$\bigwedge^{}_{}$ Hacettepe Journal of Mathematics and Statistics Volume 34 (2005), 17–25

ON L-FUZZY PRIME SUBMODULES

U. Acar^{*}

Received 06:01:2005 : Accepted 16:12:2005

Abstract

In this paper the concept of an L-fuzzy prime submodule of M is given, and some fundamental lemmas are proved. Also a characterization of an L-fuzzy prime submodule is given. Finally, we show that an L-fuzzy prime submodule is inherited by an R-module epimorphism.

Keywords: *L*-Fuzzy submodule, *L*-Fuzzy prime submodule. 2000 AMS Classification: 08A72, 03E72.

1. Introduction

Zadeh in [6] introduced the notion of a fuzzy subset μ of a non-empty set X as a function from X to [0, 1]. Goguen in [1] generalized the notion of fuzzy subset of X to that of an L-fuzzy subset, namely a function from X to a lattice L.

In [5], Rosenfeld considered the fuzzification of algebraic structures. Liu [2], introduced and examined the notion of a fuzzy ideal of a ring. Since then several authors have obtained interesting results on *L*-fuzzy ideals of *R* and *L*-fuzzy modules. See [4] for a comprehensive survey of the literature on these developments.

In [3] the notion of fuzzy prime submodule of M over [0, 1] is given in terms of fuzzy singletons. In Section 3 of this paper, we generalize their definition to any complete lattice L when R is a commutative ring with identity. In Theorem 3.6 we give a characterization of L-fuzzy prime submodules which is one of the original results obtained in this paper. In Section 4, we investigate the behaviour of L-fuzzy prime submodules under R-module homomorphisms, which constitutes another original result of our work.

2. Preliminaries

Throughout this paper R is a commutative ring with identity, M a unitary R-module and L stands for a complete lattice with least element 0 and greatest element 1. 0_M denotes the zero element of M.

An element $\alpha \in L$, $1 \neq \alpha$, is called a *prime element* in L if for all $a, b \in L$ if $a \wedge b \leq \alpha$ implies $a \leq \alpha$ or $b \leq \alpha$.

^{*}Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey. E-mail: uacar@hacettepe.edu.tr

Given a nonempty set X, an L-fuzzy subset μ is a function from X to L. We denote by F(X) the set of all L-fuzzy subsets of X. For $\mu, \nu \in F(X)$ we say $\mu \subseteq \nu$ if and only if $\mu(x) \leq \nu(x)$, for all $x \in X$. Also, $\mu \subset \nu$ if and only if $\mu \subseteq \nu$ and $\mu \neq \nu$.

Let $\mu \in F(X)$ and $t \in L$. Then the set $\mu_t = \{x \in X \mid \mu(x) \ge t\}$ is called the *level* subset of X with respect to μ . By an L-fuzzy point x_r of X, $x \in X$, $r \in L \setminus \{0\}$, we mean $x_r \in F(X)$ defined by

$$x_r(y) = \begin{cases} r & \text{if } y = x, \\ 0 & \text{otherwise.} \end{cases}$$

If x_r is an *L*-fuzzy point of *X* and $x_r \subseteq \mu \in F(X)$, we write $x_r \in \mu$. For $A \subseteq X$ the characteristic function of *A*, $\chi_A \in F(X)$, is defined by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases}$$

The following are two very basic definitions given [4].

2.1. Definition.

- a) Let ξ ∈ F(R). Then ξ is called an L-fuzzy ideal of R if for all x, y ∈ R,
 (i) ξ(x − y) ≥ ξ(x) ∧ ξ(y),
 - (ii) $\xi(xy) \ge \xi(x) \lor \xi(y)$.
- b) Let $\mu \in F(M)$. Then μ is called an *L*-fuzzy *R*-module of *M* if for all $x, y \in M$ and for all $r \in R$,
 - (i) $\mu(x-y) \ge \mu(x) \land \mu(y)$,
 - (ii) $\mu(rx) \ge \mu(x)$,
 - (iii) $\mu(0_M) = 1$

Let S(M) denote the set of all *L*-fuzzy *R*-modules of *M* and I(R) the set of all *L*-fuzzy ideals of *R*. We note that when R = M, then $\mu \in S(M)$ if and only if $\mu(0_M) = 1$ and $\mu \in I(R)$.

An example of an *L*-fuzzy *R*-module *M* with $R = \mathbb{Z}$, $M = \mathbb{Z}_6$, is

$$\mu(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{1}{3} & \text{if } x = 2, 4, \\ \frac{1}{4} & \text{if } x = 1, 3, 5. \end{cases}$$

The following are two basic operations which will be used to define an L-fuzzy prime submodule.

2.2. Definition. Let $\xi \in F(R)$ and $\mu \in F(M)$. Define the composition $\xi \circ \mu$, and product $\xi\mu$ respectively as follows: For all $w \in M$,

$$\begin{aligned} &(\xi \circ \mu)(w) = \sup\{\xi(r) \land \mu(x) \mid r \in R, \ x \in M, \ w = rx\}, \\ &(\xi \mu)(w) = \sup\left\{ \inf_{i=1}^{n} \{\xi(r_i) \land \mu(x_i)\} \ \middle| \ r_i \in R, \ x_i \in M, \ n \in \mathbb{N}, \ w = \sum_{i=1}^{n} r_i x_i \right\}, \end{aligned}$$

where as usual the supremum of an empty set is taken to be 0.

The product can be also expressed as

$$(\xi\mu)(w) = \sup\{\xi(r_1) \land \xi(r_2) \land \dots \land \xi(r_n) \land \mu(x_1) \land \mu(x_2) \land \dots \land \mu(x_n)$$
$$\mid r_i \in R, \ x_i \in M, \ n \in \mathbb{N}, \ w = \sum_{i=1}^n r_i x_i\}$$
$$= \bigvee\left\{\bigwedge_{i=1}^n \{\xi(r_i) \land \mu(x_i)\} \ \middle| \ r_i \in R, \ x_i \in M, \ n \in \mathbb{N}, \ w = \sum_{i=1}^n r_i x_i\right\}$$

Notice that $\xi \circ \mu$ is the case n = 1 in the definition of $\xi \mu$. Thus $\xi \circ \mu \subseteq \xi \mu$.

To give an example of the product of $\xi \in F(R)$ and $\mu \in F(M)$ with $R = \mathbb{Z}$ and $M = \mathbb{Z}_6$, let $\xi(r) = \begin{cases} \frac{1}{2} & \text{if } r \in 2\mathbb{Z}, \\ \frac{1}{5} & \text{otherwise} \end{cases}$ and $\mu(x) = \begin{cases} 1 & \text{if } x = 0, \\ \frac{1}{3} & \text{if } x = 2, 4, \\ \frac{1}{2} & \text{if } x = 1, 3, 5 \end{cases}$ Then:

$$(\xi\mu)(0) = \sup\{\underbrace{\xi(0) \land \mu(1)}_{0=0.1}, \underbrace{\xi(2) \land \mu(3)}_{0=2.3}, \underbrace{\xi(2) \land \mu(1) \land \xi(-1) \land \mu(2)}_{0=2.1-1.2}, \dots\}$$

$$= \sup\{\frac{1}{2} \land 1, \frac{1}{2} \land \frac{1}{4}, \frac{1}{2} \land \frac{1}{4} \land \frac{1}{5}, \dots\} = \frac{1}{2},$$

$$(\xi\mu)(1) = \sup\{\underbrace{\xi(1) \land \mu(1)}_{1=1.1}, \underbrace{\xi(7) \land \mu(1)}_{1=7.1}, \underbrace{\xi(2) \land \mu(2) \land \xi(-1) \land \mu(3)}_{1=2.2-1.3}, \dots\}$$

$$= \sup\{\frac{1}{4} \land \frac{1}{5}, \frac{1}{5} \land \frac{1}{4}, \frac{1}{3} \land \frac{1}{2} \land \frac{1}{5} \land \frac{1}{4}, \dots\} = \frac{1}{5},$$

$$(\xi\mu)(2) = \sup\{\underbrace{\xi(2) \land \mu(1)}_{2=2.1}, \underbrace{\xi(2) \land \mu(4)}_{2=2.4}, \underbrace{\xi(2) \land \mu(2) \land \xi(-1) \land \mu(2)}_{2=2.2-1.2}, \dots\}$$

$$= \sup\{\frac{1}{2} \land 1, \frac{1}{2} \land \frac{1}{3}, \frac{1}{2} \land \frac{1}{4} \land \frac{1}{5}, \dots\} = \frac{1}{3}.$$
Therefore, the provided in the formula of the provided in the provided

If we continue in this way we obtain $(\xi\mu)(x) = \begin{cases} \frac{2}{3} & \text{if } x = 0\\ \frac{1}{3} & \text{if } x = 2, 4\\ \frac{1}{5} & \text{if } x = 1, 3, 5. \end{cases}$

The following lemma can be found in [7,8], It gives the basic operations between L-fuzzy ideals and L-fuzzy modules where L is a complete lattice satisfying the infinite distributive law (completely distributive in the sense of Goguen).

2.3. Lemma. Let $\xi \in I(R)$, $\nu, \mu \in S(M)$ and let L be a complete lattice satisfying the infinite distributive law. Then:

- 1) $\xi \mu \subseteq \nu$ if and only if $\xi \circ \mu \subseteq \nu$.
- 2) Let $r_t \in F(R)$, $x_s \in F(M)$ be fuzzy points. Then $r_t \circ x_s = r_t x_s = (rx)_{t \wedge s}$.
- 3) If $\xi(0_R) = 1$ then $\xi \nu \in S(M)$.
- 4) Let $r_t \in F(R)$ be a fuzzy point. Then for all $w \in M$,

$$(r_t \circ \mu)(w) = \begin{cases} t \land \sup\{\mu(x) \mid x \in M, \ w = rx\} \\ 0 \end{cases} \quad \exists x \in M \text{ with } w = rx, \\ otherwise. \end{cases}$$

We give an example with $R = \mathbb{Z}$ and $M = \mathbb{Z}_6$ to illustrate $r_t \circ \mu$.

U. Acar

$$\begin{aligned} \text{Let } 2_{\frac{1}{2}} \in R \text{ and } \mu(x) &= \begin{cases} 1 & \text{if } x = 0, \\ \frac{1}{3} & \text{if } x = 2, 4, \\ \frac{1}{4} & \text{if } x = 1, 3, 5. \end{cases} \\ (2_{\frac{1}{2}} \circ \mu)(2) &= \sup\{\underbrace{2_{\frac{1}{2}}(2) \land \mu(1)}_{2=2.1}, \underbrace{2_{\frac{1}{2}}(2) \land \mu(4)}_{2=2.4}, \underbrace{2_{\frac{1}{2}}(1) \land \mu(2)}_{2=1.2}, \underbrace{2_{\frac{1}{2}}(5) \land \mu(4)}_{2=5.4} \dots \} \\ &= \sup\{\frac{1}{2} \land \frac{1}{4}, \ \frac{1}{2} \land \frac{1}{3}, \ 0 \land \frac{1}{3}, \ 0 \land \frac{1}{3}, \dots \} = \frac{1}{3}. \end{aligned}$$

$$\begin{aligned} \text{Thus } (2_{\frac{1}{2}} \circ \mu)(x) &= \begin{cases} \frac{1}{2} & \text{if } x = 0, \\ \frac{1}{3} & \text{if } x = 2, 4, \\ 0 & \text{if } x = 1, 3, 5 \end{cases} \text{ and } (2_{\frac{1}{2}} \circ \mu)(x) \notin S(M) \text{ since } (2_{\frac{1}{2}} \circ \mu)(0) \neq 1. \end{cases} \end{aligned}$$

The following theorem gives a relation between L-fuzzy modules on M and submodules of M. It is a very practical method to construct an L-fuzzy module on M.

2.4. Theorem. [8] Let $\mu \in F(M)$. Then μ is an L-fuzzy module if and only if for all $t \in L$ such that $\mu_t \neq \emptyset$, μ_t is an R-submodule of M.

2.5. Definition. [4] For a non-constant $\xi \in I(R)$, ξ is called an *L*-fuzzy prime ideal of R if for any *L*-fuzzy points $x_r, y_s \in F(R)$,

 $x_r y_s \in \xi$ implies that either $x_r \in \xi$ or $y_s \in \xi$.

We give an example with $R = \mathbb{Z}_3$ and $L = \{a, b, c, d\}$ where the ordering is given by the diagram:

3. L-Fuzzy Prime Submodules

In this section, we will give a characterization of an L-fuzzy prime submodule of M.

3.1. Definition. [8] For $\mu, \nu \in S(M)$, ν is called an *L*-fuzzy submodule of μ if and only if $\nu \subset \mu$. In particular, if $\mu = \chi_M$, then we say ν is an *L*-fuzzy submodule of *M*.

3.2. Definition. Let ν be an *L*-fuzzy submodule of μ . ν is called an *L*-fuzzy prime submodule of μ if for $r_t \in F(R)$, $x_s \in F(M)$ $(r \in R, x \in M, s, t \in L)$,

 $r_t x_s \in \nu$ implies that either $x_s \in \nu$ or $r_t \mu \subseteq \nu$.

In particular, taking $\mu = \chi_M$, if for $r_t \in F(R)$, $x_s \in F(M)$ we have

 $r_t x_s \in \nu$ implies that either $x_s \in \nu$ or $r_t \chi_M \subseteq \nu$,

then ν is called an *L*-fuzzy prime submodule of *M*.

The following theorem says that L-fuzzy prime submodules and L-fuzzy prime ideals coincide when R is considered to be a module over itself.

3.3. Theorem. If M = R, then $\nu \in F(R)$ is an L-fuzzy prime submodule of M if and only if $\nu \in F(R)$ is an L-fuzzy prime ideal.

20

Proof. Let ν be an L-fuzzy prime submodule of M. Since $\nu \in S(M)$ and R is a commutative ring, $\nu \in I(R)$.

For arbitrary $a_s, b_t \in F(R), a_s b_t \in \nu$ implies $a_s \in \nu$ or $b_t \chi_M \subseteq \nu$.

If $a_s \in \nu$, then ν is an *L*-fuzzy prime ideal.

If $b_t\chi_M \subseteq \nu$, then $b_t\chi_M(bm) \leq \nu(bm), \forall m \in M$. Since R has an identity b = b1, and $b_t\chi_M(b1) = t \leq \nu(b)$ implies that $t = b_t(b) \leq \nu(b)$, hence $b_t \in \nu$.

Conversely, let ν be an *L*-fuzzy prime ideal of *R*. Then $\nu \subset \chi_R$ and $\nu \in S(M)$. Now let $r_t x_s \in \nu$, for any $r_t \in F(R)$, $x_s \in F(M)$.

If $x_s \in \nu$, then ν is an *L*-fuzzy prime submodule of *M*.

If $x_s \notin \nu$ then $r_t \in \nu \implies r_t \chi_M(rm) = t \leq \nu(r) \leq \nu(rm)$ by the definition of *L*-fuzzy ideal of *R*. Thus, $r_t \chi_M \subseteq \nu$.

The following theorem, which relates fuzzy prime submodule to prime submodules of the module, will be needed in the proof of Theorem 3.6.

3.4. Theorem. Let ν be an L-fuzzy prime submodule of μ . If $\nu_t \neq \mu_t$, $t \in L$, then ν_t is a prime submodule of μ_t .

Proof. Let $\nu_t \neq \mu_t$ and $rx \in \nu_t$ for some $r \in R$, $x \in M$. If $rx \in \nu_t$, then $\nu(rx) \geq t \implies (rx)_t = r_t x_t \in \nu$, and since ν is an *L*-fuzzy prime submodule of μ , either $x_t \in \nu$ or $r_t \mu \subseteq \nu$.

case1: If $x_t \in \nu$ then $t \leq \nu(x)$, so $x \in \nu_t$.

case2: Let $r_t \mu \subseteq \nu$. Then for any $w \in r\mu_t$, w = rz, for some $z \in \mu_t$. So $\mu(z) \ge t$, and

$$t = t \wedge \mu(z) \le \sup \{t \wedge \mu(x)\} = r_t \mu(w) \le \nu(w).$$

Thus $t \leq \nu(w)$, that is $w \in \nu_t$. Thereby $r\mu_t \subseteq \nu_t$.

3.5. Corollary. Let ν be an L-fuzzy prime submodule of M. Then

 $\nu_* = \{ x \in M \mid \nu(x) = \nu(0_M) \}$

is a prime submodule of M.

Proof. Clear from Theorem 3.4.

The following theorem is the main result of section 3. It generalizes the work in [3] from [0, 1] to a complete lattice L.

3.6. Theorem.

a) Let N be a prime submodule of M and α a prime element in L. If μ is the fuzzy subset of M defined by

$$\mu(x) = \begin{cases} 1 & \text{if } x \in N, \\ \alpha & \text{otherwise} \end{cases}$$

for all $x \in M$, then μ is an L-fuzzy prime submodule of M.

b) Conversely, any L-fuzzy prime submodule can be obtained as in (a).

Proof. a) Since N is a prime submodule of $M, N \neq M$, we have that μ is a non-constant L-fuzzy submodule of M. We show that μ is an L-fuzzy prime submodule of M.

Suppose $r_t \in F(R)$, $x_s \in F(M)$ are such that $r_t x_s \in \mu$ and $x_s \notin \mu$.

If $x_s \notin \mu$ then $\mu(x) = \alpha$, hence $x \notin N$.

If $r_t x_s \in \mu$, then $(rx)_{t \wedge s}(rx) \leq \mu(rx) \implies t \wedge s \leq \mu(rx)$.

 \square

If $\mu(rx) = 1$, then $rx \in N$. Since $x \notin N$ and N is a prime submodule of M, we have $rM \subseteq N$. Hence $\mu(rm) = 1$, for all $m \in M$. Thus $r_t \chi_M(rm) = t \leq \mu(rm)$.

If $\mu(rx) = \alpha$, then $(t \wedge s) \leq \alpha$ and $s \not\leq \alpha$ implies $t \leq \alpha$ because α is a prime element in L. So $r_t \chi_M(w) = t \leq \alpha \leq \mu(w)$, for all $w \in M$.

b) Let μ be an L-fuzzy prime submodule of M. We show that μ is of the form

$$\mu(x) = \begin{cases} 1 & \text{if } x \in N, \\ \alpha & \text{otherwise} \end{cases}$$

for a prime submodule N of M and for a prime α element in L.

Claim 1. $\mu_* = \{x \in M \mid \mu(x) = \mu(0_M)\}$ is a prime submodule of M.

Since μ is a nonconstant *L*-fuzzy prime submodule of M, $\mu_* \neq M$.

For all $r \in R, m \in M$, if $rm \in \mu_*$ implies that $(rm)_{\mu(0_M)} = r_{\mu(0_M)}m_{\mu(0_M)} \in \mu$, then $m_{\mu(0_M)} \in \mu$ or $r_{\mu(0_M)}\chi_M \subseteq \mu$.

Case 1: If $m_{\mu(0_M)} \in \mu$, then $\mu(0_M) \leq \mu(m)$ and $\mu(0_M) \geq \mu(m)$ (definition of fuzzy module). Hence $\mu(0_M) = \mu(m)$, so $m \in \mu_*$

Case 2: If $r_{\mu(0_M)}\chi_M \subseteq \mu$, then $\mu(0_M) \leq \mu(rm)$, thus $rm \in \mu_*$ for all $m \in M$.

 $0_M \in N$ and $\mu(0_M) = 1$. For all $x \in \mu_*$, $\mu(0_M) = \mu(x) = 1$. Now, $\mu_* = N$.

Claim 2. μ has only two values.

Since μ_* is a prime submodule of M, $\mu_* \neq M$. Then there exists $z \in M \setminus \mu_*$. We will show that $\mu(y) = \mu(z) < \mu(0_M)$, for all $y \in M$ such that $y \notin \mu_*$. Then

$$z \notin \mu_* \implies \mu(z) < 1 = \mu(0_M),$$

so $z_1 \notin \mu$ and $z_{\mu(z)} = z_1 \mathbb{1}_{\mu(z)} \in \mu$. Thus $\mathbb{1}_{\mu(z)} \chi_M \subseteq \mu$, since $w = \mathbb{1}_w$, for all $w \in M$, we have $\mu(z) \leq \mu(w)$.

Let w = y. Then, $\mu(z) \le \mu(y)$. Similarly, $\mu(y) \le \mu(z)$. Hence, $\mu(z) = \mu(y)$.

Claim 3. Let $\mu(z) = \alpha$, then α is a prime element in L.

First, let $t \wedge s \leq \alpha$ and $s \not\leq \alpha$. Suppose $x \in M \setminus \mu_*$. Then $x_s \notin \mu$. Hence

 $1_t x_s = x_{t \wedge s} \in \mu \implies 1_t \chi_M \subseteq \mu,$

and for all $w \in M$, $1_t \chi_M(w) \le \mu(w)$. Let w = x. Then, $t = 1_t \chi_M(x) \le \mu(x) = \alpha$.

Thus, every L-fuzzy prime submodule of M is of the form

$$\mu(x) = \begin{cases} 1 & \text{if } x \in N, \\ \alpha & \text{otherwise,} \end{cases}$$

where N is a prime submodule of M and α is a prime element in L.

This theorem is particularly useful in deciding whether or not a fuzzy submodule is prime. The following example illustrates this.

3.7. Example. Let $M = \mathbb{Z}$ be a module over $R = \mathbb{Z}$. Then

$$\mu(x) = \begin{cases} 1 & \text{if } x \in 3\mathbb{Z}, \\ \frac{1}{4} & \text{otherwise} \end{cases}$$

is an *L*-fuzzy prime submodule of \mathbb{Z} since $3\mathbb{Z}$ is prime submodule of \mathbb{Z} and $\frac{1}{4}$ is a prime element in [0, 1].

4. L-Fuzzy Prime Submodules of Homomorphic Modules

In this section, we investigate the behaviour of L-fuzzy prime submodules of M under an R-module epimorphism. Firstly, we recall the definition of image and inverse image of an L-fuzzy subset under a R-module homomorphism. From now on, M and M_1 are R-modules.

4.1. Definition. Let f be a R-module homomorphism from M to M_1 , $\mu \in F(M)$ and $\nu \in F(M_1)$. Then $f(\mu) \in F(M_1)$ and $f^{-1}(\nu) \in F(M)$ are defined by

$$f(\mu)(w) = \begin{cases} \sup_{m \in f^{-1}(w)} \mu(m) & \text{if } f^{-1}(w) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$

and $f^{-1}(\nu)(m) = \nu(f(m))$, for all $w \in M_1, m \in M$.

In the next two theorems we show that both the image and the inverse image of an L-fuzzy prime submodule under a R-module epimorphism are again L-fuzzy prime submodules. Here we need to assume that the complete lattice L is distributive.

4.2. Theorem. Let f be an R-modules epimorphism from M to M_1 , and suppose that L is distributive. If μ is an L-fuzzy prime submodule of M such that $\chi_{\ker f} \subseteq \mu$, then $f(\mu)$ is an L-fuzzy prime submodule of M_1 .

Proof. We have $f(\mu)(w) = \sup_{w=f(m)} \mu(m)$.

Claim 1: $f(\mu)$ is an *L*-fuzzy submodule of M_1 .

(i) For all $\omega_1, \omega_2 \in M_1$,

$$f(\mu)(\omega_1) \wedge f(\mu)(\omega_2) = [\sup_{\omega_1 = f(m_1)} \mu(m_1)] \wedge [\sup_{\omega_2 = f(m_2)} \mu(m_2)]$$

=
$$\sup_{\omega_1 = f(m_1), \omega_2 = f(m_2)} \{\mu(m_1) \wedge \mu(m_2)\}$$

$$\leq \sup_{\omega_1 = f(m_1), \omega_2 = f(m_2)} \mu(m_1 - m_2)$$

$$\leq \sup_{\omega_1 - \omega_2 = f(m_1 - m_2)} \mu(m_1 - m_2) = f(\mu)(\omega_1 - \omega_2).$$

(ii) For all $\omega_1 \in M_1$ and for all $r \in R$,

$$f(\mu)(\omega_1) = \sup_{\omega_1 = f(m)} \mu(m) \le \sup_{\omega_1 = f(m)} \mu(rm) = \sup_{r\omega_1 = rf(m) = f(rm)} \mu(rm)$$
$$= f(\mu)(r\omega_1).$$

(iii) It is clear that $f(\mu)(0_{M_1}) = 1$. Thus $f(\mu)$ is an L-fuzzy submodule of M_1 .

Claim 2: $f(\mu)$ is an *L*-fuzzy prime submodule of M_1 .

Since μ is an *L*-fuzzy prime submodule of *M*, μ is of the form

$$\mu(x) = \begin{cases} 1 & \text{if } x \in N, \\ \alpha & \text{otherwise,} \end{cases}$$

where $N = \mu_*$ is a prime submodule of M and α is a prime element in L.

Subclaim: If μ_* is a prime submodule of M and $\chi_{\ker f} \subseteq \mu$, then $f(\mu_*)$ is a prime submodule of M_1 .

Let $x \in \ker f$. Then

$$\chi_{\ker f}(x) = 1 \le \mu(x) \implies \mu(x) = \mu(0_M) \implies x \in \mu_*.$$

Thus ker $f \subseteq \mu_*$.

For all $r \in R$, $\omega \in M_1$, $r\omega \in f(\mu_*)$, there exists $z \in \mu_*$ such that $r\omega = f(z)$. Since f is an epimorphism there exists $m \in M$ such that $r\omega = rf(m) = f(z)$. Now $rm \in \mu_*$, and μ_* is a prime submodule of M, so either $m \in \mu_*$ or $rM \subseteq \mu_*$.

If $m \in \mu_*$, then $\omega = f(m) \in f(\mu_*)$.

If $rM \subseteq \mu_*$, then $rM_1 = f(rM) \subseteq f(\mu_*)$. Thus $f(\mu_*)$ is an *L*-fuzzy prime submodule of M_1 , and α is a prime element in *L*, so by Theorem 3.6, for all $\omega \in M_1$,

$$f(\mu)(\omega) = \begin{cases} 1 & \text{if } \omega \in f(\mu_*), \\ \alpha & \text{otherwise.} \end{cases}$$

Hence $f(\mu)$ is an *L*-fuzzy prime submodule of M_1 .

4.3. Example. Let f be a homomorphism from \mathbb{Z} to \mathbb{Z} defined by f(x) = 2x, and let

$$\mu(x) = \begin{cases} 1 & \text{if } x \in 3\mathbb{Z}, \\ \frac{1}{4} & \text{otherwise} \end{cases}$$

be an *L*-fuzzy prime submodule of \mathbb{Z} . Then:

$$\begin{split} f(\mu)(0) &= \sup\{\mu(n) \mid f(n) = 0\} = \mu(0) = 1, \\ f(\mu)(1) &= 0, \text{ since } f^{-1}(1) = \emptyset, \\ f(\mu)(2) &= \sup\{\mu(n) \mid f(n) = 2\} = \mu(1) = \frac{1}{4}, \\ f(\mu)(3) &= 0, \text{ since } f^{-1}(3) = \emptyset, \\ f(\mu)(4) &= \sup\{\mu(n) \mid f(n) = 4\} = \mu(2) = \frac{1}{4}, \\ f(\mu)(5) &= 0, \text{ since } f^{-1}(5) = \emptyset. \end{split}$$

If we continue this way we find that

$$f(\mu)(x) = \begin{cases} 1 & \text{if } x \in 6\mathbb{Z}, \\ \frac{1}{4} & \text{if } 0 \neq x \in 2\mathbb{Z} - 6\mathbb{Z}, \\ 0 & \text{if } 0 \neq x \in \mathbb{Z} - 2\mathbb{Z}, \end{cases}$$

is not an *L*-fuzzy prime submodule of \mathbb{Z} . This shows that the assumption that f be an epimorphism in Theorem 4.2 cannot be dropped.

4.4. Theorem. Let f be a R-module epimorphism from M to M_1 . If ν is an L-fuzzy prime submodule of M_1 , then $f^{-1}(\nu)$ is an L-fuzzy prime submodule of M.

Proof. Let ν be an *L*-fuzzy prime submodule of M_1 . Then

$$\nu(x) = \begin{cases} 1 & \text{if } x \in \nu_*, \\ \alpha & \text{otherwise,} \end{cases}$$

where ν_* is a prime submodule of M_1 and α is a prime element in L.

Claim: $f^{-1}(\nu_*)$ is a prime submodule of M.

For all $r \in R$, $m \in M$, if

$$rm \in f^{-1}(\nu_*) \implies rf(m) \in \nu_*,$$

then $f(m) \in \nu_*$ or $rM_1 \subseteq \nu_*$.

If $f(m) \in \nu_*$, then $m \in f^{-1}(\nu_*)$.

24

If $rM_1 \subseteq \nu_*$, then

 $rf(M) = f(rm) \subseteq \nu_* \implies rM \subseteq f^{-1}(\nu_*).$

Hence

$$f^{-1}(\nu)(x) = \begin{cases} 1 & \text{if } f(x) \in \nu_*, \\ \alpha & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } x \in f^{-1}(\nu_*), \\ \alpha & \text{otherwise}, \end{cases}$$

where $f^{-1}(\nu_*)$ is a prime submodule of M and α a prime element in L.

Thus, $f^{-1}(\nu)$ is an *L*-fuzzy prime submodule of *M*.

Acknowledgement The author is grateful to the referee for several helpful suggestions.

References

- [1] Goguen, J. A. *L-fuzzy sets*, J.Math. Anal.Appl. 18, 145–174, 1967
- [2] Liu, W. J. Operation on fuzzy ideals, Fuzzy Sets and Systems 11, 31-41, 1983
- [3] Makamba, B.B. and Murali, V. On prime fuzzy submodules and radicals, J. Fuzzy Math. 8 (4), 831–843, 2000.
- [4] Malik, D.S. and Mordeson, J.N. Fuzzy Commutative Algebra, (World Scientific Publishing, 1998).
- [5] Rosenfeld, A. Fuzzy groups, J. Math. Anal. Appl. 35, 512–517, 1971.
- [6] Zadeh,L. A. Fuzzy sets, Inform. and Control 8, 338–353, 1965.
- [7] Zahedi, M. M. A Characterization of L-fuzzy prime ideals, Fuzzy Sets and Systems 44, 147– 160, 1991.
- [8] Zahedi, M. M. On L-fuzzy primary submodules, Fuzzy Sets and Systems 49, 231-236, 1992.