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Abstract

Kandil, Kerre and Nouh unified some concepts in fuzzy topological spaces
by using operations. By adapting the definition of an operation and some
definitions given by these authors to topological spaces, and by giving some
new definitions, we have achieved some unifications related to compactness,
continuity, openness and closedness of functions. Here, we will study unifi-
cations related to separation axioms, such as Ti (i = 0, 1, 2) and R2.
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1. Introduction

In [4,5], some unifications for fuzzy topological spaces were studied. Many of these
definitions and results were applied to topological spaces in [7-11]. Now an attempt
will be made to unify concepts related to separation.

In a topological space, (X, τ), int , cl , scl , pcl , etc., will stand for the interior,
closure, semi-closure, pre-closure operations, etc. Also, for a subset A of X, Ao

and Ā will stand for the interior of A and the closure of A, respectively.

1.1. Definition. Let (X, τ) be a topological space. A mapping ϕ : P (X)→ P (X)
is called an operation on (X, τ) if Ao ⊆ ϕ(A) for all A ∈ P (X) and ϕ(∅) = ∅.

The class of all operations on a topological space (X, τ) will be denoted by O(X, τ).

The operations ϕ, ϕ̃ ∈ O(X, τ) are said to be dual if ϕ(A) = X \ (ϕ̃(X \ A))
(equivalently, ϕ̃(A) = X \ (ϕ(X \A))) for each A ∈ P (X).

A partial order “≤” on O(X, τ) is defined by ϕ1 ≤ ϕ2 ⇔ ϕ1(A) ⊆ ϕ2(A) for
each A ∈ P (X).

An operation ϕ ∈ O(X, τ) is called monotonous if ϕ(A) ⊆ ϕ(B) whenever
A ⊆ B, (A,B ∈ P (X)).
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1.2. Definition. Let ϕ ∈ O(X, τ), U ⊆ P (X), x ∈ X and U(x) = {U : x ∈ U ∈
U}. Then ϕ is called:

a) Regular with respect to U if for x ∈ X and U, V ∈ U(x), there existsW ∈ U(x)
such that ϕ(W ) ⊆ ϕ(U) ∩ ϕ(V ).

b) Weakly finite intersection preserving (W.F.I.P) with respect to U if U ∩
ϕ(A) ⊆ ϕ(U ∩A) for each U ∈ U and for each A ∈ P (X).

1.3. Definition. Let ϕ ∈ O(X, τ) and A,B ⊆ X. A is called ϕ–open if A ⊆ ϕ(A).
Likewise B is called ϕ–closed if X \B is ϕ–open.

For any operation ϕ ∈ O(X, τ), τ ⊆ ϕO(X), and X, ∅ are both ϕ–open and
ϕ–closed.

If ϕ is monotonous, then the family of all ϕ–open sets is a supratopology
(U ⊆ P(X) is a supratopology on X means that ∅ ∈ U , X ∈ U and U is closed
under arbitrary unions [1]).

Let (X, τ) be a topological space, ϕ ∈ O(X, τ), x ∈ X. We will use the
following notation.

ϕO(X) = {U : U ⊆ X, U is ϕ–open},

ϕC(X) = {K : K ⊆ X, K is ϕ–closed},

ϕO(X,x) = {U : U ∈ ϕO(X), x ∈ U}.

1.4. Definition. Let ϕ1, ϕ2 ∈ O(X, τ) , A ⊆ X.

a) x ∈ ϕ1,2intA⇔ there exists a U ∈ ϕ1O(X,x) such that ϕ2(U) ⊆ A.

b) x ∈ ϕ1,2clA⇔ for each U ∈ ϕ1O(X,x), ϕ2(U) ∩A 6= ∅.

c) A is ϕ1,2–open ⇔ A ⊆ ϕ1,2intA.

d) A is ϕ1,2–closed ⇔ ϕ1,2clA ⊆ A.

If A ⊆ B then ϕ1,2intA ⊆ ϕ1,2intB and ϕ1,2clA ⊆ ϕ1,2clB. Clearly for any set
A, X \ ϕ1,2intA = ϕ1,2cl (X \A) and A is ϕ1,2–open iff X \A is ϕ1,2–closed.

We will use ϕ1,2O(X) (ϕ1,2C(X)) to denote the family of all ϕ1,2–open subsets
(ϕ1,2–closed subsets) of X.

1.5. Theorem : [10,11]. Let ϕ1, ϕ2 ∈ O(X, τ).

a) ϕ1,2O(X) is a supratopology on X.

b) If ϕ2 is regular w.r.t. ϕ1O(X), then ϕ1,2O(X) is a topology on X and a
subset K of X is closed w.r.t. this topology iff ϕ1,2clK ⊆ K. Let τϕ1,2

stand
for this topology ϕ1,2O(X).

c) If ϕ2 is regular w.r.t. ϕ1O(X) and (ϕ2 ≥ ı or ϕ2 ≥ ϕ1), then ϕ1,2O(X) is
a topology on X and a set K is closed w.r.t. this topology iff ϕ1,2clK = K

(here ı is the identity operation).
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d) If ϕ2 is regular w.r.t. ϕ1O(X), (ϕ2 ≥ ı or ϕ2 ≥ ϕ1), and ϕ2(U) ∈ ϕ1O(X),
ϕ2(ϕ2(U)) ⊆ ϕ2(U) for each U ∈ ϕ1O(X), then ϕ1,2–cl is a Kuratowski
closure operator and ϕ1,2clA = τϕ1,2

clA for any A ⊆ P (X).

1.6. Example. Let the following operations be defined on a topological space
(X, τ).

ϕ1 = int , ϕ2 = cl ◦ int , ϕ3 = cl , ϕ4 = scl ,

ϕ5 = ı (ı is the idendity operation), ϕ6 = int ◦ cl , ϕ7 = int ◦ cl ◦ int .

Clearly,

ϕ1 ≤ ϕ7 ≤ ϕ2 ≤ ϕ3, ϕ1 ≤ ϕ5 ≤ ϕ4 ≤ ϕ3 and ϕ1 ≤ ϕ7 ≤ ϕ6 ≤ ϕ4.

Now we have:

ϕ1O(X) = τ ,

ϕ2O(X) = SO(X) = the family of all semi–open sets.

ϕ3O(X) = ϕ5O(X) = ϕ4O(X) = P(X) = power set of X.

ϕ6O(X) = PO(X) = the family of all pre-open sets.

ϕ7O(X) = τα = the topology of all α–open sets in (X, τ).

ϕ1,3O(X) = τθ = the topology of all θ–open sets.

ϕ2,4O(X) = SθO(X) = the family of all semi–θ-open sets.

ϕ1,6O(X) = τs = the semi regularization topology of X. It is the topology with

base RO(X) which consisting of regular open sets = the family of all δ–open

sets.

ϕ2,3O(X) = θSO(X) = the family of all θ–semi-open sets.

Note that ϕ1 and ϕ3 (ϕ2 and ϕ6) are pairs of dual operations. All operations in
this example are regular w.r.t. ϕ1O(X), w.r.t. ϕ7O(X) and w.r.t. ϕ5O(X).

It will be accepted that ϕ1, ϕ2 ∈ O(X, τ), ψ1, ψ2 ∈ O(Y, ϑ) and f : (X, τ) →
(Y, ϑ) whenever they are used. Gf = {(x, f(x)) : x ∈ X} will stand for the graph
of f .

1.7. Definition.

a) f is called ϕ1,2ψ1,2–continuous if for each x ∈ X and for each V ∈ ψ1O(Y, f(x)),
there exists a U ∈ ϕ1O(X,x) such that f(ϕ2(U)) ⊆ ψ2(V ) [4,7].

b) f is called ϕ1,2ψ1,2–open if for each A ⊆ X and for each x ∈ ϕ1,2intA,
f(x) ∈ ψ1,2int f(A) ([4,8]).

c) Gf is called ϕ1,2ψ1,2–closed if for each (x, y) ∈ X × Y \ Gf , there exist
U ∈ ϕ1O(X,x) and V ∈ ψ1O(Y, y) such that f(ϕ2(U)) ∩ ψ2(V ) = ∅ [9].

1.8. Note. For any supratopological space (Z,U), the separation axioms T0, T1
and T2 will be defined as for topological spaces, and for any subset A of Z, U–intA
and U–clA will stand for the closure and the interior of A in this supratopological
space (Z,U). i.e. with a similar meaning as in topological spaces.
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Let (X, τ) be a topological space and U a supratopology containing τ . Then
the mappings ϕ : P (X) → P (X), ϕ̃ : P (X) → P (X) defined by ϕ(A) = U–
intA = {x : there exists a U ∈ U s.t. x ∈ U ⊆ A} =

⋃

{U : U ⊆ A,U ∈ U} and
ϕ̃(A) = U–clA = {x : x ∈ U ∈ U ⇒ U ∩ A 6= ∅} =

⋂

{K : A ⊆ K,X \K ∈ U} are
operations on (X, τ) and they are dual operations to each other.

2. Separation Axioms

2.1. Definition. Let ϕ1, ϕ2 ∈ O(X, τ).

a) (X, τ) is called ϕ1,2–R2 if for each x ∈ X and for each U ∈ ϕ1O(X,x), there
exists V ∈ ϕ1O(X,x) such that ϕ2(V ) ⊆ U , [5,9].

b) (X, τ) is called ϕ1,2–T2 if x, y ∈ X and x 6= y, then there exist U ∈ ϕ1O(X,x)
and V ∈ ϕ1O(X, y) such that ϕ2(U) ∩ ϕ2(V ) = ∅, [5,9].

c) (X, τ) is called ϕ1,2–T1 if x, y ∈ X and x 6= y, then there exist U ∈ ϕ1O(X,x)
and V ∈ ϕ1O(X, y) such that x 6∈ ϕ2(V ) and y 6∈ ϕ2(U) (given for fuzzy
topological spaces in [5]).

d) (X, τ) is called ϕ1,2–T0 if x, y ∈ X and x 6= y, then there exists a ϕ1–open
set U such that x ∈ U , y 6∈ ϕ2(U) or y ∈ U , x 6∈ ϕ2(U).

Clearly each ϕ1,2–T1 space is ϕ1,2–T0 and if (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) then each ϕ1,2–T2
space is ϕ1,2–T1. (X, τ) is ϕ1,2–R2 iff ϕ1O(X) ⊆ ϕ1,2O(X).

The following definition was given for fuzzy topological spaces in [4] at the same
time.

2.2. Definition. Let A ⊆ X. A is said to be ϕ1,2–dense in (X, τ) if ϕ1,2clA = X.

The following three theorems given for fuzzy topological spaces in [4] are valid in
our case. Only the ϕ1,2–T0 separation axiom has been added.

2.3. Theorem : If f, g : X → Y ϕ1,2ψ1,2–continuous, Y is ψ1,2–T2, ϕ2 is regular
w.r.t. ϕ1O(X), then E = {x : f(x) = g(x)} is ϕ1,2–closed and if E is ϕ1,2–dense
in X, then f = g.

2.4. Theorem : The axioms ϕ1,2–Ti (i = 0, 1, 2) are inverse invariant under a
ϕ1,2ψ1,2–continuous injective mapping.

Proof. As an example, we prove the inverse invariance of ϕ1,2–T0.

Let x, x′ ∈ X, x 6= x′. f(x) 6= f(x′). There exists a ψ1–open set V s.t.
(f(x) ∈ V, f(x′) 6∈ ψ2(V )) or (f(x′) ∈ V, f(x) 6∈ ψ2(V )).

Let f(x) ∈ V , f(x′) 6∈ ψ2(V ). Since f is ϕ1,2ψ1,2–continuous, there exists
a ϕ1–open set U such that x ∈ U , f(ϕ2(U)) ⊆ ψ2(V ). Since f(x′) 6∈ ψ2(V ),
x′ 6∈ ϕ2(U).

If f(x′) ∈ V , f(x) 6∈ ψ2(V ), then the proof proceeds in the same way. So,
(X, τ) is ϕ1,2–T0. 2
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2.5. Theorem : (X, τ) is ϕ1,2–T1 iff each singleton set is ϕ1,2–closed.

2.6. Theorem : If f is ϕ1,2ψ1,2–open bijection and X is ϕ1,2–Ti, then Y is ψ1,2–
Ti, (i = 0, 1, 2).

Proof. We give the proof for i = 2. The other cases can be proved similarly.

Let y, y′ ∈ Y and y 6= y′. There exist x, x′ ∈ X such that f(x) = y, f(x′) =
y′. Since x 6= x′, there are U ∈ ϕ1O(X,x) and U ′ ∈ ϕ1O(X,x′) such that
ϕ2(U) ∩ ϕ2(U

′) = ∅. Since U ⊆ ϕ1,2intϕ2(U), U ′ ⊆ ψ1,2intϕ2(U
′) and f is

ϕ1,2–open we have f(U) ⊆ f(ϕ1,2intϕ2(U)) ⊆ ψ1,2int f(ϕ2(U)) and f(U ′) ⊆
f(ϕ1,2intϕ2(U

′)) ⊆ ψ1,2int f(ϕ2(U
′)). y = f(x) ∈ ψ1,2int f(ϕ2(U)) and y′ =

f(x′) ∈ ψ1,2int f(ϕ2(U
′)). There are V ∈ ψ1O(Y, y) and V ′ ∈ ψ1O(Y, y′) such

that ψ2(V ) ⊆ f(ϕ2(U)) and ψ2(V
′) ⊆ f(ϕ2(U

′)). Since f(ϕ2(U) ∩ ϕ2(U
′)) =

f(ϕ2(U) ∩ f(ϕ2(U
′)) = ∅, we have ψ2(V ) ∩ ψ2(V

′) = ∅. 2

2.7. Theorem : If f is an injection with ϕ1,2ψ1,2–closed graph and (ψ2 ≥ ψ1 or
ψ2 ≥ ı), then X is ϕ1,2–T1.

Proof. Let x, x′ ∈ X, x 6= x′. f(x) 6= f(x′). Then (x, f(x′)) 6∈ Gf and (x′, f(x)) 6∈
Gf . There exist U ∈ ϕ1O(X,x) and V ∈ ψ1O(Y, f(x′)) such that f(ϕ2(U)) ∩
ψ2(V ) = ∅. Hence, f(x′) ∈ V ⊆ ψ2(V ) and x′ 6∈ ϕ2(U). There exist U ′ ∈
ϕ1O(X,x′) and V ′ ∈ ψ1O(Y, f(x)) such that f(ϕ2(U

′)) ∩ ψ2(V
′) = ∅. f(x) ∈

V ′ ⊆ ψ2(V
′), x 6∈ ϕ2(U

′), so, X is ϕ1,2–T1. 2

Let ψ0 be the identity operation ı on (Y, ϑ).

2.8. Theorem :

a) If (ψ2 ≥ ψ1 or ψ2 ≥ ı) then each ϕ1,2ψ1,0–continuous function is ϕ1,2ψ1,2–
continuous.

b) If (Y, ϑ) is a ψ1,2–R2 space, then each ϕ1,2ψ1,2–continuous function is ϕ1,2ψ1,0–
continuous.

Proof. b). Let x ∈ X and V ∈ ψ1O(Y, f(x)). Since (Y, ϑ) is ψ1,2–R2, there exists
a W ∈ ψ1O(Y, f(x)) such that ψ2(W ) ⊆ V . Since f is ϕ1,2ψ1,2–continuous, there
exists a U ∈ ϕ1O(X,x) such that f(ϕ2(U)) ⊆ ψ2(W ). We have f(ϕ2(U)) ⊆ V =
ψ0(V ), so, f is ϕ1,2ψ1,0–continuous. 2

2.9. Corollary. If (Y, ϑ) is ψ1,2–R2 and (ψ2 ≥ ψ1 or ψ2 ≥ ı), then the following
are equivalent:

a) f is ϕ1,2ψ1,0–continuous,

b) f is ϕ1,2ψ1,2–continuous,

c) f−1(V ) ∈ ϕ1,2O(X) for each V ∈ ψ1O(Y ).
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Proof. (b ⇒ c). Since Y is ψ1,2–R2, each ψ1–open set is ψ1,2–open. Since f is
ϕ1,2ψ1,2–continuous, the inverse image of each ψ1,2–open set under f is ϕ1,2–open
[7].

(c ⇒ a). Let x ∈ X and V ∈ ψ1O(Y, f(x)). x ∈ f−1(V ) ∈ ϕ1,2O(X). There
exists a ϕ1–open set U such that x ∈ U and ϕ2(U) ⊆ f−1(V ). f(ϕ2(U)) ⊆ V =
ψ0(V ) = ı(V ). 2

2.10. Lemma. If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and ϕ1 is monotonous, then (X, τ) is
ϕ1,2–R2 iff ϕ1O(X) = ϕ1,2O(X).

Proof. One part is clear from the definitions of ϕ1,2–R2 space and ϕ1,2–open set.
Let U ∈ ϕ1,2O(X). Then U ⊆ ϕ1,2intU . For each x ∈ U , there exists an W ∈
ϕ1O(X,x) such that ϕ2(W ) ⊆ U . Since ϕ1O(X) ⊆ ϕ2O(X), W ⊆ ϕ2(W ) ⊆ U .
U can be written as a union of ϕ1–open sets. Since ϕ1 is monotonous, U will be
a ϕ1–open set. 2

2.11. Example. Let ϕ1 = int ◦ cl ◦ int , ϕ2 = cl , ϕ3 = τs–cl, ϕ4 = τα–cl be
operations on (X, τ). Let ψ1 = int , ψ2 = cl , ψ3 = Θ–cl, ψ4 = vs–cl, ψ5 = vα–cl,
ψ6 = pcl be operations on (Y, ϑ). Then:

ϕ1O(X) = τα, ψ1O(Y ) = ϑ.

In [7], by using operations the following equalities were shown. For each U ∈
τα = ϕ1O(X), ϕ2(U) = ϕ3(U) = ϕ4(U). For each V ∈ ϑ = ψ1O(Y ), ψ2(V ) =
ψ3(V ) = ψ4(V ) = ψ5(V ) = ψ6(V ).

ϕ1,2O(X) = ϕ1,3O(X) = ϕ1,4O(X) = τΘ = ταΘ.

ψ1,2O(X) = ψ1,3O(X) = ψ1,4O(X) = ψ1,5O(X) = ψ1,6O(X) = ϑΘ.

(Y, ϑ) is ψ1,2–R2 iff ψ1,2O(X) = ψ1O(X) iff (Y, ϑ) is regular.

Now in case (Y, ϑ) is regular, and f : X → Y , the following are equivalent:

a) For each V ∈ ϑ, f−1(V ) is Θ–open.

b) For each Θ–open set V , f−1(V ) is Θ–open.

c) f is ϕ1,iψ1,j–continuous. Here i = 2, 3, 4, j = 2, 3, 4, 5, 6.

By referring to [7], we may obtain other statements equivalent to the above.

2.12. Theorem :

a) If (X,ϕ1,2O(X)) is Ti, then (X, τ) is ϕ1,2–Ti, i = 0, 1, 2.

b) If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı), ϕ1 is monotonous and (X, τ) is ϕ1,2–R2, then
(X,ϕ1O(X)) is Ti iff (X,ϕ1,2O(X)) is Ti, i = 0, 1, 2.

c) If ϕ̃2 is the dual operation of ϕ2, then (X, τ) is ϕ1,2–T2 iff for distinct points
x and y in X, there exist a U ∈ ϕ1O(X) and a K ∈ ϕ1C(X) such that
x ∈ U , y 6∈ K and ϕ2(U) ⊆ ϕ̃2(K).
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Proof. a). We give the proof for i = 1. Let x, y ∈ X, x 6= y. There are ϕ1,2–open
sets U and V such that x ∈ U , y ∈ V and x 6∈ V , y 6∈ U . Since x ∈ ϕ1,2–intU
and y ∈ ϕ1,2–intV , there are Ux ∈ ϕ1O(X,x) and Vy ∈ ϕ1O(X, y) such that
ϕ2(Ux) ⊆ U , ϕ2(Vy) ⊆ V . We have y 6∈ ϕ2(Ux) and x 6∈ ϕ2(Vy). Hence (X, τ) is
ϕ1,2–T1.

b). From Lemma 2.10, we have ϕ1O(X) = ϕ1,2O(X). The proofs are now
clear.

c). Let (X, τ) be ϕ1,2–T2, x, y ∈ X and x 6= y. There are ϕ1–open sets U and
V such that x ∈ U , y ∈ V and ϕ2(U) ∩ ϕ2(V ) = ∅. Now ϕ2(U) ⊆ X \ ϕ2(V ) =
ϕ̃2(X \ V ). Let K = X \ V . Then K ∈ ϕ1C(X) and y 6∈ K.

Conversely, let x, y ∈ X and x 6= y. There is a ϕ1–open set U and ϕ1–closed
set K such that x ∈ U , y 6∈ K and ϕ2(U) ⊆ ϕ̃2(K). Let V = X \ K. Then
V ∈ ϕ1O(X), y ∈ V and ϕ̃2(K) = X \ ϕ2(X \ K) = X \ ϕ2(V ). We now have
ϕ2(U) ⊆ X \ ϕ2(V ) and ϕ2(U) ∩ ϕ2(V ) = ∅. 2

2.13. Theorem : Let B = {ϕ2(U) : U ∈ ϕ1O(X)}. If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and
ϕ2(U) ∈ ϕ1O(X), ϕ2(ϕ2(U)) ⊆ ϕ2(U) for each U ∈ ϕ1O(X), then the following
are valid:

a) (X, τ) is ϕ1,2–Ti iff (X,ϕ1,2O(X)) is Ti, i = 0, 1, 2.

b) (X,ϕ1,2O(X)) is T2 iff for x, y ∈ X and x 6= y, there are Bx,By ∈ B such
that x ∈ Bx, y ∈ By and Bx ∩ By = ∅.

c) (X,ϕ1,2O(X)) is T1 iff for x, y ∈ X and x 6= y, there are Bx,By ∈ B such
that x ∈ Bx, y ∈ By and x 6∈ By, y 6∈ Bx.

d) (X,ϕ1,2O(X)) is T0 iff for x, y ∈ X and x 6= y, there is a B ∈ B such that
(x ∈ B , y 6∈ B) or (y ∈ B, x 6∈ B).

Proof. Under the given conditions, B is a base for the supratopology ϕ1,2O(X),
B ⊆ ϕ1,2O(X) ∩ ϕ1O(X) and U ⊆ ϕ2(U) for each U ∈ ϕ1O(X), [10].

a). One part of the proof is clear from Theorem 2.12.(a). For the remaining
parts, we give the proof only for i = 2.

Let (X, τ) be ϕ1,2–T2, x, y ∈ X and x 6= y. There are ϕ1–open sets U and V
such that x ∈ U , y ∈ V and ϕ2(U) ∩ ϕ2(V ) = ∅. x ∈ U ⊆ ϕ2(U) ∈ ϕ1,2O(X),
y ∈ V ⊆ ϕ2(V ) ∈ ϕ1,2O(X), ϕ2(U) ∩ ϕ2(V ) = ∅. Hence (X, ϕ1,2O(X)) is T2.

b)–d). Straightforward. 2

2.14. Theorem :

a) If ϕ2 is W.F.I.P. w.r.t. ϕ1O(X), then U ∩ϕ2(A) = ∅ whenever U ∈ ϕ1O(X),
A ∈ P (X) and U ∩A = ∅.

b) If ϕ2 is W.F.I.P. w.r.t. ϕ1O(X) and ϕ2(U) ∈ ϕ1O(X) for each U ∈ ϕ1O(X),
then ϕ2(U) ∩ ϕ2(V ) = ∅ whenever U, V ∈ ϕ1O(X) and U ∩ V = ∅.
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Proof. a). Since ϕ2 is W.F.I.P. w.r.t. ϕ1O(X), for U ∈ ϕ1O(X) and A ∈ P (X) we
have U ∩ϕ2(A) ⊆ ϕ2(U ∩A). If U ∩A = ∅, then ϕ2(U ∩A) = ∅ and U ∩ϕ2(A) = ∅.

b). Let U, V ∈ ϕ1O(X) and U ∩ V = ∅. From (a), U ∩ ϕ2(V ) = ∅. Since
ϕ2(U) ∈ ϕ1O(X), again from (a), ϕ2(U) ∩ ϕ2(V ) = ∅. 2

2.15. Theorem : Let ϕ1 be monotonous, i = 0, 1, 2.

a) If (X, τ) is Ti, then (X,ϕ1O(X)) is Ti.

b) If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı), then (X,ϕ1O(X)) is Ti when (X, τ) is ϕ1,2–Ti.

c) If ϕ2 ≤ ı, then(X, τ) is ϕ1,2–Ti when (X,ϕ1O(X)) is Ti.

Proof. a). Since ϕ1O(X) is a supratopology and τ ⊆ ϕ1O(X), the proofs are
clear.

b). For U ∈ ϕ1O(X) and x ∈ U , we have x ∈ U ⊆ ϕ2(U), whence the results
follow.

c). Since ϕ2(U) ⊆ U for U ∈ ϕ1O(X), the proofs are clear. 2

2.16. Theorem : Let ϕ1 be monotonous.

a) If ϕ2 is W.F.I.P. w.r.t. ϕ1O(X), and ϕ2(U) ∈ ϕ1O(X) for each U ∈ ϕ1O(X),
then (X, τ) is ϕ1,2–T2 when (X,ϕ1O(X)) is T2.

b) If ϕ2 is W.F.I.P. w.r.t. ϕ1O(X), (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı), and ϕ2(U) ∈ ϕ1O(X)
for each U ∈ ϕ1O(X), then (X, τ) is ϕ1,2–T2 iff (X,ϕ1O(X)) is T2.

c) If ϕ2 is W.F.I.P. w.r.t. ϕ1O(X), (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı), and ϕ2(U) ∈
ϕ1O(X), ϕ2(ϕ2(U)) ⊆ ϕ2(U) for each U ∈ ϕ1O(X), then (X, τ) is ϕ1,2–
T2 iff (X,ϕ1O(X)) is T2 iff (X,ϕ1,2O(X)) is T2.

Proof. a). Let x, y ∈ X, x 6= y. There are ϕ1–open sets U and V such that
x ∈ U , y ∈ V and U ∩V = ∅. From Theorem 2.14 (b)., ϕ2(U)∩ϕ2(V ) = ∅. Hence
(X, τ) is ϕ1,2–T2.

b). This follows from (a) and Theorem 2.15 (b).

c). This follows from (b) and Theorem 2.13 (a). 2

2.17. Theorem :

a) (X, τ) is ϕ1,2–T0 iff for x, y ∈ X, x 6= y, x 6∈ ϕ1,2cl{y} or y 6∈ ϕ1,2cl{x}.

b) If ϕ2(U) ∈ ϕ1O(X), ϕ2(ϕ2(U)) ⊆ ϕ2(U) for each U ∈ ϕ1O(X), and (ϕ2 ≥
ϕ1 or ϕ2 ≥ ı) then, (X, τ) is ϕ1,2–T0 iff for x, y ∈ X, x 6= y, ϕ1,2cl {x} 6=
ϕ1,2cl {y}.

c) (X, τ) is ϕ1,2–T1 iff for x, y ∈ X, x 6= y, x 6∈ ϕ1,2cl {y} and y 6∈ ϕ1,2cl {x}.
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Proof. a). Let (X, τ) be ϕ1,2–T0, x, y ∈ X and x 6= y. There is a ϕ1–open set U
such that (x ∈ U, y 6∈ ϕ2(U)) or (y ∈ U, x 6∈ ϕ2(U)). Hence (x ∈ U, ϕ2(U)∩{y} =
∅) or (y ∈ U, ϕ2(U) ∩ {x} = ∅). Thus, x 6∈ ϕ1,2cl {y} or y 6∈ ϕ1,2cl {x}. The other
part may be proved in a similar way.

b). Under the given conditions, ϕ1O(X) ⊆ ϕ2O(X), and if U ∈ ϕ1O(X,x),
then x ∈ ϕ2(U). So, for each x ∈ X, {x} ⊆ ϕ1,2cl {x}. Now, if (X, τ) is ϕ1,2–T0,
the proof is clear from (a).

Suppose that for x, y ∈ X, x 6= y, we have ϕ1,2cl {x} 6= ϕ1,2cl {y}. There is
z ∈ X such that (z ∈ ϕ1,2cl {x}, z 6∈ ϕ1,2cl {y}) or (z ∈ ϕ1,2cl {y}, z 6∈ ϕ1,2cl {x}).
Let z ∈ ϕ1,2cl {x} but z 6∈ ϕ1,2cl {y}. Now there is a U ∈ ϕ1O(X, z) such that
ϕ2(U) ∩ {y} = ∅. But since z ∈ ϕ1,2cl {x}, we have ϕ2(U) ∩ {x} 6= ∅. Hence,
x ∈ ϕ2(U), ϕ2(U) ∈ ϕ1O(X) and ϕ2(ϕ2(U)) ⊆ ϕ2(U). So, y 6∈ ϕ2(ϕ2(U)).

In the case where z ∈ ϕ1,2cl {y}, z 6∈ ϕ1,2cl {x}, the proof proceeds in the same
way. Hence (X, τ) is ϕ1,2–T0.

c). Let (X, τ) be a ϕ1,2–T1 space, x, y ∈ X and x 6= y. Now, {x} and {y} are
ϕ1,2–closed sets, so ϕ1,2cl {x} ⊆ {x} and ϕ1,2cl {y} ⊆ {y}. Hence y 6∈ ϕ1,2cl {x}
and x 6∈ ϕ1,2cl {y}.

Conversely, let x 6∈ ϕ1,2cl {y}, y 6∈ ϕ1,2cl {x} for x, y ∈ X, x 6= y. There are ϕ1–
open sets U and V such that x ∈ U , ϕ2(U)∩{y} = ∅ and y ∈ V , ϕ2(V )∩{x} = ∅.
Now, x ∈ U , y 6∈ ϕ2(U) and y ∈ V , x 6∈ ϕ2(V ). Hence (X, τ) is ϕ1,2–T1. 2

2.18. Theorem : Let ϕ1, ϕ2, ϕ3, ϕ
′

1, ϕ
′

2 ∈ O(X, τ).

a) If ϕ1 ≤ ϕ′1, ϕ
′

2 ≤ ϕ2 and (X, τ) is ϕ1,2–Ti, then (X, τ)is ϕ′1,2–Ti, (i = 0, 1, 2).

b) If ϕ2(U) = ϕ3(U) for each ϕ1O(X), then (X, τ) is ϕ1,2–Ti iff (X, τ) is ϕ1,3–
Ti, i = 0, 1, 2.

2.19. Theorem : Let ϕ1 be monotonous and ϕ2 = ϕ1O(X)–cl.

a) U ∩ ϕ2(V ) = ∅ if U, V ∈ ϕ1O(X) and U ∩ V = ∅.

b) If ϕ2(U) ∈ ϕ1O(X) for each U ∈ ϕ1O(X), then (X,ϕ1O(X)) is T2 iff (X, τ)
is ϕ1,2–T2.

Proof. Note that ϕ1O(X) is a supratopology, τ ⊆ ϕ1O(X), ϕ2 ∈ O(X, τ) and
ϕ2 ≥ ı.

a). Let U, V ∈ ϕ1O(X), U ∩ V = ∅, but U ∩ ϕ2(V ) 6= ∅. Then there is a point
x ∈ X such that x ∈ U and x ∈ ϕ2(V ). Now x ∈ U ∈ ϕ1O(X), x ∈ ϕ1O(X)–clV ,
so U ∩ V = ∅. This contradiction completes the proof.

b). Let (X,ϕ1O(X)) be T2, x, y ∈ X, x 6= y. There are ϕ1–open sets U and
V such that x ∈ U , y ∈ V and U ∩ V = ∅. Hence U ∩ ϕ2(V ) = ∅ from (a). Since
U, ϕ2(V ) ∈ ϕ1O(X), we have ϕ2(U) ∩ ϕ2(V ) = ∅.

Now, let (X, τ) be ϕ1,2–T2, x, y ∈ X with x 6= y. There are ϕ1–open sets
U and V such that x ∈ U , y ∈ V , ϕ2(U) ∩ ϕ2(V ) = ∅. Now x ∈ U ⊆ ϕ2(U),
y ∈ V ⊆ ϕ2(V ), and ϕ2(U) ∈ ϕ1O(X), ϕ2(V ) ∈ ϕ1O(X). Hence (X,ϕ1O(X)) is
T2. 2
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2.20. Example. Let ϕ1 = int , ϕ2 = int ◦ cl .

ϕ2 is W.F.I.P. w.r.t. ϕ1O(X) = τ . Also ϕ2 is regular w.r.t. ϕ1O(X) and
ϕ2 ≥ ϕ1. For U ∈ ϕ1O(X), we have ϕ2(U) ∈ ϕ1O(X) and ϕ2(ϕ2(U)) ⊆ ϕ2(U).

B = {ϕ2(U) : U ∈ ϕ1O(X)} = RO(X). ϕ1,2O(X) = τs. (X, τ) is ϕ1,2–R2 iff
τ = ϕ1O(X) = τs iff (X, τ) is semi-regular. From Theorem 2.13, we have, (X, τ)
is ϕ1,2–Ti iff (X, τs) is Ti, i = 0, 1, 2. From Theorem 2.16 (c), (X, τ) is ϕ1,2–T2 iff
(X, τ) is T2 iff (X, τs) is T2.

2.21. Example. Let ϕ1 = int ◦ cl ◦ int and ϕ2 = scl . Then ϕ2 is W.F.I.P. w.r.t.
ϕ1O(X) = τα [7]. ϕ2 is regular w.r.t. ϕ1O(X) and ϕ2 ≥ ı.

For each U ∈ ϕ1O(X) = τα, we have ϕ2(U) = sclU = U ∪ U
o

= U ∪ U

o
o

=

U

o
o

∈ ϕ1O(X) and ϕ2(ϕ2(U)) ⊆ ϕ2(U). Then ϕ1,2O(X) is a topology and B =

{ϕ2(U) : U ∈ ϕ1O(X)} = {sclU : U ∈ τα} = {U

o
o

: U ∈ τα} = RO(X) is a base
for ϕ1,2O(X). Also, ϕ1,2O(X) = τs. Hence (X, τ) is ϕ1,2–T2 iff (X, τα) is T2 iff
(X, τs) is T2.

2.22. Example. Let ϕ1 = cl ◦ int . Then ϕ1 is monotonous, ϕ1O(X) = SO(X)
is a supratopology on X and ϕ2 = ϕ1O(X)–cl= scl . For U ∈ ϕ1O(X) = SO(X),
ϕ2(U) = sclU ∈ SO(X) = ϕ1O(X). So, (X, τ) is ϕ1,2–T2 iff (X,ϕ1O(X)) is T2
iff for x, y ∈ X, x 6= y, there are semi-open sets U and V such that x ∈ U , y ∈ V
and U ∩V = ∅ iff for x, y ∈ X, x 6= y, there are semi-open sets U and V such that
x ∈ U , y ∈ V and sclU ∩ sclV = ∅.

2.23. Example. Let ϕ1 = int ◦ cl , ϕ2 = pcl , ψ1 = int , ψ2 = ı.

f : X → Y is ϕ1,2ψ1,2–continuous iff f is strongly Θ–pre-continuous. Also,
Gf is ϕ1,2ψ1,2–closed iff Gf is strongly pre-closed [6]. Hence, (Y, ϑ) is ψ1,2–T2 iff
(Y, ϑ) is Hausdorff. Finally, (X, τ) is ϕ1,2–T2 iff (X, τ) is pre-Urysohn [6]. Many
of the results in [6] have been obtained in [7-11] and here.

It is now possible to obtain many known results, some of which can be seen in
[2,3,6], by choosing particular operations. In addition, by combining the unifica-
tions in [7-9] with those in the present paper, we may obtain many other results.
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