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Abstract

This article deals with the determination of compromise integer strata
sample sizes using goal programming in multivariate stratified sam-
pling. Firstly, the problem of determining optimum integer strata sam-
ple sizes is formulated for the univariate case, and then based on these
individual optimal solutions, individual goal variances are calculated. A
new compromise criteria is defined for the goal programming approach
based on predetermined or calculated goal variances. It is shown that
the proposed approach provides relatively more efficient and feasible
compromise integer strata sample sizes for multivariate surveys.

Keywords: Stratified sampling, Compromise allocation, Goal programming, Relative
efficiency.

1. Introduction

Several alternative compromise criteria and methods have been suggested in order to
determine strata sample sizes for multivariate surveys by authors such as Neyman [6],
Cochran [2], Chatterjee [1], Kokan and Khan [5], Sukhatme, Sukhatme, Sukhatme, and
Asok [8], Jahan, Khan, and Ahsan [3], Khan, Ahsan, and Jahan [4], etc. Determining
the compromise strata sample sizes in multivariate stratified sampling has been com-
monly called compromise allocation. If the total sample size is known and this sample
size is divided among stratum, it is called an allocation procedure. However, this study
is intended to determine strata sample sizes directly, and the proposed goal program-
ming approach does not involve any allocation techniques. The problem of determining
compromise strata sample sizes may be defined as a goal programming problem, since it
consists of multiple objectives. In this study, the compromise criteria is the sum of the

∗Selçuk University, Faculty of Art and Sciences, Department of Statistics, Konya, Turkey.

E-mail : msemiz@selcuk.edu.tr



92 M. Semiz

proportional increase in variances resulting from absolute deviations from the individual
desired variances over all k characteristics. The criterion is formulated as

(1.1) minimize
k

∑

j=1

∣

∣Vcomp(ȳj)− Vd(ȳj)
∣

∣

Vd(ȳj)
,

where Vcomp(ȳj) is the variance of the sample mean of the jth characteristic under opti-
mum compromise integer strata sample sizes (n∗

h), and Vd(ȳj) is the desired variance of
the sample mean of the jth characteristic under optimum individual strata sample sizes
(njh) in the hth strata. The desired individual variance Vd(ȳj) can be either predeter-
mined or calculated. If one has no idea how to predetermine Vd(ȳj), the minimum value
of the individual variances Vmin(ȳj) can be used instead of the desired variance Vd(ȳj).
In the first step, the desired individual optimal variances should be predetermined or
calculated as Vmin(ȳj) for every characteristic.

2. The individual optimal integer strata sample sizes

The most popular way of calculating the individual optimal strata sample sizes for
the jth characteristic in the hth strata is to use the equation

(2.1) njh =
CWhSjh/

√
ch

∑L

h=1
WhSjh

√
ch

,

as indicated by Cochran [2], where ch is the cost of a sample taken from the hth strata,
Wh is the weight of the size of the hth strata, (Nh/

∑

h Nh) and Sjh is the standard
deviation of the hth strata for the jth characteristic. The solution of equation (2.1)

depends on the total sampling cost function f =
∑L

h=1
chnjh and a fixed budget C. It is

known that equation (2.1) provides non-integer solutions, and Khan, Ahsan, and Jahan
[4] showed that it sometimes provides unfeasible solutions, too. However, they used these
solutions as an initial point of their algorithms for determining the optimum compromise
integer strata sample sizes in multivariate surveys.

For the univariate case, the goal is to minimize the jth individual variance, V (ȳj),
subject to f ≤ C, njh ≤ Nh, where njh are integers (h = 1, 2, . . . , L). This problem
can also be presented as a non-linear integer programming (NIP) problem, as proposed
by Semiz and Esin [7]. This problem for every jth characteristic is formulated by the
following model:

minimizeVmin(ȳ) =
L

∑

h=1

W 2
hS2

jh

njh

(2.2)

subject to f ≤ C

0 ≤ njh ≤ Nh, h = 1, 2, . . . , L,

njh are integers, h = 1, 2, . . . , L.

Individual optimum integer values njh can be determined by solving the problem (2.2)
using the Lingo package program [9]. The NIP solution of the problem (2.2) has ad-
vantages over the solution of equation (2.1) since one can add different constraints to
problem (2.2), and obtain optimal integer results.

2.1. Example. The data, exhibited in Table 1, of the example reviewed by Khan, Ahsan,
and Jahan [4], is reconsidered here for the comparison of alternative methods.
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Table 1. Data for five strata and three characteristics.

ch Nh Wh S1h S2h S3h W 2
hS2

1h W 2
hS2

2h W 2
hS2

3h

1 3 39,552 0.197 4.6 11.7 332 0.82119844 5.31256401 4277.683216

2 4 38,347 0.191 3.4 9.8 357 0.42172036 3.50363524 4649.466969

3 5 43,969 0.219 3.3 7.0 246 0.52229529 2.35008900 2902.407876

4 6 36,942 0.184 2.8 6.5 173 0.26543104 1.43041600 1013.276224

5 7 41,760 0.208 3.7 9.8 279 0.59228416 4.15507456 3367.713024

The data includes three characteristics:

(i) The number of cows milked per day,
(ii) The number of gallons of milk yielded per day,
(iii) The total annual cash receipts from dairy products.

The fixed budget for this sampling design is C = 5, 000 $. The individual optimum
solutions of Cochran’s equation (2.1), and the NIP problem defined in (2.2), are illustrated
in Table 2.

Table 2. The individual optimal strata sample sizes, cost and variances
obtained from the solution of the Cochran (2.1) and NIP (2.2) methods.

Cochran (2.1) NIP (2.2)

h/j 1 2 3 1 2 3

1 336 341 314 335 340 314

2 209 240 283 210 239 284

3 208 176 200 207 175 200

4 135 125 108 135 126 108

5 187 198 182 187 199 182

Total cost ($) 5,003 4,999 4,996 4,999 5,000 5,000

Vmin(ȳj) 0.01210 0.07595 72.45055 0.01211 0.07594 72.39270

The NIP (2.2) solutions are feasible solutions which do not violate any constraints at
all. However, sometimes Cochran’s solutions may violate some of the constraints due
to rounding off. In this example, for the first characteristic the sampling cost is over
the fixed budget of 5,000 $. The individual variances are smaller with the NIP (2.2)
solutions. These optimum integer individual strata sample sizes determined by NIP can
be considered as a starting point for algorithms such as Dynamic programming used by
Khan, Ahsan, and Jahan [4], and the related individual minimum variances Vmin(ȳj) are
considered as the individual desired variances Vd(ȳj).

3. Compromise integer solution via goal programming

Goal programming aims to attain predetermined goals for multiple objectives. In
multivariate surveys, there are k predetermined goal variances Vd(ȳj). Therefore, there



94 M. Semiz

are k absolute deviations between the compromise variances Vcomp(ȳj) and the mini-
mum individual, or desired known variances Vd(ȳj). The absolute positive deviations are
formulated as

Vcomp(ȳj) = d−j − d+
j = Vd(ȳj), j = 1, 2, . . . , k,

where

Vcomp(ȳj) < Vd(ȳj) =⇒ d−j > 0, d+
j = 0,

Vcomp(ȳj) > Vd(ȳj) =⇒ d−j = 0, d+
j > 0,

Vcomp(ȳj) = Vd(ȳj) =⇒ d−j = 0, d+
j = 0.

For the jth characteristic, if the variances are not equal, one of these positive deviations
d+

j or d−j come into existence. Therefore, the decision criteria is to minimize the sum

of the deviations d+
j and d−j . However, the deviations of different characteristics may

have different units. For each characteristic, the deviation d+
j or d−j becomes unit free

by applying the transformation

(3.1)
d+

j

Vd(ȳj)
or

d−j
Vd(ȳj)

, j = 1, 2, . . . , k,

respectively. As seen in Equation (3.1), the jth unit free standardized deviation is equal
to the jth proportional increase in variance resulting from the absolute deviation between
Vcomp(ȳj) and Vd(ȳj) in (1.1). Consequently, by using goal programming, the compromise
integer strata sample sizes in the multivariate case may be presented as the following
nonlinear integer programming problem:

minimize

k
∑

j=1

wj

d+
j + d−j
Vd(ȳj)

≡ minimize

k
∑

j=1

wj
|Vcomp(ȳj)− Vd(ȳj)|

Vd(ȳj)
(3.2)

subject to Vcomp(ȳj) + d−j − d+
j = Vd(ȳ), j = 1, 2, . . . , k,

fc ≤ C,

1 ≤ n∗
h ≤ Nh, h = 1, 2, . . . , L,

n∗
h are integers, h = 1, 2, . . . , L,

where fc =
∑L

h=1 chn∗
h can be of any form. The problem (3.2) may accept many con-

straints, and wj can be added as the weight of the jth characteristic according to its
importance. Therefore, this approach is much more flexible than the other algorithms.
This problem can be solved by the Lingo package program [9].

Taking NIP (2.2) individual optimal solutions as the desired variances, and assuming
the importance of all characteristics to be equal (wj = 1, j = 1, 2, 3), the solution of the
compromise integer problem defined in (3.2) gives the compromise integer strata sample
sizes as

n∗
1 = 329, n∗

2 = 246, n∗
3 = 195, n∗

4 = 123, n∗
5 = 188,

and the compromise variances of characteristics as

Vcomp(ȳ1) = 0.012197215, Vcomp(ȳ2) = 0.076172628, Vcomp(ȳ3) = 72.93787706.

4. Comparisons and Conclusions

The mean sum of relative efficiencies of variances is used for the comparison of the pro-
posed goal programming approach (3.2) with other compromise methods. The compared
methods are:
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i) Minimizing the trace of the covariance matrix, as proposed by Sukhatme, Suk-
hatme, Sukhatme and Asok [8],

ii) Averaging the individual strata sample sizes over the characteristics calculated
using (2.1),

iii) Minimizing the total relative increase in the variances, as proposed by Chatterjee
[1],

iv) Minimizing the total relative increase in the variances with integer restrictions,
as proposed by Khan, Ahsan, and Jahan [4], and

v) Minimizing the total proportional increase in variances, as proposed by the au-
thor (3.2).

Since every characteristic can have different units, in (i), the appropriateness of the sum
of the variances should be reevaluated carefully. The compromise strata sample sizes are
presented in Table 3 for each method.

Table 3. Compromise Strata Sample Sizes for the Methods Compared.

Methods and compromise integer strata sample sizes n∗
1 n∗

2 n∗
3 n∗

4 n∗
5

(i) Minimizing the trace 314 283 200 108 182

(ii) Cochran’s Average 330 244 195 123 189

(iii) Chatterjee’s Method 330 245 195 123 189

(iv) Integer DP 331 246 195 123 187

(v) Proposed integer GP 329 246 195 123 188

The comparison is based on the mean sum of relative efficiencies (MSRE) of each method:

(4.1) MSRE =
1

k

k
∑

j=1

Vcomp(ȳj)

Vmin(ȳj)
=

1

k
SRE.

Table 4. Sum of relative efficiencies (SRE) and mean sum of relative
efficiencies (MSRE) as compared to the optimal individual variances

determined by NIP (2.2).

Methods and compromised variances V (ȳ1) V (ȳ2) V (ȳ3) SRE MSRE (4.1) Cost

Optimal Integer Individual (NIP) (2.2) 0.0121 0.0759 72.3927 3.0000 1.0000 ∗
(i) Minimizing the Trace 0.0124 0.0771 72.4506 3.0414 1.0138 4996

(ii) Cochran’s Average 0.0122 0.0761 72.9586 3.0187 1.0062 5002

(iii) Chatterjee’s Method 0.0122 0.0761 72.8808 3.0176 1.0059 5006

(iv) Integer DP 0.0122 0.0762 72.9551 3.0200 1.0067 4999

(v) Proposed integer GP (3.2) 0.0122 0.0762 72.9379 3.0197 1.0066 5000

Method (i) does not directly provide integer strata sample sizes. Solutions of (i) have
to be rounded. The mean sum of the relative efficiencies of (i) is greater than for the
proposed method (v). Also, the trace concept of the variance terms, which have different
units, is still in question.

Methods (ii) and (iii) have lower MSRE values than the proposed method (v). How-
ever, these strata sample size solutions require to be rounded off. As seen in Table 4, these
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solutions result in a cost over the budget and these methods may not provide feasible
solutions.

Method (iv), proposed by Khan, Ahsan, and Jahan [4], is as efficient as the proposed
method (v). However, the solutions of (iv) are determined by an algorithm for a fixed

problem subject to the fixed cost function (fc =
∑L

h=1 chn∗
h) and for a limited and

specified set of constraints. Therefore, method (iv) is not flexible for different multivariate
survey problems.

Method (v) is a mathematical programming model which optimizes the goal program-
ming model subject to the constraints, which are the cost function and the integer strata
sample sizes. Therefore, Method (v) always provides integer and feasible solutions for the
strata sample sizes for compromise situation in multivariate stratified sampling problems.
In addition this proposed goal programming method (v) has a flexible structure because
it can accept different kinds of restrictions appropriate to different problems. Depending
upon the problem structure, constraints may be deleted, added or changed in the new
method (3.2). In addition to these advantages, the proposed goal programming solution
method (v) has, for this specific example, the best MSRE value among the methods (i),
(iv) and (v) that provide feasible solutions. In conclusion, as seen in this example, this
goal programming method seems to provide a flexible approach as well as feasible and
efficient integer compromise strata sample sizes in multivariate stratified sampling.
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