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Received 27 : 04 : 2004 : Accepted 23 : 09 : 2004

Abstract

Binary regression has many medical applications. In applying the tech-
nique, the tradition is to assume the risk factor X as a non-stochastic
variable. In most situations, however, X is stochastic. In this study,
we discuss the case when X is stochastic in nature, which is more re-
alistic from a practical point of view than X being non-stochastic. We
show that our solutions are much more precise than those obtained by
treating X as non-stochastic when, in fact, it is stochastic.

Keywords: Binary regression, Modified Maximum Likelihood Estimator, Robustness,
Skew family, Symmetric family.

1. Introduction

A binary regression model typically is

π (x) = E (Y | X = x) =

∫ z

−∞

f (x) dx

= F (z) ,(1.1)

where z = γ0 + γ1x (γ1 > 0), Y is a stochastic variable that assumes values 1 or 0 and
X is a risk factor which in the literature has been treated as non-stochastic. In most
situations, however, X is stochastic. Consider, for example, the following data:

(1) The 27 observations on (Y,X) given in Agresti [2, p. 88], where X measures
the proliferative activity of cells after a patient receives an injection of tritiated
thymidine and the response variable Y represents whether the patient achieves
remission or not.

(2) The following 10 observations on (Y,X) given in Hosmer and Lemeshow [5,
p.132]

Y : 0, 1, 0, 0, 0, 0, 0, 1, 0, 1

X : 0.225, 0.487,−1.080,−0.870,−0.580,−0.640, 1.614, 0.352,−1.025, 0.929;
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X is generated from normal N(0, 1). In the examples above, and many others (Aitkin
et al., [3]), X is clearly stochastic but has been treated as a non-stochastic variable.
The function f (x) has traditionally been taken to be logistic but Tiku and Vaughan
[18] have extended the methodology to non-logistic density functions treating X as non-
stochastic. The purpose here is to give solutions in the more realistic situations when X
is stochastic and f (x) is logistic or non-logistic. Since maximum likelihood methodology
is intractable, modified likelihood methodology is invoked. The latter is known to yield
MMLE (modified maximum likelihood estimators) as efficient as the MLE (maximum
likelihood estimators). Unlike the MLE, the MMLE are explicit functions of sample
observations and are easy to compute; see Vaughan [22] and Tiku and Vaughan [18]. In
fact, Vaughan [23, p.228] states five very desirable properties of the MMLE. Moreover,
as pointed out in Şenoğlu and Tiku [14, p.363], the MMLE are numerically the same
(almost) as the MLE in all situations where authentic iterative MLE are available. See
also Vaughan [23, p. 233]. The solutions we give are enormously more precise than those
obtained by treating X as a non-stochastic variable when, in fact, it is stochastic.

2. Maximum Likelihood

Let Y be a binary random variable which assumes values yi = 1 or 0 with probabilities
θ and 1− θ, respectively, and let the corresponding observations on the risk factor X be
denoted by xi (1 ≤ i ≤ n). The model is

(2.1) F (zi) = π (xi) = E (Y |X = xi) =

∫ zi

−∞

f (u) du,

where zi = γ0 + γ1xi and f (u) is a completely specified density function; Y is presumed
to increase with X so that γ1 is a priori positive. Let h (x) denote the probability density
function of the stochastic variable X. The methodology developed here is applicable
to any completely specified density f in (2.1) and any location-scale density h (x). We
consider, for illustration, two families of densities: (a) skew and (b) symmetric, which
are prevalent in practice (Rasch [11]; Spjotvoll and Aastveit [12]; Tiku et al. [19]).

Skew family : Consider the family of Generalized Logistic densities

(2.2) GL (b, γ1) : h (x) =
bγ1e

−(γ0+γ1x)

(1 + e−(γ0+γ1x))
b+1

, −∞ < x <∞.

Note that the probability density function of Z = (X − µ) /σ = γ0 + γ1X, (γ0 = −µ/σ,
γ1 = 1/σ), is

(2.3) h (z) =
be−z

(1 + e−z)b+1
, −∞ < z <∞.

The densities f (u) and h (z) are assumed to have the same functional forms although
our methodology easily extends to situations where f and h are different from each other.
The latter will perhaps be true if there are more than one risk factor and z = γ0+

∑

i γ1xi.

For b < 1, (2.3) represents negatively skewed density functions. For b > 1, it represents
positively skewed density functions. For b = 1, it is the well known logistic density. The
mean and variance of (2.3) are

(2.4) E (Z) = ψ (b)− (1) and V (Z) = ψ′ (b) + ψ′ (1)

respectively The values of the psi-function ψ (b) and its derivative ψ′ (b) are given in Tiku
et al. [20, p. 1356]. See Abramowitz and Stegun [1] for analytical and computational
aspects of psi-functions.
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The likelihood function of the random sample (yi, xi) , 1 ≤ i ≤ n, is

(2.5) L = LXLY |X ∝
n
∏

i=1

(γ1h (zi))
{

(F (zi))
yi (1− F (zi))

1−yi
}

.

This gives

(2.6) lnL ∝ n ln γ1 +

n
∑

i=1

{lnh (zi) + yi lnF (zi) + (1− yi) ln (1− F (zi))} ;

zi = γ0 + γ1xi and F (zi) =
(

1 + e−zi

)−b
.

The likelihood equations are expressions in terms of the intractable functions

(2.7) g (z) = e−z/
(

1 + e−z
)

, g1 (z) = f (z) /F (z) and g2 (z) = f (z) / {1− F (z)} .
They have no explicit solutions and are almost impossible to solve by iterative meth-
ods. The MLE are, therefore, elusive. See also Tiku and Vaughan [18] who work with
the conditional likelihood function LY |X as do other authors (Agresti [2]; Hosmer and
Lemeshow [5]; Kleinbaum [6]).

To obtain the MMLE, we first express the likelihood equations ∂ lnL/∂γ0 = 0 and
∂ lnL/∂γ1 = 0 in terms of the ordered variates z(i). Since γ1 is a priori positive,

(2.8) z(i) = γ0 + γ1x(i), 1 ≤ i ≤ n,

where x(i) are the order statistics of the random sample xi, (1 ≤ i ≤ n). Since complete
sums are invariant under ordering, e.g.

∑n
i=1 zi =

∑n
i=1 z(i), we have

(2.9)
∂ lnL

∂γ0
= −n+

n
∑

i=1

{

(b+ 1) g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)}

= 0

and

∂ lnL

∂γ1
=

n

γ1
−

n
∑

i=1

x(i) +

n
∑

i=1

x(i)

{

(b+ 1) g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)}

= 0,

(2.10)

where wi = y[i] is the concomitant of x(i), i.e., y[i] is that observation yi which is coupled
with x(i) when (yi, xi) are ordered with respect to xi, (1 ≤ i ≤ n). As mentioned earlier,
(2.8)-(2.9) are almost impossible to solve.

3. Modified Likelihood

To obtain the modified likelihood equations, we linearize the functions g (z), g1 (z)
and g2 (z) by using the first two terms of their Taylor series expansions as follows:

g
(

z(i)
) ∼= g

(

t∗(i)
)

+
(

z(i) − t∗(i)
)

{

d

dz
g (z)

}

z=t∗
(i)

= αi − βiz(i), 1 ≤ i ≤ n,(3.1)

where

(3.2) αi = (1 + eαi)−1 + βiai and βi = eai/ (1 + eai)2 , ai = t∗(i);

ai is determined by the equation

(3.3)

∫ ai

−∞

h (z) dz =
i

n+ 1
, 1 ≤ i ≤ n.

Similarly,

(3.4) g1
(

z(i)
) ∼= α1i − β1iz(i) and g2

(

z(i)
)

= α2i + β2iz(i), 1 ≤ i ≤ n,
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where

(3.5) β1i =
{

f2 (t(i)
)

− F
(

t(i)
)

f ′
(

t(i)
)}

/F 2 (t(i)
)

and α1i = g1
(

t(i)
)

+ β1it(i),

and

β2i =
{

f2 (t(i)
)

+
(

1− F
(

t(i)
))

f ′
(

t(i)
)}

/
(

1− F
(

t(i)
))2

,

α2i = g2
(

t(i)
)

− β2it(i).
(3.6)

Here, t(i) is determined by the equation

(3.7)

∫ t(i)

−∞

f (z) dz =
i

n+ 1
, 1 ≤ i ≤ n.

For the Generalized Logistic,

(3.8) t(i) = − ln

{

q
− 1

b

i − 1

}

, qi = i/ (n+ 1) .

Since f (u) and h (z) are assumed to have the same forms, a(i) = t(i) (1 ≤ i ≤ n).

Incorporating (3.1) and (3.4) in (2.9)-(2.10) gives the modified likelihood equations
which have the following beautiful expressions:

(3.9)
∂ lnL

∂γ0

∼= ∂lnL∗

∂γ0
= −n+

n
∑

i=1

{

δi −miz(i)
}

= 0

and

(3.10)
∂ lnL

∂γ1

∼= ∂lnL∗

∂γ1
=

n

γ1
−

n
∑

i=1

x(i) +
n
∑

i=1

x(i)

{

δi −miz(i)
}

= 0

where

(3.11) δi = wiα1i − (1− wi)α2i + (b+ 1)αi and mi = wiβ1i + (1− wi)β2i + (b+ 1)βi.

The solutions of (3.9)-(3.10) are the MMLE γ̂0 and γ̂1 of γ0 and γ1, respectively:

(3.12) γ̂0 = {(δ − n) /m} − γ̂1x(.) and γ̂1 =
{

B +
√

(B2 + 4nC)
}

/2C

where

δ =

n
∑

i=1

δi, m =

n
∑

i=1

mi, x(.) =
1

m

n
∑

i=1

mix(i),

B =

n
∑

i=1

(δi − 1)
(

x(i) − x(.)

)

, and

C =
n
∑

i=1

mi

(

x(i) − x(.)

)2
=

n
∑

i=1

mix
2
(i) −

1

m

(

n
∑

i=1

mix(i)

)2

.

(3.13)

Revised estimates: Following Lee et al. [7] and Tiku and Vaughan [18, p. 888], in
order to sharpen the MMLE, we calculate the coefficients (α1i, β1i) and (α2i, β2i) from
(3.5)-(3.6) by replacing t(i) by

(3.14) ti = γ̂0 + γ̂1x(i), 1 ≤ i ≤ n,

and calculate the revised estimates from (3.12)-(3.13). We may repeat this process a few
times until the estimates stabilize to, say, three decimal places. No revision is needed in
the coefficients (αi, βi) in (3.1); they are computed from (3.2) once and for all. See also
Tiku and Suresh [17] and Vaughan [22, 23].
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4. Asymptotic Variances and Covariances

It has been rigourously proved by Vaughan and Tiku [24] that the MMLE are asymp-
totically equivalent to the MLE. Bhattacharyya [4] establishes this result for censored
samples. Therefore, the MMLE γ̂0 and γ̂1 above are asymptotically unbiased and effi-
cient. Their asymptotic variance-covariance matrix V is given by I−1 (γ0, γ1), where I is
the Fisher information matrix consisting of the following elements:

I11 = −E
(

∂2 lnL

∂γ2
0

)

= Q+ P1,(4.1)

I12 = −E
(

∂2 lnL

∂γ0∂γ1

)

=
1

γ1
{− (Q+ P1) γ0 + [ψ (b)− ψ (1)]Q+ [ψ (b+ 1)− ψ (2)]P1}(4.2)

and

I22 = −E
(

∂2 lnL

∂γ2
1

)

=
1

γ2
1

((Q+ P1) γ
2
0 − 2γ0 ([ψ (b)− ψ (1)]Q+ [ψ (b+ 1)− ψ (2)]P1)+

+
(

[ψ (b)− ψ (1)]2 + ψ′ (b) + ψ′ (1)
)

Q+

+
(

[ψ (b+ 1)− ψ (2)]2 + ψ′ (b+ 1) + ψ′ (2)
)

P1 + n),(4.3)

where

(4.4) Qi =
f2 (zi)

F (zi) (1− F (zi))
, Q =

n
∑

i=1

Qi and P1 =
nb

b+ 2
.

The expressions (4.1)-(4.3) are obtained along the same lines as in Tiku and Vaughan
[18, Section 5] and realizing that for a bounded bivariate random function g (Z, Y ),

(4.5) E {g (Z, Y )} = EZ

{

EY/Zg (Z, Y )
}

.

Thus,

(4.6) V =

[

I11 I12
I12 I22

]−1

.

In particular, the asymptotic variance of γ̂1 is given by

(4.7) var (γ̂1/γ1) ∼= (Q+ P1) /∆,

where

∆ = (
[

ψ′ (b)− ψ′ (1)
]

Q (Q+ P1) +
[

ψ′ (b+ 1) + ψ′ (2)
]

P1 (Q+ P1)+

+ ([ψ (b)− ψ (1)]− [ψ (b+ 1)− ψ (2)])2QP1 + n (Q+ P1) ,

which is free of γ0.

An estimate of the variance of γ̂1 is obtained by replacing zi by ẑi = γ̂0+ γ̂1xi in (4.4).
The standard error of γ̂1 is the square root of this estimated variance and, similarly, for
γ̂0.

For b = 1 (logistic density), (4.7) simplifies and since ψ′ (1) = 1.6449 and

(4.8) ψ′ (2) = 1.6449, var (γ̂1/γ1) ∼= 1/ (3.2898Q+ 1.2898P1 + n) .

We now give a few examples to illustrate the enormous gain in efficiency of the estimators
when the complete likelihood function L is used as against using only the conditional
likelihood LY |X .
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4.1. Example. Consider the widely reported CHD (coronary heart disease) data on 100
randomly chosen patients (Hosmer and Lemeshow [5]). Here, X represents the age and Y
the presence or absence of CHD. The density f (u) in (2.1) has traditionally been taken
to be logistic. With logistic h (x), i.e. GL (1, γ1) in (2.2), we have the MMLE and their
standard errors reported in Table 1. Only two iterations were needed for the estimates
to stabilize to three decimal places. Also reported are the MLE and the MMLE (and
their standard errors) based only on the conditional likelihood LY |X , reproduced from
Tiku and Vaughan [18, p. 890]. It can be seen that the MMLE based on the complete
likelihood (2.5) are enormously more precise, that is, they have considerably smaller
standard errors than those based only on the conditional likelihood.

Table 1. Estimates and their Standard Errors for the CHD Data, n = 100.

Coefficient Estimate Standard Error

Conditional ML γ0 -5.310 1.134

Likelihood γ1 0.111 0.024

MML γ0 -5.309 1.134

γ1 0.111 0.024

Complete MML γ0 -6.181 0.463

Likelihood γ1 0.136 0.010

It may be noted that the MMLE based on the complete likelihood are not much different
numerically from those based only on the conditional likelihood.

4.2. Example. Consider the Agresti [2, p.88] data (27 observations) mentioned earlier.
The MLE and the MMLE and their standard errors are given in Table 2. Again, the
MMLE based on the complete likelihood function are not very different numerically from
those based on the conditional likelihood but are enormously more precise.

Table 2: Estimates and their Standard Errors for Agresti’s Data, n = 27.

Coefficient Estimate Standard Error

Conditional ML γ0 -3.777 ∗
Likelihood γ1 0.145 0.059

MML γ0 -3.777 1.379

γ1 0.145 0.059

Complete MML γ0 -3.688 0.576

Likelihood γ1 0.175 0.024

∗ : Not given in Agresti [2]

Simulation study: To illustrate further the gain in efficiency which the MMLE (3.12)
provide over those based only on the conditional likelihood (Tiku and Vaughan [18]), i.e.,

(4.9) γ̂1c =
n
∑

i=1

δi
(

x(i) − xa
)

/
n
∑

i=1

mi

(

x(i) − xa
)2

and γ̂0c = (δ/m)− γ̂1cxa,

δ =
∑

i

δi, m =
∑

i

mi, δi = α1iwi − α2i (1− wi) ,

mi = β1iwi + β2i (1− wi) and xa = (1/m)
∑

i

mix(i).

we did an extensive Monte Carlo study as follows:
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We generated a random sample x1, x2, . . . , xn of size n from (2.2) and calculated the
MMLE of γ0 and γ1 (Tiku and Suresh [17]; Vaughan [22]) from the order statistics

x(i) ≤ x(2) ≤ · · · ≤ x(n).

Denote them by γ̂00 and γ̂10. Specifically,

(4.10)

γ̂00 =
1

m

n
∑

i=1

(

αi −
1

b+ 1

)

− γ̂10x(..) and ,

γ̂10 =

{

−B0 +
√

B2
0 + 4nC0

}

/2C0,

where

(4.11)

m =
n
∑

i=1

βi, x(..) = (1/m)
n
∑

i=1

βix(i),

B0 = (b+ 1)

n
∑

i=1

(

αi −
1

b+ 1

)

(

x(i) − x(..)

)

and

C0 = (b+ 1)

n
∑

i=1

βi
(

x(i) − x(..)

)2
;

the values of αi and βi being obtained from (3.2).

We generated the concomitant binary observations wi = y[i], (1 ≤ i ≤ n), by calcu-
lating the probability

(4.12) P̂i =
(

1 + e−ẑ(i)

)−b

, ẑ(i) = γ̂00 + γ̂10x(i)

and defining

(4.13) wi =

{

1 if Ui ≤ P̂i,

0 otherwise,

where Ui, (1 ≤ i ≤ n), are independent uniform (0,1) variates.

The observations
(

wi, x(i)

)

, 1 ≤ i ≤ n, so generated were substituted in (3.12) and
the MMLE γ̂0 and γ̂1 obtained. The corresponding conditional likelihood MMLE were
obtained from the equations (4.9). Both sets of estimates were the result of three iter-
ations. The procedure was repeated N = [100000/n] (integer value) times. The means
and variances of the resulting estimates were calculated for b = 0.5, 1, 2 and 4. Both
were found to be (almost) unbiased. The MMLE γ̂0 and γ̂1, however, were found to be
enormously more efficient than the conditional MMLE for all values of b. For illustration,
we reproduce in Table 3 the means and variances of the estimators for b = 1. It can be
seen that the MMLE based on the complete likelihood are very much more efficient than
those based only on the conditional likelihood.

It is interesting to see that the mean and variance of γ̂1/γ1 are almost invariant to γ0

for all n, in agreement with the fact that γ̂1 is (almost) unbiased for γ1 and the equation
(4.7) is free of γ0. Incidentally, the simulated variance of γ̂1/γ1 is close to those obtained
from (4.7) for large n (> 100)
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Table 3. Simulated Means and Variances: (a) Mean and (b) Variance.

Complete Likelihood Conditional Likelihood

(a) (b) (a) (b)

γ0 γ1 n γ̂0 γ̂1/γ1 γ̂0 γ̂1/γ1 γ̂(0) γ̂(1)/γ1 γ̂(0) γ̂(1)/γ1

0 0.001 50 0.001 1.018 0.075 0.017 0.003 1.112 0.233 0.155

100 -0.005 1.007 0.035 0.008 -0.011 1.062 0.101 0.070

0.10 50 0.006 1.023 0.079 0.017 0.001 1.121 0.229 0.168

100 0.003 1.009 0.039 0.008 -0.000 1.048 0.108 0.061

1.00 50 -0.005 1.022 0.075 0.017 -0.010 1.132 0.223 0.165

100 -0.005 1.011 0.037 0.008 -0.011 1.066 0.103 0.069

2 0.001 50 2.029 1.017 0.142 0.017 2.245 1.127 0.892 0.161

100 2.025 1.011 0.073 0.008 2.124 1.056 0.350 0.063

0.10 50 2.035 1.016 0.139 0.016 2.239 1.119 0.866 0.159

100 2.018 1.005 0.070 0.008 2.111 1.048 0.375 0.067

1.00 50 2.048 1.024 0.136 0.015 2.278 1.139 0.891 0.170

100 2.021 1.008 0.070 0.008 2.114 1.055 0.352 0.059

4.3. Remark. The assumed values of γ0 and γ1 may as well be used in (4.12) to generate
wi from (4.13). That does not change the values in Table 3 in any substantial way.

5. Hypothesis Testing

Since X is a genuine risk factor, its effect on Y will logically be never zero. The real
issue, therefore, is whether it has some effect howsoever small. TestingH0 : γ1 = γ10 (> 0)
is, therefore, of major importance. To test H0, we propose the statistic

(5.1) W = γ̂1/γ10.

Large values of W lead to the rejection of H0 in favour of H1 : γ1 > γ10. Since γ̂1 is
asymptotically equivalent to the MLE, the asymptotic null distribution of W is normal
with mean 1 and variance given by the right hand side of (4.7). Simulations reveal,
however, that it takes a large sample size n (> 100) to attain near-normality of the null
distribution of W . To study the null distribution of W for small n, we simulated the
coefficients of skewness β∗1 = µ2

3/µ
3
2 and kurtosis β∗2 = µ4/µ

2
2 of W . Interestingly, µ3 > 0

and β∗1 and β∗2 are close to the Type III line in the Pearson plane (Pearson [9]; Tiku
[15,16]; Pearson and Tiku [10, Fig.1]), i.e.,

(5.2) |β∗2 − (3 + 1.5β∗1 )| ≤ 0.5.

For n = 20, γ0 = 2 and γ1 = 0.001, for example, β∗1 = 0.732 and β∗2 = 4.309 so that
(5.2) equals 0.211; for n = 100, β∗1 = 0.139 and β∗2 = 3.153, and (5.2) equals 0.056. The
Pearson-Tiku 3-moment chi-square approximation is applicable. This works as follows:

Let

(5.3) χ2 = (W + c) /d,

where χ2 is a chi-square variate with ν degrees of freedom. Determine ν, d and c such
that the first three moments on both sides agree. This gives

(5.4) ν = 8/β∗1 , d =
√

(µ2/2ν) and c = bν − µ′1.
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Here µ′1 and µ2 are the simulated mean and variance of W . Thus, the 100 (1− α)%
point of W is given by

(5.5) Wα = dχ2
α (ν)− c,

where χ2
α (ν) is the 100 (1− α)% point of a chi-square distribution with ν degrees of

freedom. The 3-moment chi-square approximation gives remarkably accurate values. For
example, we have the following simulated values of the probability P (W ≥Wα|H0) with
its value presumed to be 0.050:

Simulated Values of The Probability

n b = 0.5 1 2 4

20 0.049 0.044 0.046 0.048

50 0.051 0.050 0.049 0.047

100 0.049 0.045 0.051 0.051

5.1. Remark. Since γ̂1 is as efficient as the MLE, it will not be easy to improve over
the W test so far as its power is concerned.

Since X has been assumed to be non-stochastic, it is now possible to study the robustness
of the W test as follows.

Robustness: In practice, a value of the shape parameter b in (2.3) is located with the
help of Q−Q plots and/or formal goodness-of-fit tests; see specifically Tiku and Vaughan
[18, Appendix B]. In spite of ones best efforts, however, it might not be possible to locate
the exact value of b. Moreover, the data might contain outliers or be contaminated. That
brings the robustness issue in focus. Assume, for illustration, that the true value in (2.3)
is b = 1 (logistic distribution) which we will call the population model. As plausible
alternatives, we consider the following which we will call sample models; σ = 1/γ1.

Misspecified model:

Student’s t distribution with degrees of freedom

(1) υ = 9,
(2) υ = 19.

Outlier model:

(3) (n− r) observations come from GL (1, σ) and r (we do not know which) come
from GL (1, 4σ), r = [0.5 + 0.1n].

(4) (n− r) observations come from GL (0.5, σ) and r come from GL (0.5, 4σ).

Mixture model:

(5) 0.90GL (1, σ) + 0.10GL (1, 4σ),
(6) 0.90GL (0.5, σ) + 0.10GL (0.5, 4σ).

Contamination model:

(7) (n− r) observations come from GL (1, σ) and r from uniform U (0, 1).

Models (4) and (6) represent skew distributions. All other models represents symmetric
distributions.

To study the robustness of Type I error of the W test above, since the assumed
population model is the logistic GL (1, σ), we take b = 1 in all the equations above and use
the correspondingWα in (5.5) for all the alternative models (1)–(7). The simulated Type
I errors are given in Table 4. It can be seen that the W test is remarkably robust. This
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is typical of the hypothesis testing procedures based on the MMLE since the coefficients
βi have umbrella or half-umbrella ordering; see specifically Şenoğlu and Tiku [13,14].

Table 4. Simulated Values of The Type I Error; γ0 = 0, γ1 = 0.001.

Model n = 50 60 80 100 Model n = 50 60 80 100

Logistic 0.050 0.052 0.052 0.048 (1) 0.049 0.051 0.048 0.048

(2) 0.049 0.047 0.048 0.051 (3) 0.049 0.049 0.048 0.052

(4) 0.053 0.050 0.050 0.050 (5) 0.051 0.047 0.046 0.050

(6) 0.051 0.049 0.050 0.051 (7) 0.050 0.049 0.050 0.052

The random numbers generated from all the models in the table were standardized to
have variance 1. Although we have reported values only for γ0 = 0 and γ1 = 0.001, the
results are essentially the same for other values of γ0 and γ1. Similarly, the power of the
test is not diminished in any substantial way under plausible deviations from an assumed
model. We omit details for conciseness. Thus, the W test has both criterion robustness
as well as efficiency robustness.

6. Symmetric family

Consider the situation when X has density

(6.1) h (x) =
γ1√

kB
(

1
2
, p− 1

2

)

{

1 +
1

k
(γ0 + γ1x)

2

}−p

, −∞ < x <∞;

k = 2p− 3, p ≥ 2. The probability density function of Z = γ0 + γ1X is

(6.2) h (z) =
1√

kB
(

1
2
, p− 1

2

)

{

1 +
1

k
z2

}−p

, −∞ < z <∞.

Realize that t =
√

(ν/k)Z has the Student’s t distribution with ν = 2p − 1 degrees of
freedom.

Given an ordered sample
(

wi, x(i)

)

, 1 ≤ i ≤ n, the likelihood equations are (wi = y[i]),

(6.3)
∂lnL

∂γ0
=

n
∑

i=1

{

−2p

k
g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)

}

= 0

and

(6.4)
∂lnL

∂γ1
=

n

γ1
+

n
∑

i=1

x(i)

{

−2p

k
g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)

}

= 0

where

(6.5) g (z) = z/
{

1 + (1/k) z2} , g1 (z) = f (z) /F (z) and g2 (z) = f (z) / {1− F (z)} .

Here, f (u) and h (z) are assumed to be the same functions (6.2) and F (z) =
∫ z

−∞
f (u) du.

Again, it is almost impossible to solve the equations (6.3)–(6.4).

Proceeding exactly along the same lines as in Section 2, modified likelihood equations
are obtained. The solutions of these equations are the following MMLE:

(6.6) γ̂0 = (δ/m)− γ̂1x(.) and γ̂1 =
{

B +
√

B2 + 4nC
}

/2C,
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where

(6.7)

B =

n
∑

i=1

δi
(

x(i) − x(.)

)

and

C =

n
∑

i=1

mi

(

x(i) − x(.)

)2
=

n
∑

i=1

mix
2
(i) − (1/m)

(

n
∑

i=1

mix(i)

)2

;

δi = wiα1i − (1− wi)α2i − (2p/k)αi and mi = wiβ1i + (1− wi)β2i + (2p/k)βi.

The coefficients αi and βi are given by

(6.8) αi =
(2/k) a3

i

{1 + (1/k) a2
i }

2 and βi =
1− (1/k) a2

i

{1 + (1/k) a2
i }

2 ,

where ai is determined from the equation

(6.9) F (ai) =

∫ ai

−∞

h (z) dz =
i

n+ 1
, 1 ≤ i ≤ n.

An IMSL subroutine is available to evaluate (6.9) which is essentially the cumulative
density function of the Student’s t distribution.

The coefficients (α1i, β1i) and (α2i, β2i) are given in (3.5)–(3.6) with f (z) replaced by
the density on the right hand side of (6.2), and F (z) =

∫ z

−∞
f (u) du.

6.1. Remark. If β1 > 0, then all the coefficients βi are positive since they increase
until the middle value and then decrease in a symmetric fashion (umbrella ordering).
If, however, β1 assumes a negative value (which happens only if p is small and n is
large), σ̂ might cease to be real and positive. In such a situation, αi and βi in (6.7)
are replaced by α∗i = 0 and β∗i =

{

1 + (1/k) a2
i

}

respectively. This ensures that γ̂1 is
always real and positive. The asymptotic efficiency of γ̂0 and γ̂1 is not affected since
αi + βiz(i) ∼= α∗i + β∗i z(i) realizing that z(i) − t(i) ∼= 0 (asymptotically). See also Tiku et
al. [21].

Information matrix: Because of the symmetry of (6.1), the elements of the Fisher
information matrix are simpler than those in (4.1)–(4.3) and are given by

(6.10)
I11 = Q+ P, I12 = − (γ0/γ1) (Q+ P ) and

I22 =
(

1/γ2
1

) {

(Q+ P ) γ2
0 + (Q+R)

}

.

Here,

(6.11) P = np (p− 1/2) / (p+ 1) (p− 3/2) and R = 2n (p− 1/2) / (p+ 1) , (p ≥ 2) ,

and Qi, Q have exactly the same expressions as (4.4).

In particular, for the asymptotic variance

(6.12) var (γ̂1/γ1) ∼= 1/ (Q+R) ,

which is free of γ0.

Efficiency: We simulated the means and variances of the MMLE γ̂0 and γ̂1 and compared
them with the corresponding estimators (Tiku and Vaughan [18]) based only on the
conditional likelihood function LY |X . As for the GL (b, γ1) family (2.2), γ̂0 and γ̂1 were
found to be (almost) unbiased and enormously more efficient. The test of H0 : γ1 = γ10

based on the statistic W = γ̂1/γ10 was found to be remarkably robust to plausible
deviations from an assumed value of p in (6.1) and to data anomalies, e.g., outliers and
contaminated data. Details are given in Oral [8]. To save space we do not reproduce
them here.
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Generalization: The methodology above readily extends to the situation when

z = γ0 +
k
∑

i=1

γixi

and the risk factors Xi (1 ≤ i ≤ k) are independently distributed with densities hi (x).
The coefficients γi are a priori all positive. The MMLE based on the conditional likelihood

LY |X1,X2,...,Xk

is given in Tiku and Vaughan [18]. It will be of great interest to extend the methodology
to correlated risk factors. Extensions to censored (Type I and Type II) data are also of
enormous interest from a practical point of view. Another interesting extension is to the
situation when Y is multinomial and assumes more than two values.

In conclusion it must be said that it is advantageous to use the complete likelihood
function to obtain efficient and robust estimators. Conditional likelihood was perhaps
used to make estimation computationally feasible. Modified likelihood methodology
makes estimation easy both analytically and computationally. Its use with the com-
plete likelihood function gives estimators which are enormously more efficient than those
based only on the conditional likelihood function. Moreover, the method is applicable to
any location-scale distribution and no specialized computer software is needed to compute
the MMLE.
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research.
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