for the first time at the end of an interval in which the maximum
of the remunerations associated with different job offers (within that interval) exceeds a
fixed amount. This is the minimum wage at which the individual is willing to enter the
job market for the first time.

Subsequently, one changes the current job at the end of a particular interval only when
the maximum of the wages associated with the offers received during that interval exceeds
the wage of the current job. A change of job in this paper means that an individual may
move from one occupation to another or within the same occupation.

Let the individual getNi new job offers in the ith interval, and letXij be the salary cor-
responding to the jth job offer in the ith interval, for j = 1, 2, . . . , ni, and i = 1, 2, . . . , k.
Note that to reflect the real life situation it is necessary to assume that ni is strictly
greater than zero since no one can enter into the job market without a job offer. Both
Xij and Ni are assumed to be independently and identically distributed with pdf g(x),
0 < x <∞, and pmf h(y), y = 1, 2, . . . ,∞ respectively. Define

(2.1) Zi = max(Xi1, Xi2, . . . , Xini).

Here Zi is the maximum wage of all job offers during the ith interval. Since Zi is the
largest order statistic, for a given ni, the pdf of the conditional distribution of Zi is

f(zi|ni) = ni[G(xij)]
ni−1g(zi),

where G(·) is the cdf of the distribution of Xij . The pdf of the joint distribution of Zi
and Ni becomes

f(zi, ni) = ni[G(xij ]
ni−1g(zi)h(ni).

Hence the marginal distribution of Zi is given by

(2.2) f(zi) =

∞
∑

ni=1

ni[G(zi)]
ni−1g(zi)h(ni),

where g(·) and h(·) have the same specifications as before.

Let FZi(z) denote the the corresponding cdf. Let z0 be the minimum wage for which

the individual accepts the first job offer at the iih interval. Then we can define

(2.3) FZi(z0) = P [Zi < z0]

and its complement

(2.4) FZi(z0) = 1− FZi(z0) = P [Zi > z0].

3. Distribution of the number of job changes

In this section we derive the distribution of the number of job changes during the
service life of an individual. Define N(k) = total number of job changes within the

service life of the individual and p
(k)
r = the probability of r job changes in the entire

service life of the individual. Then

(3.1) p(k)r = P [N(k) = r].
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3.1. Theorem. Under the above definition of FZi(z0) and p
(k)
r , we have

(3.2) p(k)r =

{

F k if r = 0,

F k−1F̄ [
∑k−r

m=0

(

r+m−1
m

)

(2F )−(r+m−1)] if 1 ≤ r ≤ k

where, for notational convenience, we write F = FZi(z0) and F̄ = 1− FZi(z0).

Proof. (Outline) Note that P [Zi > Zj ] = P [Zi < Zj ] = 0.5 for i, j = 1, 2, . . . , k,, i 6= j;
and

(3.3) P [Zi > max(Z1, Z2, . . . , Zi−1)] = P [Zi < max(Z1, Z2, . . . , Zi−1] = 0.5

Now define Si as the event that there is a job change in the ith time interval which depends
only on the maximum wages of the ith and (i − 1)th time intervals, for i = 1, 2, . . . , k
and Ti as the event that there is a job change in the ith interval which depends on the
maximum wages of all intervals up to the ith including z0, the initial minimum acceptable
wage, for i = 2, 3, . . . , k, that is

Si = [zi > zi−1], for i = 1, 2, . . . , k and

Ti = [zi > max(z0, z1, . . . , zi−1)], for i = 2, 3, . . . , k.

Then p
(k)
r can be obtained by adding together the probabilities of the (k − r + 1) events

E0, E1 . . . , Ek−r, where

E0 = there is no change in the first (k − r) intervals and r changes in the last r
intervals.

E1 = there is no change in the first (k − r − 1) intervals, one change at the (k − r)th

interval and (r − 1) changes among the last r intervals.

E2 = there is no change in the first (k−r−2) intervals, one change at the (k−r−1)th

interval and (r − 1) changes among the last (r + 1) intervals.

· · · · · · · · · · · ·

Ek−r = there is a change at the first interval and (r − 1) changes among the last
(k − 1) intervals.

Let Sc denote the complement of the event S. Then from the fundamental rule of
probability we have

P (E0) = P [Sc1S
c
2 · · ·S

c
k−rTk−r+1Sk−r+1 · · ·Sk]

= F k−rF̄ (0.5)r−1(3.4)

Similarly,

P (E1) = F k−r−1F̄

(

r

1

)

(0.5)r

P (E2) = F k−r−2F̄

(

r + 1

2

)

(0.5)r+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

P (Ek−r) = F

(

r + (k − r − 1)

k − r

)

(0.5)r+(k−r−1)(3.5)

Hence the proof is completed by adding the above probabilities. ¤
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3.2. Illustration. Consider the situation when k = 3 and r = 2.

p
(3)
2 = P (S1S2S

c
3) + P (S1S

c
2T3) + P (Sc1T2S3)

= P (Z1 > z0)P (Z2 > Z1)P (Z3 < Z2)

+ P (Z1 > z0)P (Z2 < Z1)P (Z3 > Z1) + P (Z1 < z0)P (Z2 > z0)P (Z3 > Z2)

= F (0.5)(0.5) + F (0.5)(0.5) + FF (0.5)

= (0.5)F (1 + F )(3.6)

When r = 0,

p
(3)
0 = P (Sc1S

c
2S

c
3)

= P (Z1 < z0)P (Z2 < z0)P (Z3 < z0) = F 3(3.7)

3.3. Theorem. Under the above setup, p
(k)
r is a probability distribution, i.e.

(3.8)
k
∑

r=0

p(k)r = 1

Proof. Write s = r +m− 1. Then

k
∑

r=0

p(k)r = F k + F k−1F

[ k
∑

r=1

k−r
∑

m=0

(

r +m− 1

m

)

(0.5F )(r+m−1)

]

= F k + F k−1F

[ k−1
∑

s=0

(0.5F )s
s
∑

m=0

(

s

m

)

]

= F k + F k−1F

[ k−1
∑

s=0

(0.5F )s2s
]

= F k + F k−1F

[ k−1
∑

s=0

(1/F )s
]

= F k + 1− F k = 1.(3.9)

¤

4. A Measure of Occupational Mobility

In this section we obtain a measure of occupational mobility using p
(k)
r as defined in

section 3. From the previous specifications the moments of the number of job changes are
reasonable choices as measures of occupational mobility. For practical reasons, the first
raw moment has better intuitive appeal in interpreting the phenomenon of job changes
than any other moment. Therefore, we suggest, the expectation of the number of job
changes can be considered as a measure of occupational mobility. This should of course
be normalized with respect to k. Then we have

E[N(k)] =

k
∑

r=0

rp(k)r

= F k−1F
k
∑

r=1

k−r
∑

m=0

rC(r+m−1)
m (0.5F )r+m−1

= [(k + 1)F − FF k − F (1− F k)]/2F .(4.1)

In the computation of E[N(k)] various binomial and geometric series are involved. After
normalization with respect to k, the measure becomes E[N(k)/k].

In a similar way it can be shown that,

(4.2) E[{N(K)}2] = (0.25)F k−1F

k−1
∑

s=0

(1/F )s(s2 + 5s+ 4).
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Hence the variance of N(k), Var[N(k)], is readily available from (4.1) and (4.2). As a
measure of spread of the above measure of occupational mobility one uses the estimated
value of Var[N(k)]/k2. Computing procedures for E[N(k)], and Var[N(k)] are given in
section 7.

5. Some special cases

Case 1: To compute the measure of mobility, in this section, we consider specific dis-
tributions for the number of job offers and for the wages. Consider the situation where
the distribution of wages is exponential and the distribution of the number of job offers
is truncated Poisson with the following pdf and pmf respectively,

(5.1) g(x) = θe−θx, 0 < x <∞

and

(5.2) h(y) = [1/(1− e−λt)]e−λt(λt)y/y!, y = 1, 2, . . . ,∞.

Note that y = 0 is not a valid value of the number of job offers since by assumption the
study includes only those individuals who received at least one job offer. Then from (2.2)
the pdf of the distribution of Zi is

(5.3) f(zi) = [1/(1− e−λt)]λtθe−(θzi+λt)eλt(1− e−θzi), 0 < zi <∞,

and the corresponding cdf is

(5.4) FZi(z) = [1/(1− e−λt)](e−λte
−θz

− e−λt).

Hence from (3.2) and (3.3) we have

(5.5) p(k)r =







































((e−λte
−θz0

− e−λt)/(1− e−λt))k if r = 0,

[

(1−eλte
−θz0

)(e−λte
−θz0

−e−λt)k−1

(1−e−λt)k

]

×

[

∑k−r
m=0

(

r+m−1
m

)

(

(1−e−λt)

2(e−λte
−θz0−e−λt)

)r+m−1
]

if 1 ≤ r ≤ k.

Now, from (5.4), (4.1) becomes

(5.6) E[N(k)] =

[

(k + 1)− (k + 2)
e−λte

−θz0
− e−λt

(1− e−λt)
+

(e−λte
−θz0

− e−λt)

(1− e−λt)
× η1

]

× η2,

where

(5.7) η1 =
2(e−λte

−θz0
− e−λt)

(1− e−λt)
− 1, η2 =

1− e−λt

2(1− e−λte
−θz0 )

.

Given the values of the parameters λ and θ one can compute the value of the above mea-
sure of occupational mobility for different choices of t. The parameters can be estimated
from the sample data. For details refer to Cohen [4].

Case 2: Here we take the distribution of wages as exponential and the number of job
changes as truncated Binomial. For the above choices we have

(5.8) g(x) = θe−θx, 0 < x <∞,

and

(5.9) h(y) = (1/(1− qkt))

(

kt

y

)

pyqkt−y, y = 1, 2, . . . , kt,

where q = 1− p.



A Statistical Model of Occupational Mobility 83

Then from (2.2) the pdf of the distribution of Zi is given by

(5.10) f(zi) = [(θqkt−1)/(1− qkt)]e−θzikt(p/q)

kt−1
∑

n1i=0

(

kt− 1

n1i

)

[(p/q)(1− e−θzi)]n1i ,

where n1i = ni − 1 and the corresponding cdf is given by

(5.11) F (z) = [(θktqkt)/(1− qkt)]

kt−1
∑

n1i=0

(p/q)n1i+1

∫ z

0

e−θz(1− e−θz)n1idz.

Hence following the same procedure as in case 1, E[N(k)/k] can be computed for given
values of the parameters θ and p.

6. Special cases under the Bayesian framework

The occupational mobility measure for the above special cases of the distributions of
job offers and wages are obtained here under the Bayesian framework.

Case 1: Consider the special case 1 of section 5 with

(6.1) g(x) = θe−θx, 0 < x <∞, θ > 0.

Taking the conjugate prior associated with the Poisson distribution, λ has the following
pdf,

(6.2) p(λ) = (1/βαΓα)e−λ/βλα−1, α > 0, β > 0, 0 < λ <∞.

For a fixed value of λ, the joint pmf of the distribution of Ni on the basis of a sample of
size m is given by,

(6.3) h(y|λ) = [1/(1− e−λt)m]e−m(λt)(λt)
∑m
i=1 yi/Πm

i=1(yi!)

and hence the Bayes estimator of λ is obtained as,

λB =
1

t
×

∫

λh(y|λ)p(λ)dλ

(
∫

h(y|λ)p(λ)dλ)

=
1

t

[Γ(
∑

yi + α+ 1)/(m+ 1
β
)
∑

yi+α+1] + Ω1

[{Γ(
∑

yi + α)/(m+ 1
β
)
∑

yi+α}+Ω2]
,(6.4)

where

Ω1 =

∞
∑

j=1

[

(1/j!)m(m+ 1) . . . (m+ j − 1)

(

Γ(
∑

yi + α+ 1)

(m+ 1
β
+ j)

∑

yi+α+1

)]

,

Ω2 =
∞
∑

j=1

[

(1/j!)m(m+ 1) . . . (m+ j − 1)

(

Γ(
∑

yi + α)

(m+ 1
β
+ j)

∑

yi+α

)]

.

Note that λB can be estimated from the sample values of yi for some known values of
the prior parameters α and β.

Hence E[N(k)] in (5.6) can be estimated by replacing λ with λB . If needed, starting
with initial values of α and β (say α0 and β0) one can generate a sample from the gamma
distribution with parameters α0 and β0 and on the basis of the simulated sample α and
β can be estimated.

Case 2: Considering the special case 2 of section 5 we have

(6.5) g(x) = θe−θx, 0 < x <∞ θ > 0.
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Assuming that p is a random variable, using the conjugate prior associated with the
Binomial distribution, p has the following pdf

(6.6) p∗(p) = [1/B(a, b)]pa−1(1− p)b−1, 0 < p < 1, a > 0, b > 0.

Given p, the joint pmf of the distribution of Ni for a sample of size m is given by

(6.7) h(yi|p) = [1/(1− (1− p)kt)m]
m
∏

i=1

(

kt

yi

)

p
∑

yi(1− p)mkt−
∑

yi ,

where yi = 1, 2, . . . , kt. The Bayes estimator of p is found to be

(6.8) pB =
B(a+

∑

yi + 1, b+mkt−
∑

yi) + Ψ1

B(a+
∑

yi, b+mkt−
∑

yi) + Ψ2
,

where

Ψ1 =

∞
∑

j=1

m(m+ 1) . . . (m+ j − 1)B(a+
∑

yi + 1, b+ kt(m+ j)−
∑

yi)

j!

Ψ2 =

∞
∑

j=1

m(m+ 1) . . . (m+ j − 1)B(a+
∑

yi, b+ kt(m+ j)−
∑

yi)

j!
.

Note that pB can be estimated from the sample values of yi for some given values of
the prior parameters a and b. Hence E[N(k)] can be estimated by replacing p with pB

in (5.11). If needed, one can generate a sample from the Beta distribution with initial
values a0 and b0 as parameters and on the basis of that simulated sample a and b can be
estimated.

7. Modelling Survey Data

With a view to applying the proposed measure of occupational mobility, a survey
among the employees of the University of Southern Queensland (USQ), Australia was
conducted. The main objective of the survey was to gather data on the number of
job offers received by the individual employees during the entire employment period,
including the offer(s) of the current employer. In addition, wages associated with each of
the job offers for the employees were collected. The data on the number of job offers and
the associated wages have been classified according to the staff category, academic and
non-academic, as well as gender, male and female. Separate analysis of the data have
been provided based on the above four categories and the values of the proposed measure
of occupational mobility have been obtained for all those cases. An overall analysis of
the data from all the respondents across the categories has been also been provided.

The sample consisted of 221 employees of the USQ. This comprises of 83 academic and
138 non-academic staff. Among these respondents there were 93 males and 128 females.
In the survey we limited the maximum number of offers for any individual to 20 and
the range of wages has been equally divided into 6 intervals. In the computation of the
measure of occupational mobility and all associate functions as well as fitting of different
distributions we have used the MATLAB and SPSS packages. Some Pascal programming
has also been used for the fitting of the distribution.

7.1. The Survey. The general distribution of the survey data with respect to the num-
ber of job offers and associated wages is provided in this subsection. Table 1 below
represents the means and standard deviations of the number of job offers of the respon-
dents by various categories.
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Table 1. Summary Statistics of the Number of Job Offers by Gender and

Staff Category

Academic Non-Academic Total

Count Mean Std. Count Mean Std. Count Mean Std.

Male 58 5.40 4.26 35 6.20 4.31 93 5.70 4.27

Female 25 6.20 4.07 103 5.60 4.24 128 5.72 4.20

Total 83 5.64 4.20 138 5.75 4.25 221 5.71 4.22

The average number of job offers received by the employees in the sample is 5.71. The
corresponding figure for the academics is 5.64 and that of the non-academics is 5.75.
Thus the average number of job offers for non-academics is slightly higher than the
academics. The female respondents have a higher average number of job offers than their
male counterparts, although the difference is negligible. However, a clear dominance of
the females with respect to the average number of job offers over the males is observed
among the academics. The opposite picture is reflected in the case of non-academic
staff. The value of the measure of spread remains almost the same across the categories.
For the remaining parts of the paper the value of t and k are assumed to be 1 and 20
respectively for the computations.

Figure 1. Histogram of Distributions of Observed Job Offers and Wages for

all employees
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The distributions of the number of job offers and the wages are given in Figure 1. The
first graph in Figure 1 shows that the distribution of the number of job offers is highly
skewed to the right. From the shape of the distribution it appears that the geometric
distribution would be an appropriate model for the data.

The second graph gives the observed distribution of the wages of all employees.

7.2. Fitting of Distributions. First we have fitted the geometric distribution with
pmf

(7.1) h(y) = p(1− p)y−1, y = 1, 2, 3, . . . ,∞

to the number of job offers for all respondents as well as by all the categories. Here the
estimate of the parameter p is p̂ = 1

ȳ
where ȳ is the sample mean of the observed number

of job offers.
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From Table 2 it is evident that the data fit very well with the geometric distribution
for all respondents as well over all the categories.

Table 2. Table of Expected and Observed Frequency Distributions of Job

Offers by Gender and Staff Category

Academics Non-Acads. Male Female Total

Offers Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

1 15 12 25 24 16 15 22 21 36 39

2 12 9 20 12 13 8 18 13 21 32

3 10 11 17 16 11 14 15 13 27 26

4 8 6 14 12 9 7 13 11 18 22

5 7 11 11 12 8 9 10 14 23 18

6 6 5 9 12 6 8 9 9 17 15

7 5 7 8 9 5 6 7 10 16 12

8 4 6 6 9 4 6 6 9 15 10

9 3 3 5 9 3 5 5 7 12 8

10 3 4 4 6 3 3 4 7 10 7

11 2 2 3 1 2 1 3 2 3 6

12 2 1 3 4 2 3 3 2 5 5

13 1 0 2 4 2 2 2 2 4 4

14 1 2 2 3 1 2 2 3 5 3

15 1 0 2 1 1 0 2 1 1 3

16 1 2 1 0 1 2 1 0 2 2

17 1 0 1 1 1 0 1 1 1 2

18 1 1 1 1 1 1 1 1 2 1

19 0 0 1 1 1 0 1 1 1 1

20 0 1 1 1 0 1 1 1 2 1

Then we have fitted the gamma distribution with pdf

(7.2) g(x) =
1

βαΓ(α)
e
− x
β xα−1, 0 < x <∞, α > 0, β > 0

to the wages for all respondents as well as by all the categories. Salem and Mount [19], and
McDonald and Jensen [15] used gamma distribution to model the distribution of income.

The estimates of the parameters α and β are α̂ = [ x̄
sx
]2 and β̂ = [ sx

2

x̄
] respectively where x̄

is the sample mean of the observed wages and sx is the corresponding standard deviation.
For further details see Cohen and Whitten [5]. Angle [1] used the two parameter gamma
distribution to model the income distributions of blacks and the whites.

From Table 3 it is observed that the data fit more or less well with the gamma
distribution for all respondents as well as over all the categories.
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Table 3. Table of Expected and Observed Frequency Distributions of Wages

by Gender and Staff Category

Academics Non-Acads Male Female Total

Wages Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

0 0 0 0 0 0 0 0 0 0 0

1 2 27 11 48 1 25 10 50 10 77

2 38 41 123 127 21 25 114 146 130 173

3 89 67 198 223 85 94 180 193 262 290

4 94 62 139 89 119 88 124 63 244 151

5 64 80 63 52 95 98 55 34 153 134

6 34 70 22 25 53 79 19 17 75 98

Figure 2 displays the observed and fitted distributions of the number of job offers and
wages of all respondents.

Figure 2. Graphs of Observed and Fitted Distributions of Job Offers and

Wages for all employees
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Looking at the observed and the fitted distributions of the number of job offers in the
first graph it is evident that the geometric distribution fits the data very well. The same
feature of the distributions of job offers for different categories of respondents is observed
from Figure 3.

Figure 3. Graphs of Observed and Fitted Distributions of Job Offers by

Staff Category
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The graphs of the observed and fitted distributions of job offers by gender are given in
Figure 4.

Figure 4. Graphs of Observed and Fitted Distributions of Job Offers by

Gender
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In all the above mentioned graphs the geometric distribution provide a better fit than
any other distribution for the number of job offers. The distributions of the observed
and the expected values of the wages are given in Figure 5.

Figure 5. Graphs of Observed and Fitted Distributions of Wages
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It is observed that the gamma distribution fits very well to the observed data for the non-
academics and the female employees. Although for the other categories of respondents
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the fitting is not as good. Figure 1 displays that the observed data for the wages show
some irregular pattern at some points. Hence the fitting of the gamma distribution is
not so good for some parts in the right side of the distribution when all respondents are
considered. Nonetheless empirically the gamma distribution provides a better fit than
all other relevant distributions.

7.3. Computation of the Measure. Here we derive the expression for the measure of
the occupational mobility under the above specifications of distribution of the number of
job offers and wages. We also compute the values of the measure as well as the variance
of the number of job changes during the employment period for all respondents. The
same is also obtained for different categories of respondents to compare the mobility of
employees over categories.

From (2.2), assuming α to be an integer (cf. Evan et al. [6], for instance), the pdf of
the distribution of the maximum wage is

(7.1) f(zi) =
1

βαΓ(α)
pe

−
zi
β zα−1

i

[

(1− p)

(

1− e
−
zi
β

α−1
∑

r=0

1

r!

{

zi
β

}r
)]ni−1

and the corresponding cdf is given by

(7.2) F (z0) = p

∞
∑

k=1

k(1− p)k−1τk(α, β, z0),

where

(7.3) τk(α, β, z0) =

∫ z0

0

1

βαΓ(α)
e
−
zi
β zα−1

i

(

1− e
−
zi
β

α−1
∑

r=0

1

r!

{

zi
β

}r
)k−1

dzi.

Table 4. Table of the Empirical Distribution Function, the Expectation,

Variance of Job Changes and the Measure of Mobility by Different

Categories

Variable α̂ β̂ p̂ F (z0) E[N(k)] V ar[N(k)] E[N(k)
k

]

Academic 6.54 0.61 0.1773 0.00060 10.49969 4.73451 0.52498

Non-Acad. 6.38 0.48 0.1795 0.00200 10.49883 4.75000 0.52494

Male 8.23 0.50 0.1754 0.00020 10.49992 4.75000 0.52500

Female 6.00 0.48 0.1748 0.00400 10.49809 4.75000 0.52490

Overall 5.70 0.60 0.1751 0.00200 10.49896 4.75000 0.52495

Table 4 describes the expectation and variance of the number of job changes for all
respondents as well as for the different categories, and the values of the proposed measure.
From the expected values it appears that for any particular individual, on the average, the
number of job offers with wage associated with a new job offer exceeding the maximum
wage earned from a previous offer is a little over 10. The computed values of the measure
for the survey data enable us to infer that an employee is more mobile (than expected
in the job market) during his occupational life depending on whether the observed value
of the measure (computed on the basis of the employee’s job changes) exceeds the above
computed value of the measure. This is valid under the assumption that the job changes
occur only on the basis of wage consideration and for specific values of t and k. The
same conclusion can be extended over all the categories considered in the study. The
measure reveals the fact that the expected number of job changes is about the same for
all employees regardless of gender and staff category.
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