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Abstract

Kandil, Kerre and Nouh unified various concepts in fuzzy topological
spaces by using operations. By adapting their definition of an operation
and some other definitions given by these authors to topological spaces,
and by giving some new definitions, we have previously achieved some
unifications related to continuity, compactness, filters and graphs. Here
we will study the unification of openness and closedness properties of
functions, and give some results related to ϕ1,2ψ1,2-closed functions and
ϕ1,2ψ1,2-compact sets.
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1. Introduction

Many mathematicians have worked on the unification of properties in topological
spaces and fuzzy topological spaces, as in [1–7,8,10,11]. In [3,5], some unifications for
fuzzy topological spaces were studied. It was announced there, and is easily seen, that
most of the definitions and results are applicable to topological spaces.

In a topological space (X, τ), int , cl , scl etc. will stand for the operations of interior,

closure, semi-closure, and so on. In addition, A◦, A will also denote the interior and
closure of a subset A of X respectively.

1.1. Definition. Let (X, τ) be a topological space. A mapping ϕ : P (X) → P (X) is
called an operation on (X, τ) if Ao ⊆ ϕ(A) for all A ∈ P (X) and ϕ(∅) = ∅.

The class of all operations on a topological space (X, τ) will be denoted by O(X, τ).

A partial order “≤” on O(X, τ) is defined by ϕ1 ≤ ϕ2 ⇐⇒ ϕ1(A) ⊆ ϕ2(A) for each
A ∈ P (X).

An operation ϕ ∈ O(X, τ) is called monotonous if ϕ(A) ⊆ ϕ(B) whenever A ⊆ B for
all A,B ∈ P (X).
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1.2. Definition. Let ϕ ∈ O(X, τ) . Then A ⊆ X is called ϕ-open if A ⊆ ϕ(A). Dually,
B ⊆ X is called ϕ-closed if X \B is ϕ-open.

Clearly, X and ∅ are both ϕ-open and ϕ-closed.

If ϕ is monotonous, then the family of all ϕ-open sets is a supratopology†.

For a subset A of a supratopological space (X,U) the U-closure of A and U-interior
of A are defined as for topological spaces, i.e.

U-clA =
⋂

{K : A ⊆ K, X \K ∈ U}

= {x : U ∈ U, x ∈ U =⇒ U ∩A 6= ∅}, and

U-intA =
⋃

{U : U ⊆ A,U ∈ U}

= {x : ∃U ∈ U, x ∈ U ⊆ A}.

Let (X, τ) be a topological space, ϕ ∈ O(X, τ), U ⊆ P (X), x ∈ X. We use the following
notations.

U(x) = {U : x ∈ U ∈ U},

ϕO(X) = {U : U ⊆ X, U is ϕ-open},

ϕC(X) = {K : K ⊆ X, K is ϕ-closed},

ϕO(X, x) = {U : U ∈ ϕO(X), x ∈ U}.

1.3. Definition. Let ϕ1, ϕ2 ∈ O(X, τ), A ⊆ X. Then:

(a) x ∈ ϕ1,2intA ⇐⇒ ∃U ∈ ϕ1O(X,x) such that ϕ2(U) ⊆ A.

(b) x ∈ ϕ1,2clA ⇐⇒ ϕ2(U) ∩A 6= ∅ ∀U ∈ ϕ1O(X, x).

(c) x ∈ ϕ1O(X)-clA ⇐⇒ x ∈ (ϕ1-ı)clA (here ı is the identity operation).

(d) A is ϕ1,2-open ⇐⇒ A ⊆ ϕ1,2intA.

(e) A is ϕ1,2-closed ⇐⇒ ϕ1,2clA ⊆ A.

We note the following:

• If A ⊆ B then ϕ1,2intA ⊆ ϕ1,2intB.

• Clearly, for any set A, X \ϕ1,2intA = ϕ1,2cl (X \A) and A is ϕ1,2-open iff X \A
is ϕ1,2-closed.

• ϕ1,2O(X) (ϕ1,2C(X)) will stand for the family of all ϕ1,2-open subsets (the
family of all ϕ1,2-closed subsets) of X.

• ϕ1,2O(X) is a supratopology on X [5].

2. Openness

Let ∅ 6= Γ ⊆ P (X) and f : X → Y . We use the following notation.

f(Γ) = {f(U) : U ∈ Γ},

Γ′ = {X \ U : U ∈ Γ}.

2.1. Theorem. Let ∅ 6= Γ ⊆ P (X), ∅ 6= γ ⊆ P (Y ) and f : X → Y . Then the following
statements are equivalent.

(a) f(Γ) ⊆ γ.

(b) For each B ⊆ Y and for each F ∈ Γ′ such that f−1(B) ⊆ F , there exists a
K ∈ γ′ such that B ⊆ K and f−1(K) ⊆ F .

†A subfamily U of the power set of a non-empty set X is called a supratopology on X if ∅,

X ∈ U and U is closed under arbitrary unions [9].
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(c) For each A ∈ Γ′, {y ∈ Y : f−1(y) ⊆ A} ∈ γ′.

(d) For each U ∈ Γ, {y ∈ Y : f−1(y) ∩ U 6= ∅} ∈ γ.

Proof. (a) =⇒ (b) Let B ⊆ Y , f−1(B) ⊆ F , F ∈ Γ′. Then X \ F ∈ Γ so f(X \ F ) ∈ γ.
Let K = Y \ f(X \F ) ∈ γ′. Since Y \ f(X \F ) = {y ∈ Y : f−1(y) ⊆ F} we have B ⊆ K

and f−1(K) ⊆ F .

(b) =⇒ (c) For A ∈ Γ′ let B = {y ∈ Y : f−1(y) ⊆ A}. Then f−1(B) ⊆ A, and A ∈ Γ′,
so by (b) there exists a K ∈ γ′ such that B ⊆ K and f−1(K) ⊆ A. We have K ⊆ B and
hence B = K ∈ γ′.

(c) =⇒ (d) Let U ∈ Γ. Then X \U ∈ Γ′, whence {y ∈ Y : f−1(y) ⊆ X \U} ∈ γ′. But
Y \ f(U) = {y ∈ Y : f−1(y) ⊆ X \ U} ∈ γ′, so f(U) = {y ∈ Y : f−1(y) ∩ U 6= ∅} ∈ γ.

(d) =⇒ (a) Let U ∈ Γ. Then {y ∈ Y : f−1(y) ∩ U 6= ∅} = f(U) ∈ γ. Hence
f(Γ) ⊆ γ. ¤

2.2. Lemma. If Γ ⊆ P (X) and γ ⊆ P (Y ) are supratopologies and B is a base for the
supratopology Γ, then f(Γ) ⊆ γ iff f(B) ⊆ γ.

2.3. Remark. If we take Γ = ϕ1,2O(X) and γ = ψ1,2O(Y ) for the operations ϕ1, ϕ2 ∈
O(X, τ) and ψ1, ψ2 ∈ O(Y, ϑ) then Γ′ = ϕ1,2C(X), γ′ = ψ1,2C(Y ) and we obtain from
Theorem 2.1 equivalent conditions for a function f : (X, τ) → (Y, ϑ) to satisfy the
property f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ).

2.4. Theorem. If γ′ is a supratopology for γ ⊆ P (Y ) then f(Γ) ⊆ γ iff for each y ∈ Y
and for each set F ∈ Γ′ such that f−1(y) ⊆ F , there exists a K ∈ γ′ such that y ∈ K

and f−1(K) ⊆ F .

Proof. =⇒ . Clear from Theorem 2.1.

⇐=. Let B ⊆ Y , f−1(B) ⊆ F ∈ Γ′. For each y ∈ B, f−1(y) ⊆ F ∈ Γ′. By hypothesis
there exists a Ky ∈ γ

′ such that y ∈ Ky and f−1(Ky) ⊆ F . Then B ⊆
⋃

Ky = K ∈ γ′

and f−1(K) ⊆ F . From Theorem 2.1 we obtain f(Γ) ⊆ γ. ¤

2.5. Lemma. Let ϕ1, ϕ2 ∈ O(X, τ). For each x ∈ X and for each U ∈ ϕ1O(X, x),
x ∈ ϕ1,2intϕ2(U). Hence if U ∈ ϕ1O(X) then U ⊆ ϕ1,2intϕ2(U).

Proof. If x ∈ U ∈ ϕ1O(X), then since ϕ2(U) ⊆ ϕ2(U) the proof is clear from Definition
1.3 (a). ¤

The following definition was given in [3] for fuzzy topological spaces.

2.6. Definition. Let ϕ1, ϕ2 ∈ O(X, τ), ψ1, ψ2 ∈ O(Y, ϑ) and f : (X, τ) → (Y, ϑ). We
say that f is ϕ1,2ψ1,2-open if for each A ⊆ X and for each x ∈ ϕ1,2intA we have
f(x) ∈ ψ1,2int f(A).

From now on we accept that ϕ1, ϕ2 ∈ O(X, τ), ψ1, ψ2 ∈ O(Y, ϑ) and that f : (X, τ) →
(Y, ϑ).

In the following theorem, almost all of the equivalent statements are given for fuzzy
topological spaces in [3].

2.7. Theorem. The following are equivalent.

(a) f is ϕ1,2ψ1,2-open.

(b) For each A ⊆ X we have f(ϕ1,2intA) ⊆ ψ1,2int f(A).

(c) For each B ⊆ Y we have f−1(ψ1,2clB) ⊆ ϕ1,2cl f
−1(B).

(d) For each B ⊆ Y we have ϕ1,2int f
−1(B) ⊆ f−1(ψ1,2intB).
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(e) For each U ∈ ϕ1O(X) we have f(U) ⊆ ψ1,2int f(ϕ2(U)).

(f) For each x ∈ X and U ∈ ϕ1O(X, x), there exists V ∈ ψ1O(Y, f(x)) such that
ψ2(V ) ⊆ f(ϕ2(U)).

Proof. (a)⇐⇒ (b). Clear.

(b) =⇒ (c). Let B ⊆ Y . Then f(ϕ1,2int (X \ f−1(B))) ⊆ ψ1,2int f(X \ f−1(B)).
Since, ϕ1,2int (X \ f

−1(B)) = X \ ϕ1,2cl f
−1(B) and

ψ1,2int f(X \ f
−1(B)) = ψ1,2int f(f

−1(Y \B)) ⊆ ψ1,2int (Y \B),

then

X \ ϕ1,2cl f
−1(B) ⊆ f

−1(f(ϕ1,2int (X \ f
−1(B))))

⊆ f
−1(ψ1,2int (Y \B))

= f
−1(Y \ ψ1,2clB)

= X \ f−1(ψ1,2clB).

Hence we have f−1(ψ1,2clB) ⊆ ϕ1,2cl f
−1(B).

(c) =⇒ (d). Let B ⊆ Y . Then

ϕ1,2int f
−1(B) = X \ ϕ1,2cl (X \ f

−1(B))

= X \ ϕ1,2cl f
−1(Y \B)

⊆ X \ f−1(ψ1,2cl (Y \B))

= X \ f−1(Y \ (ψ1,2intB))

= f
−1(ψ1,2intB).

(d) =⇒ (b). Let A ⊆ X. Then

ϕ1,2intA ⊆ ϕ1,2int f
−1(f(A)) ⊆ f

−1(ψ1,2int f(A))

so

f(ϕ1,2intA) ⊆ f(f−1(ψ1,2int f(A))) ⊆ ψ1,2int f(A).

(a) =⇒ (e). Let U ∈ ϕ1O(X). Then U ⊆ ϕ1,2intϕ2(U), so

f(U) ⊆ f(ϕ1,2intϕ2(U)) ⊆ ψ1,2int f(ϕ2(U)).

(e) =⇒ (f). Let x ∈ X and U ∈ ϕ1O(X, x). Since f(U) ⊆ ψ1,2int f(ϕ2(U)), f(x) ∈
ψ1,2int f(ϕ2(U)). Hence there exists V ∈ ψ1O(Y, f(x)) such that ψ2(V ) ⊆ f(ϕ2(U)).

(f) =⇒ (a). Let A ⊆ X and x ∈ ϕ1,2intA. There exists U ∈ ϕ1O(X, x) such that
ϕ2(U) ⊆ A. There exists V ∈ ψ1O(Y, f(x)) such that ψ2(V ) ⊆ f(ϕ2(U)) ⊆ f(A). So
f(x) ∈ ψ1,2int f(A). ¤

2.8. Theorem. If f is 1-1 and onto then the following are equivalent.

(a) f is ϕ1,2ψ1,2-open.

(b) For each A ⊆ X, ψ1,2cl f(A) ⊆ f(ϕ1,2clA).

Proof. (a) =⇒ (b). Let f be ϕ1,2ψ1,2-open and A ⊆ X. Then for f(A) ⊆ Y we have
f−1(ψ1,2cl f(A)) ⊆ ϕ1,2cl f

−1(f(A)) = ϕ1,2clA, so ψ1,2cl f(A) ⊆ f(ϕ1,2clA).

(b) =⇒ (a). Let B ⊆ Y . Then

ψ1,2clB = ψ1,2cl f(f
−1(B)) ⊆ f(ϕ1,2cl f

−1(B))
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so

f
−1(ψ1,2clB) ⊆ ϕ1,2cl f

−1(B).

The result is now clear from Theorem 2.7. ¤

The following theorem given in [3] clearly also holds for topological spaces.

2.9. Theorem. If f is ϕ1,2ψ1,2-open then f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ).

2.10. Theorem. If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and ϕ1,2intA ⊆ ϕ1,2int (ϕ1,2intA) for each
A ⊆ X, then f is ϕ1,2ψ1,2-open iff f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ).

Proof. ⇐=. Let f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ) and A ⊆ X. By the hypotheses, ϕ1,2intA ∈
ϕ1,2O(X), f(ϕ1,2intA) ∈ ψ1,2O(Y ) and ϕ1,2intA ⊆ A. Hence,

f(ϕ1,2intA) ⊆ ψ1,2int f(ϕ1,2intA) ⊆ ψ1,2int f(A).

Now from Theorem 2.7, f is ϕ1,2ψ1,2-open. ¤

2.11. Lemma.

(a) If ϕ2(U) ∈ ϕ1,2O(X) ∀U ∈ ϕ1O(X) then ϕ1,2intA ⊆ ϕ1,2int (ϕ1,2intA) for
each A ⊆ X.

(b) If ϕ2 ≤ ı, then ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X).

(c) If ϕ2 = ı, then the conditions of Theorem 2.10 are satisfied.

(d) If ϕ2(U) ∈ ϕ1O(X) and ϕ2(ϕ2(U)) ⊆ ϕ2(U) for each U ∈ ϕ1O(X), then
ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X) [11, Lemma 2.6].

(e) If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X), then
B = {ϕ2(U) : U ∈ ϕ1O(X)} is a base for the supratopology ϕ1,2O(X) [11,
Theorem 2.7].

Proof. (a) Let A ⊆ X and x ∈ ϕ1,2intA. Then there exists U ∈ ϕ1O(X, x) such that
ϕ2(U) ⊆ A. Hence, ϕ2(U) ⊆ ϕ1,2intϕ2(U) ⊆ ϕ1,2intA, so x ∈ ϕ1,2int (ϕ1,2intA). ¤

2.12. Remark. If ϕ1, ϕ2 ∈ O(X, τ) satisfy the conditions of Theorem 2.10, then we
get equivalent conditions for a function f : (X, τ)→ (Y, ϑ) to be ϕ1,2ψ1,2-open by using
Remark 2.3 and Theorems 2.1, 2.7 and 2.10.

For a topological space (X, τ), RO(X) (SO(X)) will stand for the family of regular
open sets (semi-open sets) of X, respectively.

2.13. Example. Let ϕ1 = int , ϕ2 = int ◦ cl , ψ1 = int and ψ2 = cl . Then:

ϕ1O(X) = τ ,

x ∈ ϕ1,2intA ⇐⇒ x ∈ δ-intA,

ϕ1,2O(X) = τs = the topology generated by the base RO(X).

Clearly ϕ2 ≥ ϕ1. For each U ∈ ϕ1O(X) = τ we have ϕ2(U) = U
o
∈ ϕ1O(X) and

ϕ2(ϕ2(U)) = ϕ2(U). Also,

B = {ϕ2(U) : U ∈ ϕ1O(X)} = RO(X).

ψ1O(Y ) = ϑ,

x ∈ ψ1,2intB ⇐⇒ x ∈ Θ-intB.

ψ1,2O(Y ) = ϑΘ = the topology of Θ-open sets.

Finally, f is ϕ1,2ψ1,2-open iff for each A ⊆ X and for each x ∈ δ-intA we have
f(x) ∈ Θ-int f(A).

Now, using Lemma 2.11, Theorem 2.10, Theorem 2.7, Remark 2.3, Lemma 2.2 and
Theorem 2.1, we get the following theorem.
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2.14. Theorem. Let f : (X, τ)→ (Y, ϑ). The following are equivalent.

(a) f(τs) ⊆ ϑΘ.

(b) For each A ⊆ X and for each x ∈ δ-intA, f(x) ∈ Θ-int f(A).

(c) f(RO(X)) ⊆ ϑΘ.

(d) For each B ⊆ Y and for each τs-closed set (i.e. δ-closed set) such that f
−1(B) ⊆

F , there exists a Θ-closed set K with B ⊆ K and f−1(K) ⊆ F .

(e) For each B ⊆ Y and for each regular-closed set F such that f−1(B) ⊆ F , there
exists a Θ-closed set K such that B ⊆ K and f−1(K) ⊆ F .

(f) For each δ-closed set A in X, {y ∈ Y : f−1(y) ⊆ A} is Θ-closed.

(g) For each regular-closed set A in X, {y ∈ Y : f−1(y) ⊆ A} is Θ-closed.

(h) For each δ-open set U in X, {y ∈ Y : f−1(y) ∩ U 6= ∅} is Θ-open.

(i) For each regular open set U in X, {y ∈ Y : f−1(y) ∩ U 6= ∅} is Θ-open.

(j) For each A ⊆ X, f(δ-intA) ⊆ Θ-int f(A).

(k) For each B ⊆ Y , f−1(Θ-clB) ⊆ δ-cl f−1(B).

(l) For each B ⊆ Y , δ-int f−1(B) ⊆ f−1(Θ-intB).

(m) For each U ∈ τ , f(U) ⊆ Θ-int f(U
o
).

(n) For each x ∈ X and for each U ∈ τ(x), there exists a V ∈ ϑ(f(x)) such that

V ⊆ f(U
o
).

2.15. Example. Let ϕ1 = cl ◦ int and ϕ2 = scl . Then:

ϕ1O(X) = SO(X) and ϕ2 ≥ ı.

For U ∈ ϕ1O(X) = SO(X), ϕ2(U) = sclU ∈ SO(X) and ϕ2(ϕ2(U)) = ϕ2(U),

x ∈ ϕ1,2intA ⇐⇒ x ∈ semi-Θ-intA.

U ∈ ϕ1,2O(X) ⇐⇒ U is semi-Θ-open.

B = {ϕ2(U) : U ∈ ϕ1O(X)} = SR(X) = the family of semi-regular sets.

SR(X) is a base for the supratopology ϕ1,2O(X) = SΘO(X).

Now, by using the same Lemma, Remarks and Theorems as in Example 2.13, we could
obtain a similar theorem for f : (X, τ) → (Y, ϑ) to be ϕ1,2ψ1,2-open for any operations
ψ1, ψ2 ∈ O(Y, ϑ).

2.16. Remark. Let ϕ1 and ψ1 be monotonous. Then Γ = ϕ1O(X) and γ = ψ1O(Y )
are supratopologies.

If we take ϕ2 = ı, ψ2 = ı, we get ϕ1,2O(X) = ϕ1O(X) and ψ1,2O(Y ) = ψ1O(Y ).
In this case we can say, (ϕ1-ı)clA = ϕ1O(X)-clA, (ψ1-ı)clB = ψ1O(Y )-clB,

ϕ1,2intA = ϕ1O(X)-intA, ψ1,2intB = ψ1O(Y )-intB for A ⊆ X, B ⊆ Y .

F is ϕ1-closed iff ϕ1O(X)-clF ⊆ F and K is ψ1-closed iff ψ1O(Y )-clK ⊆ K.

f is ϕ1,2ψ1,2-open iff f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ) iff f(ϕ1O(X)) ⊆ ψ1O(Y ).

Hence we obtain the following theorem.

2.17. Theorem. For monotonous operations ϕ1, ψ1, and f : (X, τ) → (Y, ϑ), the
following are equivalent.

(a) For each U ∈ ϕ1O(X), f(U) ∈ ψ1O(Y ).

(b) For each B ⊆ Y and for each ϕ1-closed set F such that f−1(B) ⊆ F , there exists
a ψ1-closed set K such that B ⊆ K and f−1(K) ⊆ F .

(c) For each ϕ1-closed set A, the set {y ∈ Y : f−1(y) ⊆ A} is ψ1-closed.

(d) For each ϕ1-open set U , the set {y ∈ Y : f−1(y) ∩ U 6= ∅} is ψ1-open.
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(e) For each A ⊆ X, f−1(ϕ1O(X)-intA) ⊆ ψ1O(Y )-int f(A).

(f) For each B ⊆ Y , f−1(ψ1O(Y )-clB) ⊆ ϕ1O(X)-cl f−1(B).

(g) For each B ⊆ Y , ϕ1O(X)-int f−1(B)) ⊆ f−1(ψ1O(Y )-intB).

(h) For each U ∈ ϕ1O(X), f(U) ⊆ ψ1O(Y )-int f(U).

(i) For each x ∈ X and U ∈ ϕ1O(X, x), there exists V ∈ ψ1O(Y, f(x)) such that
V ⊆ f(U).

2.18. Example. (a) Let ϕ1 = int , ϕ2 = ı, ψ1 = int and ψ2 = ı. Then:

ϕ1O(X)-clA = A, ϕ1O(X)-intA = Ao and ψ1O(Y )-clB = B, ψ1O(Y )-intB = Bo.

Hence, F is ϕ1-closed ⇐⇒ F is τ -closed and K is ψ1-closed ⇐⇒ K is ϑ-closed.
Using the above theorem one could obtain equivalent conditions for a function to be
open.

(b) Let ϕ1 = int , ϕ2 = ı, ψ1 = cl ◦ int and ψ2 = ı. Then:

ϕ1O(X)-intA = Ao, ϕ1O(X)-clA = A, and

ψ1O(Y )-intB = semi-intB, ψ1O(Y )-clB = sclB.

Hence, F is ϕ1-closed ⇐⇒ F is τ -closed, and K is ψ1-closed ⇐⇒ K is semi-closed.
With the aid of Theorem 2.17 one can then obtain equivalent conditions for a function
to be semi-open.

The following theorem is given in [3].

2.19. Theorem. If for the operations ϕ1, ϕ2, ϕ3, ϕ4 ∈ O(X, τ) and ψ1, ψ2, ψ3, ψ4 ∈
O(Y, ϑ) satisfying ϕ3 ≤ ϕ1, ϕ2 ≤ ϕ4 and ψ1 ≤ ψ3, ψ4 ≤ ψ2, each ϕ1,2ψ1,2-open function
is ϕ3,4ψ3,4-open.

3. Closedness

The following definition was given in [3] for fuzzy topological spaces.

3.1. Definition. Let ϕ1, ϕ2 ∈ O(X, τ), ψ1, ψ2 ∈ O(Y, ϑ) and f : (X, τ) → (Y, ϑ). Then
f is said to be ϕ1,2ψ1,2-closed if f(K) is ψ1,2-closed for each ϕ1,2-closed set K. That is,
f is ϕ1,2ψ1,2-closed iff f(ϕ1,2C(X)) ⊆ ψ1,2C(Y ).

3.2. Theorem. The following are equivalent.

(a) f is ϕ1,2ψ1,2-closed.

(b) For each B ⊆ Y and for each ϕ1,2-open set U such that f−1(B) ⊆ U , there
exists a ψ1,2-open set V such that B ⊆ V and f−1(V ) ⊆ U .

(c) For each ϕ1,2-open set U in X, the set {y ∈ Y : f−1(y) ⊆ U} is ψ1,2-open.

(d) For each ϕ1,2-closed set K in X, the set {y ∈ Y : f−1(y)∩K 6= ∅} is ψ1,2-closed.

(e) For each y ∈ Y and for each ϕ1,2-open set U such that f−1(y) ⊆ U , there exists
a V ∈ ψ1,2O(Y, y) such that f−1(V ) ⊆ U .

(f) For each y ∈ Y and ϕ1,2-open set U such that f−1(y) ⊆ U , there exists V ∈
ψ1O(Y, y) such that f−1(ψ2(V )) ⊆ U .

Proof. The equivalence of (a)-(e) is clear from Theorem 2.1 and Theorem 2.4.

(e) =⇒ (f). Take y ∈ Y and f−1(y) ⊆ U ∈ ϕ1,2O(X). Then there exists W ∈
ψ1,2O(Y, y) such that f−1(W ) ⊆ U . Since y ∈ W ⊆ ψ1,2intW , there exists V ∈
ψ1O(Y, y) such that ψ2(V ) ⊆W and f−1(ψ2(V )) ⊆ f−1(W ) ⊆ U .

(f) =⇒ (a). Let K be a ϕ1,2-closed set. We show that ψ1,2cl f(K) ⊆ f(K).

Take y ∈ ψ1,2cl f(K). For each W ∈ ψ1O(Y, y), ψ2(W ) ∩ f(K) 6= ∅. Suppose that
y 6∈ f(K). Then f−1(y) ⊆ X \ K and U = X \ K is a ϕ1,2-open set. Hence there
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exists V ∈ ψ1O(Y, y) such that f−1(ψ2(V )) ⊆ U . We have f−1(ψ2(V )) ∩ K = ∅, so
f(K) ∩ ψ2(V ) = ∅ which is a contradiction. Hence, y ∈ ψ1,2cl f(K) =⇒ y ∈ f(K), so f
is ϕ1,2ψ1,2-closed. ¤

3.3. Corollary. If for each B ⊆ Y and for each ϕ1,2-open set U such that f−1(B) ⊆ U ,
there exists V ∈ ψ1O(Y ) such that B ⊆ V and f−1(ψ2(V )) ⊆ U , then f is ϕ1,2ψ1,2-
closed.

3.4. Theorem. If ϕ2 ≥ ϕ1 or ϕ2 ≥ ι, and if ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X),
then f is ϕ1,2ψ1,2-closed iff ψ1,2cl f(A) ⊆ f(ϕ1,2clA) for all A ∈ P (X).

Proof. Under the given conditions we have A ⊆ ϕ1,2clA, ϕ1,2cl (ϕ1,2clA) ⊆ ϕ1,2clA and
ϕ1,2clA ∈ ϕ1,2C(X) for any A ∈ P (X).

=⇒ . Let f be ϕ1,2ψ1,2-closed and A ⊆ X. Since ϕ1,2clA ∈ ϕ1,2C(X), f(ϕ1,2clA) ∈
ψ1,2C(Y ) and so, ψ1,2cl f(ϕ1,2clA) ⊆ f(ϕ1,2clA). Also, as A ⊆ ϕ1,2clA we have f(A) ⊆
f(ϕ1,2clA). Hence ψ1,2cl f(A) ⊆ ψ1,2cl f(ϕ1,2clA) ⊆ f(ϕ1,2clA).

⇐=. Let us prove that f(A) ∈ ψ1,2C(Y ) for any A ∈ ϕ1,2C(X). Since A ∈
ϕ1,2C(X) we have ϕ1,2clA ⊆ A. From the hypotheses, ψ1,2cl f(A) ⊆ f(ϕ1,2clA). Hence
ψ1,2cl f(A) ⊆ f(A), so f(A) ∈ ψ1,2C(Y ) as required. ¤

3.5. Definition. (a) Let ϕ ∈ O(X, τ), X ∈ A ⊆ P (X) and A ∈ P (X). If whenever
A ⊆

⋃

U, for U ⊆ A, there exists U1, U2, . . . , Un ∈ U such that A ⊆
⋃n

i=1 ϕ(Ui), then A
is called (A-ϕ)-compact relative to X ( for short, an (A-ϕ)-compact set).

A will be called an A-compact set if A is a (A-ı)-compact set.

(b) A subset A of X is called an ϕ1,2-compact set if A is an (ϕ1O(X)-ϕ2)-compact set
(for ϕ1, ϕ2 ∈ O(X, τ)).

Each ϕ1,2-compact set is an ϕ1,2O(X)-compact set [13].

3.6. Remark. (a) In the case where ϕ1 is monotonous and ϕ2 = ı, we have ϕ1O(X) =
ϕ1,2O(X), so A is ϕ1-closed ⇐⇒ A is ϕ1,2-closed. Hence:

f is ϕ1,2ψ1,2-closed iff f(ϕ1-closed(X)) ⊆ ψ1,2C(Y ).

A is a ϕ1,2-compact set iff A is a (ϕ1O(X)-ı)-compact set iff A is a ϕ1O(X)-compact
set.

(b) If ψ1 is monotonous and ψ2 = ı, then we have similar properties to those in (a).
Specifically,

f is ϕ1,2ψ1,2-closed iff f(ϕ1,2C(X)) ⊆ ψ1-closed(Y ).

B is an ψ1,2-compact set iff B is an (ψ1O(Y )-ı)-compact set iff B is an ψ1O(Y )-
compact set.

(c) If ϕ1, ψ1 are monotonous and ϕ2 = ı, ψ2 = ı, then ϕ1,2O(X) = ϕ1O(X),
ϕ1,2C(X) = ϕ1-closed(X) = ϕ1C(X) and ψ1,2O(Y ) = ψ1O(Y ), ψ1,2C(Y ) = ψ1-closed(Y ) =
ψ1C(Y ). Hence, f is ϕ1,2ψ1,2-closed iff f(ϕ1C(X)) ⊆ ψ1C(Y ).

3.7. Theorem. Let ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X). Then

{f(X \ ϕ2(U)) : U ∈ ϕ1O(X)} ⊆ ψ1,2C(Y )

if and only if for each y ∈ Y and for each U ∈ ϕ1O(X) such that f−1(y) ⊆ ϕ2(U), there
exists V ∈ ψ1O(Y, y) such that f−1(ψ2(V )) ⊆ ϕ2(U).
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Proof. =⇒ . Let β = {ϕ2(U) : U ∈ ϕ1O(X)} and γ = ψ1,2C(Y ). Now, γ
′ = ψ1,2O(Y )

is a supratopology and f(β′) ⊆ γ. If y ∈ Y , f−1(y) ⊆ ϕ2(U) and U ∈ ϕ1O(X), so that
from Theorem 2.4 there exists W ∈ ψ1,2O(Y, y) such that f−1(W ) ⊆ ϕ2(U), then there
exists V ∈ ψ1O(Y, y) such that ψ2(V ) ⊆W , whence f−1(ψ2(V )) ⊆ ϕ2(U).

⇐=. We show that for each U ∈ ϕ1O(X) we have ψ1,2cl f(X \ϕ2(U)) ⊆ f(X \ϕ2(U)).
Assume that y ∈ ψ1,2cl f(X\ϕ2(U)) but y 6∈ f(X\ϕ2(U)). Then for eachW ∈ ψ1O(Y, y),
ψ2(W ) ∩ f(X \ ϕ2(U)) 6= ∅. Since y 6∈ f(X \ ϕ2(U)) we have f

−1(y) ∩ (X \ ϕ2(U)) =
∅, so f−1(y) ⊆ ϕ2(U). From the hypothesis there exists V ∈ ϕ1O(Y, y) such that
f−1(ψ2(V )) ⊆ ϕ2(U). Hence, f−1(ψ2(V )) ∩ (X \ ϕ2(U)) = ∅. This contradiction gives
the result. ¤

3.8. Theorem. If (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and for each U ∈ ϕ1O(X), ϕ2(U) ∈ ϕ1O(X)
and ϕ2(ϕ2(U)) ⊆ ϕ2(U), then the following are equivalent:

(a) {f(X \ ϕ2(U)) : U ∈ ϕ1O(X)} ⊆ ψ1,2-C(Y ).

(b) For each y ∈ Y and for each ϕ1-open set U such that f−1(y) ⊆ ϕ2(U), there
exists V ∈ ψ1,2O(Y, y) such that f−1(V ) ⊆ ϕ2(U).

(c) For each y ∈ Y and for each ϕ1-open set U such that f−1(y) ⊆ U , there exists
V ∈ ψ1,2O(Y, y) such that f−1(V ) ⊆ ϕ2(U).

(d) For each y ∈ Y and for each ϕ1-open set U such that f−1(y) ⊆ U , there exists
V ∈ ψ1O(Y, y) such that f−1(ψ2(V )) ⊆ ϕ2(U).

(e) For each y ∈ Y and for each ϕ1-open set U such that f−1(y) ⊆ ϕ2(U), there
exists V ∈ ψ1O(Y, y) such that f−1(ψ2(V )) ⊆ ϕ2(U).

Proof. (a) =⇒ (b). For B = {ϕ2(U) : U ∈ ϕ1O(X)} we have B
′ = {X \ ϕ2(U) : U ∈

ϕ1O(X)}. Hence f(B′) ⊆ ϕ1,2C(Y ). If y ∈ Y and f−1(y) ⊆ ϕ2(U) with U ∈ ϕ1O(X),
then f−1(y) ⊆ ϕ2(U) ∈ B. From Theorem 2.1 there exists V ∈ ψ1,2O(Y, y) such that
f−1(V ) ⊆ ϕ2(U).

(b) =⇒ (c). Let y ∈ Y , f−1(y) ⊆ U ∈ ϕ1O(X). Then f−1(y) ⊆ ϕ2(U), from which
the result is clear.

(c) =⇒ (d). Let y ∈ Y , f−1(y) ⊆ U ∈ ϕ1O(X). Then there exists W ∈ ψ1,2O(Y, y)
such that f−1(W ) ⊆ ϕ2(U). There exists V ∈ ψ1O(Y, y) such that ψ2(V ) ⊆ W , so
f−1(ψ2(V )) ⊆ ϕ2(U).

(d) =⇒ (e). Since ϕ2(U) ∈ ϕ1O(X) and ϕ2(ϕ2(U)) ⊆ ϕ2(U) for U ∈ ϕ1O(X), the
proof is clear.

(e) =⇒ (a). Clear from Lemma 2.11 and Theorem 3.7. ¤

3.9. Remark. Since {X \ ϕ2(U) : U ∈ ϕ1O(X)} ⊆ ϕ1,2-C(X) when ϕ2(U) ∈ ϕ1,2O(X)
for each U ∈ ϕ1O(X), if f is ϕ1,2ψ1,2-closed then {f(X \ ϕ2(U)) : U ∈ ϕ1O(X)} ⊆
ψ1,2-C(Y ).

3.10. Example. Let ϕ1 = int , ϕ2 = int ◦ cl , ψ1 = cl ◦ int and ψ2 = ı. Then:

F is ψ1,2-closed iff F is semi-cosed, so ψ1,2O(Y ) = ψ1O(Y ) = SO(Y ). As can be seen
in Example 2.15,

B = {ϕ2(U) : U ∈ ϕ1O(X)} = RO(X) is a base for the topology τs on X.

Now, using Theorems 2.1, 2.4 and 3.8 we obtain the following theorem.

3.11. Theorem. Let f : (X, τ)→ (Y, ϑ). The following are equivalent.

(a) f(F ) is semi-closed for each regular closed set F .
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(b) For each y ∈ Y and for each open set U such that f−1(y) ⊆ U
o
, there exists a

V ∈ SO(Y, y) such that f−1(V ) ⊆ U
o
.

(c) For each y ∈ Y and for each open set U such that f−1(y) ⊆ U , there exists

V ∈ SO(Y, y) such that f−1(V ) ⊆ U
o
.

(d) For each y ∈ Y and for each regular-open set U such that f−1(y) ⊆ U , there
exists a V ∈ SO(Y, y) such that f−1(V ) ⊆ U .

(e) For each B ⊆ Y and for each regular-open set U such that f−1(B) ⊆ U , there
exists a semi-open set V such that B ⊆ V and f−1(V ) ⊆ U .

(f) For each U ∈ RO(X), the set {y ∈ Y : f−1(y) ⊆ U} is semi-open.

(g) For each regular-closed set F in X, the set {y ∈ Y : f−1(y) ∩ F 6= ∅} is semi-
closed.

In the following theorem, (1) and (2) were given in [3] for fuzzy topological spaces.

3.12. Theorem.

(1) For ϕ1, ϕ2, ϕ3, ϕ4 ∈ O(X, τ) and ψ1, ψ2, ψ3, ψ4 ∈ O(Y, ϑ), if ϕ3 ≤ ϕ1, ϕ2 ≤ ϕ4
and ψ1 ≤ ψ3, ψ4 ≤ ψ2, then each ϕ1,2ψ1,2-closed function is ϕ3,4ψ3,4-closed.

(2) If f is 1-1 and onto, then f is ϕ1,2ψ1,2-closed iff f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ).

(3) If f is 1-1 and onto, (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and ϕ1,2intA is ϕ1,2-open for each
A ⊆ X, then f is ϕ1,2ψ1,2-closed iff f(ϕ1,2O(X)) ⊆ ψ1,2O(Y ) iff f is ϕ1,2ψ1,2-
open.

3.13. Theorem. If f is ϕ1,2ψ1,2-closed and f−1(y) is a ϕ1,2O(X)-compact set for each
y ∈ Y , then f−1(K) is a ϕ1,2O(X)-compact set for each ψ1,2O(Y )-compact set K.

Proof. Let K be a ψ1,2O(Y )-compact set, f
−1(K) ⊆

⋃

U, and U ⊆ ϕ1,2O(X). For each
y ∈ K we have f−1(y) ⊆

⋃

U. Hence, for each y ∈ K, there exists U1, . . . , Uny ∈ U

such that f−1(y) ⊆
⋃ny

i=1 Ui = Uy ∈ ϕ1,2O(X). Since f is ϕ1,2ψ1,2-closed, there exists
a Vy ∈ ψ1,2O(Y, y) such that f−1(Vy) ⊆ Uy. Since K ⊆

⋃

Vy, and K is a ψ1,2O(Y )-
compact set, there exists y1, . . . , ym ∈ K such that K ⊆

⋃m

j=1 Vyj
. Hence

f
−1(K) ⊆ f

−1(
m
⋃

j=1

Vyj
) =

m
⋃

j=1

f
−1(Vyj

) ⊆
m
⋃

j=1

Uyj
=

m
⋃

j=1

(

nyj
⋃

i=1

Ui).

So, f−1(K) is a ϕ1,2O(X)-compact set. ¤

3.14. Example. Let ϕ1 = int , ϕ2 = ı, ψ1 = int , and ψ2 = ı. Then:

f is ϕ1,2ψ1,2-closed iff f(F ) is closed for each closed set F iff f is closed.

We obtain the following well known result:

If f is closed and has compact point inverses, then the inverse image of each compact
set is compact.

3.15. Theorem. Let (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X).
Then if f is a ϕ1,2ψ1,2-closed with ϕ1,2O(X)-compact point inverses, the inverse image
of each ψ1,2O(Y )-compact set is a ϕ1,2-compact set.

Proof. It follows that ϕ1O(X) ⊆ ϕ2O(X) and ϕ2(U) ∈ ϕ1,2O(X) for each U ∈ ϕ1O(X).
Under these conditions, ϕ1,2-compactness relative toX is equivalent to ϕ1,2O(X)-compact-
ness relative to X [13, Lemma 2.7]. The result is now clear from Theorem 3.13. ¤

3.16. Corollary. Let (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı) and ϕ2(U) ∈ ϕ1O(X), ϕ2(ϕ2(U)) ⊆ ϕ2(U)
for each U ∈ ϕ1O(X). Then if f is ϕ1,2ψ1,2-closed and f−1(y) is a B-compact set
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(B = {ϕ2(U) : U ∈ ϕ1O(X)}) for each y ∈ Y , then the inverse image of each ψ1,2O(Y )-
compact set is a ϕ1,2-compact set.

Proof. Since B is a base for ϕ1,2O(X) (Lemma 2.11), a set A is a ϕ1,2O(X)-compact
set iff A is a B-compact set. Now, the proof is clear from Lemma 2.11 and Theorem
3.15. ¤

3.17. Example. 1) Let ϕ1 = cl ◦ int , ϕ2 = scl , ψ1 = int , and ψ2 = cl . Then:

A is a ϕ1,2-compact set iff A is an s-set.

A is a ϕ1,2O(X)-compact set iff A is a semi-Θ-open(X)-compact set.

K is a ψ1,2O(Y)-compact set iff K is a ϑΘ-compact set.

f is ϕ1,2ψ1,2-closed iff f(F ) is Θ-closed for each semi-Θ-closed set F .

It can be seen from Example 2.15 that ϕ1 and ϕ2 satisfy the properties of Corollary
3.16. So if f(F ) is Θ-closed for each semi-Θ-closed set F , and f−1(y) is an SR(X)-
compact set for each y ∈ Y , then f−1(K) is an s-set for each ϑΘ-compact set K.

2) Let ϕ1 = cl ◦ int , ϕ2 = cl , ψ1 = int and ψ2 = cl . Then:

ϕ1 and ϕ2 satisfy the properties of Corollary 3.15.

B = {U : U ∈ SO(X)} = RC(X), ϕ1,2O(X) = Θ-semi-open(X).

A is a ϕ1,2-compact set iff A is an S-set iff A is a Θ-SO(X)-compact set iff A is a
RC(X)-compact set.

If f(F ) is Θ-closed for each Θ-semi-closed set F , and f−1(y) is a RC(X)-compact set
for each y ∈ Y , then f−1(K) is an S-set for each ϑΘ-compact set K.

3.18. Theorem. Let (ϕ2 ≥ ϕ1 or ϕ2 ≥ ı), let ϕ1 and ϕ2 be monotonous, ϕ2(U) ∈
ϕ1,2O(X) for each U ∈ ϕ1O(X) and B = {ϕ2(U) : U ∈ ϕ1O(X)}.

If f(B′) = {f(X \ ϕ2(U)) : U ∈ ϕ1O(X)} ⊆ ψ1,2-closed(Y ), f
−1(y) is B-compact for

each y ∈ Y and K is a ψ1,2O(Y )-compact set in Y , then

(a) For each ϕ1-open cover U of f−1(K) there exists U1, . . . , Un ∈ U such that
f−1(K) ⊆ ϕ2(

⋃n

i=1 Ui).

(b) If for ϕ3 ∈ O(X, τ), we have ϕ3 ≥ ϕ2 and ϕ3(U1 ∪ U2) = ϕ3(U1) ∪ ϕ3(U2) for
U1, U2 ∈ ϕ1O(X), then f−1(K) is a ϕ1,3-compact set.

Proof. (a) Let f−1(K) ⊆
⋃

U and U ⊆ ϕ1O(X). For each y ∈ K, f−1(y) ⊆
⋃

U ⊆
⋃

{ϕ2(U) : U ∈ U}. Since f−1(y) is a B-compact set there exists U1, . . . , Uty ∈ U such

that f−1(y) ⊆
⋃ty

i=1 ϕ2(Ui) ⊆ ϕ2(
⋃ty

i=1 Ui). Since ϕ1 is monotonous,
⋃ty

i=1 Ui ∈ ϕ1O(X),

and hence ϕ2(
⋃ty

i=1 Ui) ∈ B.

From Theorem 2.1, there exists Vy ∈ ψ1,2O(Y, y) with f
−1(Vy) ⊆ ϕ2(

⋃ty

i=1 Ui). We
have K ⊆

⋃

y∈K Vy. Hence, since K is a ψ1,2O(Y ) compact set, there exists y1, . . . , ym ∈

K such that K ⊆
⋃m

j=1 Vyj
. Hence,

f
−1(K) ⊆

m
⋃

j=1

f
−1(Vyj

) ⊆
m
⋃

j=1

(

ϕ2

(

tyj
⋃

i=1

Ui

))

⊆ ϕ2

( m
⋃

j=1

(

tyj
⋃

i=1

Ui

))

.

Now, by taking n = Σm
j=1tyj

, we can write f−1(K) ⊆ ϕ2(
⋃n

i=1 Ui).

(b) This is now clear as f−1(K) ⊆ ϕ2(
⋃n

i=1 Ui) ⊆ ϕ3(
⋃n

i=1 Ui) =
⋃n

i=1 ϕ3(Ui). ¤

3.19. Example. Let ϕ1 = int , ϕ2 = int ◦ cl , ϕ3 = cl , ψ1 = cl ◦ int and ψ2 = ı. Then:

ϕ1, ϕ2 are monotonous and ϕ3 ≥ ϕ2.
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For U1, U2 ∈ ϕ1O(X) = τ ,

ϕ3(U1 ∪ U2) = U1 ∪ U2 = U1 ∪ U2 = ϕ3(U1) ∪ ϕ3(U2).

ϕ1,2O(X) = τs, ψ1,2O(Y ) = SO(Y ) ψ1,2C(Y ) = SC(Y ), B = RO(X) and B
′ = RC(X).

f−1(y) is a RO(X) compact set iff f−1(y) is a τs-compact set iff f
−1(y) is an N -set.

K is a ψ1,2O(Y )-compact set iff K is a SO(Y )-compact set.

Hence, if f(F ) is semi-closed for each regular-closed set F and f−1(y) is an N -set for
each y ∈ Y , then f−1(K) is an H-set, further, for each open cover U of f−1(K) there

exist U1, . . . , Un ∈ U such that f−1(K) ⊆ (
⋃n

i=1 Ui)
o

for each SO(Y )-compact set K.

Clearly, many more results may be obtained by combining the unifications of conti-
nuities, compactness, filters, graphs, openness and closedness made here and in [12,13].
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[12] Yalvaç, T.H. A unified theory of continuity, Mat. Vesnik 56 (1-2), 1–12, 2004.
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