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Oscillation of fourth-order nonlinear neutral delay
dynamic equations

S. R. Grace∗ and A. Zafer† ‡

Abstract
In this work we establish some new sufficient conditions for oscillation
of fourth-order nonlinear neutral delay dynamic equations of the form

(a(t)([x(t)− p(t)x(h(t))]∆∆∆)α)∆ + q(t)xβ(g(t)) = 0, t ∈ [t0,∞)T,

where α and β are quotients of positive odd integers with β ≤ α.
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1. Introduction
In this work we investigate the oscillatory behaviour of solutions of fourth order half-

linear and sub-half-linear neutral delay dynamic equations of the form

(1.1) (a(t)((x(t)− p(t)x(h(t)))∆∆∆)α)∆ + q(t)xβ(g(t)) = 0, t ∈ [t0,∞)T

on an arbitrary time scale T with the property that 0 ≤ t0 ∈ T and sup T =∞.
A time scale T is a nonempty closed subset of R, introduced by Hilger [12] in order to

unify the continuous and discrete analysis. By a time scale interval [t∗,∞)T it is meant
[t∗,∞) ∩ T.

We assume that the following conditions are satisfied:
(i) α, β are quotients of positive odd integers with β ≤ α,
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(ii) a : [t0,∞)T → R+ := (0,∞) satisfies a∆(t) ≥ 0 and

(1.2)
∫ ∞
t0

a−1/α(t)∆t =∞,

(iii) p, q : [t0,∞)T → R+ are rd-continous,
(iv) g, h : T→ T satisfy g(t) ≤ t, h(t) ≤ t, g∆(t) > 0, h∆(t) > 0, and limt→∞ g(t) =

limt→∞ h(t) =∞,
(v) l(t) := h−1 ◦ g(t) satisfies l∆(t) ≥ 0 and limt→∞ l(t) =∞.

By a solution of (1.1), we mean a nontrivial at infinity function x ∈ Crd[t−1,∞)T
that satisfies (1.1), where t−1 = inf{g(t) : t ≥ t0} ∩ inf{h(t) : t ≥ t0}. We tacitly
assume that (1.1) possesses such solutions. Recall that such a solution of Eq. (1.1) is
called nonoscillatory if there exists a t∗0 ≥ t0 such that x(t)xσ(t) > 0 for all t ∈ [t∗0,∞)T;
otherwise, it is said to be oscillatory. Eq. (1.1) is oscillatory if all its solutions are
oscillatory.

We note that there is an extensive study concerning the oscillation of second-order
dynamic equations on time scales [1, 3, 7, 11, 14]. For some works on oscillation and
asymptotic behaviour of third-order dynamic equations, see [5, 10]. Fourth-order dy-
namic equations are rarely considered in the literature due to difficulties peculiar to such
equations [8, 13]. Our aim in this paper is to make a contribution to the oscillation of
fourth-order equations of the form (1.1).

2. Preliminaries
To start, we first provide some notations of the time scale calculus to be used in this

work. For more details we refer the reader to [3].

2.1. Definition. Let T be a time scale and t ∈ T. The forward and backward jump
operators σ, ρ : T → T are defined by σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T :
s < t}.

2.2. Definition. A point t ∈ T with t > inf T is called right-scattered, right-dense, left-
scattered and left-dense if σ(t) > t, σ(t) = t, ρ(t) < t and ρ(t) = t holds, respectively.
Points that are left-dense and right-dense at the same time are called dense. The set Tκ
is derived from T as follows: If T has a left-scattered maximum m, then Tκ = T− {m};
otherwise, Tκ = T.

2.3. Definition. Let f : T→ R. The delta derivative of f at t ∈ Tκ, denoted by f∆(t),
to be the number (provided it exists) with the property such that for every ε > 0, there
exists a neighbourhood U of t with∣∣∣fσ(t)− f(s)− f∆(t) [σ(t)− s]

∣∣∣ ≤ ε |σ(t)− s| for all s ∈ U,

where and in the sequel fσ(t) := f(σ(t)) is used.

2.4. Definition. A function f : T→ R is called right-dense continuous (rd-continuous)
if f is continuous at right-dense points in T and its left-sided limit exists (finite) at
left-dense points in T.

Every rd-continuous function has an antiderivative. A function F : T → R is called
an antiderivative of a function f : Tκ → R if F∆(t) = f(t) holds for all t ∈ Tκ. In this
case the integral of f is defined by

b∫
a

f(s)∆s = F (b)− F (a).



Riemann and Lebesque integrals on an arbitrary time scale as well as improper integrals
are introduced in [2, 9].

2.5. Definition. Taylor monomials hn(t, s) : T× T→ R are defined [3] by

hn+1(t, s) =

∫ t

s

hn(τ, s)∆τ, n = 1, 2, . . .

h0(t, s) = 1.

We need the following lemmas.

2.6. Lemma. Let (1.2) hold and

(2.1) 0 < p(t) ≤ 1 eventually.

If x is an eventually positive solution of (1.1), then for z(t) = x(t) − p(t)x(h(t)) there
are only the following three possibilities:

(a) z(t) > 0, z∆(t) > 0, z∆∆(t) > 0, z∆∆∆(t) > 0, z∆4

(t) < 0;
(b) z(t) > 0, z∆(t) > 0, z∆∆(t) < 0, z∆∆∆(t) > 0, z∆4

(t) < 0;
(c) z(t) < 0, z∆(t) > 0, z∆∆(t) < 0, z∆∆∆(t) > 0, z∆4

(t) < 0

for t sufficiently large.

Proof. We see from Eq. (1.1) that (a(t)(z∆∆∆)α)∆ < 0 eventually. So, a (z∆∆∆)α is
eventually monotone. Suppose that z∆∆∆(t) < 0 for t sufficiently large. By using (1.2)
we see that z∆∆(t)→ −∞ as t→∞ and hence z(t)→ −∞ as t→∞. In particular, we
have

x(t) ≤ p(t)x(h(t)) ≤ x(h(t))

and so x is bounded. But this implies that z is also bounded, a contradiction.
Thus we must have z∆∆∆(t) > 0. Since a∆(t) ≥ 0, it follows from

(a(t)(z∆∆∆)α)∆ = aσ(t)(z∆∆∆)α)∆ + a∆(t)(z∆∆∆)α

that ((z∆∆∆(t))α)∆ < 0 eventually. Now using the time scales chain rule [3] with y =
z∆∆∆, we obtain

(yα)∆(t) = αy∆(t)

∫ 1

0

(hyσ(t) + (1− h)y(t))α−1dh

Since the integral is nonnegative, we have y∆(t) < 0, i.e.,

(2.2) z∆4

(t) < 0.

If z(t) > 0, then in view of (2.2) it follows from Kiguradze’s lemma, see [4, 6], that
either (a) or (b) holds. In case z(t) < 0, we see as above that z(t) is bounded, and hence
(c) holds.

�

2.7. Lemma. Let (1.2) hold and

(2.3) −1 < p(t) ≤ 0 eventually.

If x is an eventually positive solution of (1.1), then for z(t) = x(t) − p(t)x(h(t)) there
are only two possibilities (a) and (b) of Lemma 2.6.

Proof. It suffices to note that z(t) is eventually positive due to z(t) ≥ x(t). �



2.8. Lemma. [5, Lemma 4]. If a function y satisfies

y(t) > 0, y∆(t) > 0, y∆∆(t) > 0, y∆∆∆ ≤ 0

eventually for t ∈ T, then

(2.4) lim inf
t→∞

ty(t)

h2(t, t0)y∆(t)
≥ 1.

2.9. Lemma. [5]. Suppose that |y|∆ is of one sign on [t0,∞)T and 0 < λ < 1. Then

(2.5)
(|y|1−λ)∆

1− λ ≤ |y|
∆

|y|λ on [t0,∞)T.

3. Main Results
Our first result is as follows.

3.1. Theorem. Let (i)–(v) be satisfied, and (2.1) hold. Suppose that

(3.1) lim sup
t→∞

1

a(g(t))

∫ t

g(t)

q(s)hβ3 (g(s), t0)∆s > 1,

(3.2) lim sup
t→∞

∫ t

g(t)

[
1

a(u)

∫ t

u

(g(t)− g(s))βgβ(s)q(s)∆s

]1/α

∆u > 1,

and

(3.3) lim sup
t→∞

1

a(l(t))

∫ t

l(t)

q(s)hβ3 (l(t), l(s))∆s > 1

when β = α, while

(3.4)
∫ ∞
t0

a−β/α(s)q(s)hβ3 (g(s), t0)∆s =∞,

(3.5) lim sup
t→∞

∫ ∞
t0

[
1

a(u)

∫ t

u

(t− g(s))βgβ(s)q(s)∆s

]1/α

∆u =∞,

and

(3.6)
∫ ∞
t0

a−β/α(s)q(s)hβ3 (s, l(s))∆s =∞

when β < α.
Then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1). We may assume that
x(t) > 0, x(g(t)) > 0, and x(h(t)) > 0 eventually. Let z(t) = x(t) − p(t)x(h(t)). By
Lemma 2.6, we need to consider three possible cases.

Suppose (a) holds. For any given c1 ∈ (0, 1) there exists t1 > t0 such that

(3.7) z∆∆(t) ≥ c1tz∆∆∆(t), t ∈ [t1,∞)T.

From (2.4) with y = z∆, for any given c2, 0 < c2 < 1, there exists t′1 > t1 such that

(3.8) y(t) ≥ c2
h2(t, t0)

t
y∆(t), t ∈ [t′1,∞)T.

Combining (3.7) and (3.8) we get

(3.9) z∆(t) ≥ c h2(t, t0)z∆∆∆(t), t ∈ [t′1,∞)T,

where c := c1c2 ∈ (0, 1) is an arbitrary constant. In view of the monotonicity of z∆∆∆,
it follows from (3.9) that there is a t2 ≥ t′1 such that

(3.10) z(g(t)) ≥ c h3(g(t), t0)z∆∆∆(g(t)), t ∈ [t2,∞)T.



Using (3.10) and the fact that x(t) ≥ z(t) in Eq. (1.1), we obtain

(3.11) (a(t)wα(t))∆ + cβq(t)hβ3 (g(t), t0)wβ(g(t)) ≤ 0, t ∈ [t2,∞)T,

where w = z∆∆∆. Integrating (3.11) from g(t) to t leads to

a(g(t))wα(g(t)) ≥ cβ
∫ t

g(t)

q(s)hβ3 (g(s), t0)wβ(g(s))∆s

≥ cβwβ(g(t))

∫ t

g(t)

q(s)hβ3 (g(s), t0)∆s

and hence

wα−β(g(t)) ≥ cβ

a(g(t))

∫ t

g(t)

q(s)hβ3 (g(s), t0)∆s,

which contradicts (3.1) when β = α by taking the limsup of both sides as t → ∞ and
then letting c → 1−. Let β < α. Setting v(t) = a(t)wα(t) in (3.11) and increasing the
size of t2 if necessary we have

v∆ + cβa−β/α(t)q(t)hβ3 (g(t), t0)vβ/α ≤ 0, t ∈ [t2,∞)T

or

− v∆

vβ/α
≥ cβa−β/α(t)q(t)hβ3 (g(t), t0), t ∈ [t2,∞)T.

Integrating this inequality from t2 to t and applying Lemma 2.9 we get

−v
1−β/α(t)

1− β/α +
v1−β/α(t2)

1− β/α ≥ −
∫ t

t2

cβa−β/α(s)q(s)hβ3 (g(s), t0)∆s.

Letting t→∞ we obtain a contradiction to (3.4).
Suppose (b) holds. For any given k ∈ (0, 1) there exists t1 ≥ t0 such that

(3.12) z(g(t)) ≥ k g(t)z∆(g(t)), t ∈ [t1,∞)T.

Using x(t) ≥ z(t) and (3.12) in Eq. (1.1) leads to

(3.13) (a(t)(y∆∆(t))α)∆ + kβgβ(t)q(t)yβ(g(t)) ≤ 0, t ∈ [t1,∞)T,

where y = z∆. In view of y(t) > 0, y∆(t) < 0, and y∆∆(t) > 0, we have from (3.13)

(3.14) y∆∆(u) ≥
[
kβ

a(u)

∫ t

u

gβ(s)q(s)yβ(g(s))∆s

]1/α

, t ≥ u ≥ t1.

Clearly,

(3.15) −y(g(s)) ≤
∫ g(t)

g(s)

y∆(u)∆u ≤ (g(t)− g(s))y∆(g(t)), t ≥ s ≥ t1.

From (3.14) and (3.15) we get

y∆∆(u) ≥
[
kβ

a(u)

∫ t

u

gβ(s)(g(t)− g(s))βq(s)(−y∆(g(t)))β∆s

]1/α

,

and hence

−y∆(g(t)) ≥ kβ/α
∫ t

g(t)

[
1

a(u)

∫ t

u

gβ(s)(g(t)− g(s))βq(s)∆s

]1/α

∆u (−y∆(g(t)))β/α

or

(−y∆(g(t)))1−β/α ≥ kβ/α
∫ t

g(t)

[
1

a(u)

∫ t

u

gβ(s)(g(t)− g(s))βq(s)∆s

]1/α

∆u,



which as in case (a) results in a contradiction with (3.2) when β = α. Let β < α. From
(3.15) we have

−y(g(s)) ≤ (t− g(s))y∆(t), t ≥ s ≥ t1.

Using this inequality in (3.14) and setting v = −y∆ we have

− v∆(u)

vβ/α(u)
≥
[
kβ

a(u)

∫ t

u

gβ(s)(t− q(s))β∆s

]1/α

, t ≥ u ≥ t1.

The rest is similar to that of case (a) above and hence is omitted.
Suppose (c) holds. It follows that

x(g(t)) ≥ y(h−1 ◦ g(t)), t ∈ [t1,∞)T,

where y = −z. By Eq. (1.1), we may write that

(3.16) (a(t)(y∆∆∆)α)∆ ≥ q(t)yβ(l(t)), t ∈ [t1,∞)T.

In view of

y∆(t) < 0, y∆∆(t) > 0, y∆∆∆(t) < 0, t ∈ [t1,∞)T

and
y∆∆(s) ≥ h1(t, s)(−y∆∆∆(t)),

we see that
y(s) ≥ h3(t, s)(−y∆∆∆(l(t))), t ≥ s ≥ t1.

Replacing s by l(s) and t by l(t) in the above inequality leads to

(3.17) y(l(s)) ≥ h3(l(t), l(s))(−y∆∆∆(t)), l(t) ≥ l(s) ≥ t1.
Integrating (3.16)) and using (3.17) we obtain

a(l(t))wα(l(t)) ≥
∫ t

l(t)

q(s)hβ3 (l(t), l(s))wβ(l(s))∆s, w := −y∆∆∆,

and hence

wα−β(l(t)) ≥ 1

a(l(t))

∫ t

l(t)

q(s)hβ3 (l(t), l(s))∆s.

This inequality contradicts (3.3) when β = α by taking the limsup of both sides as t→∞.
It remains to consider β < α. Set v = a(t)wα and w = −y∆∆∆ in (3.16). Then we have

−v∆(t) ≥ q(t)yβ(l(t)), t ∈ [t1,∞)T.

As in (3.17) we can obtain

y(l(t)) ≥ h3(t, l(t))w(t), t ≥ s ≥ t1.
Thus

−v∆(t) ≥ q(t)hβ3 (t, l(t))wβ(t), t ∈ [t1,∞)T.

The remainder is similar to that of cases (a) and (b) and hence is omitted.
�

3.2. Theorem. Let (i)–(v) be satisfied, and (2.1) hold. In addition to (3.3) and (3.6),
suppose that for k ∈ {1, 3},

(3.18) lim sup
t→∞

hβk(g(t), t0)hβ3−k(t, g(t))
1

a(t)

∫ ∞
t

q(s)∆s > 1 when β = α

and

(3.19)
∫ ∞
t0

hβk(g(t), t0)hβ3−k(t, g(t))a−β/α(t)q(t)∆t =∞ when β < α.



Then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(g(t)) > 0,
and x(h(t)) > 0 for t ∈ [t0,∞)T, and let z(t) = x(t) − p(t)x(h(t)). As in the proof of
Theorem 3.1 we need to distinguish three possible cases.

We may claim that

(3.20) z(g(t)) ≥ hk(g(t), t1)h3−k(t, g(t))z∆∆∆(t) for k ∈ {1, 3} and g(t) ≥ t1
when (a) and (b) are satisfied.

Indeed, if (a) holds, then integrating the inequality

z∆∆(v) ≥ z∆∆(v)− z∆∆(u1) =

∫ v

u1

z∆∆∆(s)∆s ≥ h1(v, u1)z∆∆∆(v)

twice leads to

(3.21) z(v) ≥ h3(v, u1)z∆∆∆(v), v ≥ u1 ≥ t1.
Also

z∆∆(v) ≥ z∆∆(v)− z∆∆(u) =

∫ v

u

z∆∆∆(s)∆s ≥ h1(v, u)z∆∆∆(v)

gives

(3.22) z∆(v) ≥ h2(v, u)z∆∆∆(v).

Putting v = g(t) ≥ t1 and v = t into (3.22), we have

z∆(g(t)) ≥ h2(t, g(t))z∆∆∆(t),

i.e.,

(3.23) z∆k (g(t)) ≥ h3−k(t, g(t))z∆∆∆(t) for k ∈ {1, 3} and g(t) ≥ t1.
If (b) holds, then

(3.24) z(v) ≥ z(v)− z(u1) =

∫ v

u1

z∆(s)∆s ≥ h1(v, u1)z∆(v).

Clearly, (3.21) and (3.24) can be written at once

z(v) ≥ hk(v, u1)z∆k

(v) for k ∈ {1, 3} and v ≥ u1 ≥ t1,
and hence

(3.25) z(g(t)) ≥ hk(g(t), t1)z∆k

(g(t)) for k ∈ {1, 3} and g(t) ≥ t1
when g(t) ≥ t1. From (3.23) and (3.25) the claim follows.

Now by using x(t) ≥ z(t) in (1.1) and integrating the resulting inequality from t to u
and then letting u→∞, we have

(3.26) wα(t) ≥
[

1

a(t)

∫ ∞
t

q(s)∆s

]
zβ(g(t)), t ≥ t1,

where w = z∆∆∆. Using (3.20) in (3.26) leads to

wα−β(t) ≥ hk(g(t), t1)h3−k(t, g(t))

[
1

a(t)

∫ ∞
t

q(s)∆s

]
, t ≥ t1,

which contradicts (3.18) when β = α. If β < α, we first write from (1.1) that

(3.27) (a(t)wα(t))∆ + q(t)zβ(g(t)) ≤ 0, t ∈ [t0,∞)T.

Using (3.20) and v = a(t)wα in (3.27), we have

−v∆ ≥ hβk(g(t), t1)hβ3−k(t, g(t))a−β/α(t)q(t)vβ/α, t ∈ [t0,∞)T.



The rest of the proof is similar to that above and hence is omitted.
Finally, we need to consider the case (c). Since the proof for this case is similar to

that of Theorem 3.1-case (c), we omit the details.
�

In case (2.3) holds, we have the following similar theorems.

3.3. Theorem. Let (i)–(v) be satisfied, and (2.3) hold. Suppose that

(3.28) lim sup
t→∞

1

a(g(t))

∫ t

g(t)

q(s)[1 + p(s)]βhβ3 (g(s)t0)∆s > 1,

and

(3.29) lim sup
t→∞

∫ t

g(t)

[
1

a(u)

∫ t

u

(g(t)− g(s))β [1 + p(s)]βq(s)∆s

]1/α

∆u > 1

when β = α, while

(3.30)
∫ ∞
t0

a−β/α(s)[1 + p(s)]βq(s)hβ3 (g(s), t0)∆s =∞

and

(3.31) lim sup
t→∞

∫ ∞
t0

[
1

a(u)

∫ t

u

(t− g(s))βgβ(s)[1 + p(s)]βq(s)∆s

]1/α

∆u =∞

when β < α.
Then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(g(t)) > 0, and
x(τ(t)) > 0 for t ∈ [t0,∞)T. It is clear that

z(t) = x(t)− p(t)x(h(t)) ≥ x(t).

By Lemma 2.7, z∆(t) is eventually positive, and so

x(t) = z(t) + p(t)x(h(t)) ≥ z(t) + p(t)z(h(t)) ≥ [1 + p(t)]z(t)

for t ∈ [t1,∞)T for some t1 ≥ t0. In view of this inequality and Eq. (1.1) we get

(3.32) (a(t)(z∆∆∆(t))α)∆ + q(t)[1 + p(g(t))]βzβ(g(t)) ≤ 0, t ∈ [t0,∞)T.

The remainder of the proof proceeds from (3.32) similarly as in the cases (a) and (b) of
that of Theorem 3.1. �

3.4. Theorem. Let (i)–(v) be satisfied, and (2.3) hold. Suppose that for k ∈ {1, 3},

(3.33) lim sup
t→∞

hβk(g(t), t0)hβ3−k(t, g(t))
1

a(t)

∫ ∞
t

[1 + p(g(s))]βq(s)∆s > 1 when β = α

and

(3.34)
∫ ∞
t0

hβk(g(t), t0)hβ3−k(t, g(t))a−β/α(t)[1 + p(g(t))]βq(t)∆t =∞ when β < α.

Then Eq. (1.1) is oscillatory.

The results of this paper are presented in a form which is essentially new and of high
degree of generality. We note that the obtained results when β = α (half-linear case)
are not applicable to equations of type (1.1) with g(t) = t. This means that the delays
generate oscillation.



It is possible to formulate the corresponding theorems and give illustrative examples
for special time scales such as T = R, T = Z, T = hZ with h > 0, T = qN with q > 1,
T = N2. The details are left to the reader.

It would be of interest to study the oscillatory behaviour of all solutions of (1.1) when
β > α (super half-linear case) or p(t) ≤ −1 or p(t) > 1.
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