ON LEFT IDEALS OF PRIME RINGS WITH GENERALIZED DERIVATIONS

Öznur Gölbaşı*

Received 04:05:2005 : Accepted 23:11:2005

Abstract

In this paper the author considers a prime ring R with characteristic different from two and extends some well known results concerning derivations of prime rings to the generalized derivation $f: R \rightarrow R$ associated with a derivation d of R and a nonzero left ideal U of R which is semiprime as a ring.

Keywords: Prime ring, Derivation, Generalized derivation, Homomorphism, Antihomomorphism.

2000 AMS Classification: $16 \mathrm{~W} 25,16 \mathrm{U} 80,16 \mathrm{~N} 60$.

1. Introduction

Throughout this paper, R will be a prime ring with characteristic different from two and I a nonzero left ideal of R which is semiprime as a ring, Z the multiplicative center of $R, Q_{r}(R)$ the right Martindale ring of quotients, C the extended centroid and $R_{C}=R C$ the central closure. For any $x, y \in R$, the symbol $[x, y]$ will represent the commutator $x y-y x$. An additive mapping $f: R \rightarrow R$ is called a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that

$$
f(x y)=f(x) y+x d(y)
$$

for all $x, y \in R$ The concept of generalized derivation includes the concept of derivation. Moreover, a generalized derivation with $d=0$ includes the concept of left multiplier, that is an additive map satisfying $f(x y)=f(x) y$, for all $x, y \in R$.

The study of the commutativity of prime rings with derivations was initiated by E. C. Posner [10]. Over the last two decades, a lot of work has been done on this subject. Recently, M. Bresar defined a generalized derivation in [5]. Many authors have investigated the properties of prime or semiprime rings with generalized derivations. In the present paper our objective is to generalize some results obtained in [2], [3], [4], [7] and [9] for generalized derivations and a left ideal of a prime ring R which is semiprime as a ring.

[^0]
2. Results

We begin by recalling the following two results.
2.1. Lemma. [6, Lemma 1] Let R be a prime ring and U a nonzero left ideal of R which is semiprime as a ring. If $U a=0(a U=0)$ for $a \in R$, then $a=0$.
2.2. Lemma. [8, Lemma 2] Let $f: R \rightarrow R_{C}$ be an additive map satisfying $f(x y)=f(x) y$, for all $x, y \in R$. Then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

Now we have:
2.3. Lemma. Let R be a prime ring and U a nonzero left ideal of R which is semiprime as a ring. If d is a derivation of R such that $d(U)=0$, then $d=0$.

Proof. For all $x \in U, r \in R$, we get

$$
0=d(r x)=d(r) x
$$

and so,

$$
d(R) U=0
$$

By Lemma 2.1, we obtain that $d=0$.
The following two theorems are generalization of [3, Theorem 3] and [4, Theorem 1], respectively.
2.4. Theorem. Let R be a prime ring, U a nonzero left ideal of R which is semiprime as a ring and f a generalized derivation of R. If U is noncommutative and $f([x, y])=0$, for all $x, y \in U$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

Proof. Substitute $y x$ for y in $f([x, y])=0$, giving

$$
0=f([x, y x])=f([x, y] x)=f([x, y]) x+[x, y] d(x)
$$

and so,

$$
[x, y] d(x)=0, \text { for all } x, y \in U
$$

Hence $0=[x, r y] d(x)=r[x, y] d(x)+[x, r] y d(x)$. Since the first summand is zero, it is clear that

$$
[x, r] y d(x)=0, \text { for all } x, y \in U, r \in R
$$

Writing $s y, s \in R$, in place of y in this equation, we get

$$
[x, r] \operatorname{syd}(x)=0, \text { for all } x, y \in U, r, s \in R
$$

Since R is a prime ring, we have

$$
[x, r]=0 \text { or } U d(x)=0, \text { for all } x \in U, r \in R
$$

By Lemma 2.1, we get either $x \in Z$ or $d(x)=0$ for all $x \in U$. Let $A=\{x \in U \mid x \in Z\}$ and $B=\{x \in U \mid d(x)=0\}$. Then A and B are two additive subgroups of $(U,+)$ such that $U=A \cup B$. However, a group cannot be the union of proper subgroups. Hence either $U=A$ or $U=B$. If $U=A$ then $U \subset Z$, and so U is commutative, which contradicts the hypothesis. So, we must have $d(x)=0$, for all $x \in U$. By Lemma 2.3, we get $d=0$. Hence, there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$, by Lemma 2.2.
2.5. Theorem. Let R be a prime ring, U a nonzero left ideal of R which is semiprime as a ring and f a generalized derivation of R. If U is noncommutative and $f([x, y])= \pm[x, y]$, for all $x, y \in U$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

Proof. Assume that $f([x, y])= \pm[x, y]$, for all $x, y \in U$. Replacing y by $y x$ in this equation, we have

$$
[x, y] d(x)=0, \text { for all } x, y \in U
$$

Using the same argument as in the proof of Theorem 2.4, we get $d=0$ and so, there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$ by Lemma 2.2.
2.6. Corollary. Let R be a prime ring, U a nonzero left ideal of R which is semiprime as a ring and f a generalized derivation of R. If U is noncommutative and $f(x y)= \pm x y$, for all $x, y \in U$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.
2.7. Theorem. Let R be a prime ring, U a nonzero left ideal of R which is semiprime as a ring and f a generalized derivation of R. If f acts as a homomorphism or antihomomorphism on U, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

Proof. Assume that f acts as a homomorphism on U. Then

$$
\begin{equation*}
f(x y)=f(x) f(y)=f(x) y+x d(y), \text { for all } x, y \in U \tag{2.1}
\end{equation*}
$$

Replacing x by $z x, z \in U$, in the second equality in (2.1), we have

$$
f(x z) f(y)=f(x z) y+x z d(y)=f(x) f(z) y+x z d(y)
$$

since f is a homomorphism. On the other hand, we have

$$
\begin{aligned}
f(x z) f(y) & =f(x) f(z) f(y)=f(x) f(z y)=f(x)(f(z) y+z d(y)) \\
& =f(x) f(z) y+f(x) z d(y),
\end{aligned}
$$

on replacing y by z in (2.1). Hence

$$
f(x) f(z) y+f(x) z d(y)=f(x) f(z) y+x z d(y)
$$

SO

$$
(f(x)-x) z d(y)=0, \text { for all } x, y, z \in U
$$

Replacing z by $r z, r \in R$, in the above equation, we arrive at

$$
(f(x)-x) r z d(y)=0, \text { for all } x, y, z \in U, r \in R .
$$

Since R is a prime ring, we have either f is the identity map on U, or $U d(U)=0$.
Suppose that $f(x)=x$, for all $x \in U$. Then

$$
\begin{aligned}
x y & =f(x y) \\
& =f(x) y+x d(y) \\
& =x y+x d(y)
\end{aligned}
$$

and so,

$$
x d(y)=0, \text { for all } x, y \in U .
$$

Hence, we conclude that $d=0$ by Lemma 2.1. Thus, there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$ by Lemma 2.2 .

Now assume that f acts as an anti-homomorphism on U. Then

$$
\begin{equation*}
f(x y)=f(y) f(x)=f(x) y+x d(y), \text { for all } x, y \in U . \tag{2.2}
\end{equation*}
$$

Replacing x by $x y$ in (2.2), we get

$$
\begin{aligned}
f(y) f(x y) & =f(x y) y+x y d(y), \text { hence } \\
f(y) f(x) y+f(y) x d(y) & =f(y) f(x) y+x y d(y),
\end{aligned}
$$

and so,

$$
\begin{equation*}
f(y) x d(y)=x y d(y), \text { for all } x, y \in U \tag{2.3}
\end{equation*}
$$

Replacing x by $r x, r \in R$, in (2.3), to get

$$
f(y) r x d(y)=r x y d(y)=r f(y) x d(y)
$$

That is,

$$
\begin{equation*}
[f(y), r] x d(y)=0, \text { for all } x, y \in U, r \in R \tag{2.4}
\end{equation*}
$$

Again writing x as $s x, s \in R$, we have either $[f(y), r]=0$ or $U d(y)=0$, for all $y \in$ $U, r \in R$. According to Brauer's Trick and Lemma 2.1, we conclude that $f(U) \subset Z$ or $d(U)=0$. In the second case, the proof is complete. The first case gives that f acts as a homomorphism on U. Thus, there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.
2.8. Theorem. Let R be a prime ring with characteristic different from two, U a nonzero left ideal of R which is semiprime as a ring, and f a generalized derivation of R. If U is noncommutative and $[x, f(x)]=0$, for all $x \in U$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

Proof. A linearization of $[x, f(x)]=0$ gives
(2.5) $\quad[x, y] d(x)+y[x, d(x)]=0$, for all $x, y \in U$.

Writing $y z$ instead of y in (2.5), and using this equation, we obtain that
(2.6) $\quad[x, y] z d(x)=0$, for all $x, y, z \in U$.

Replacing z by $r z, r \in R$, in (2.6), we get

$$
[x, y]=0 \text { or } U d(x)=0, \text { for all } x, y \in U .
$$

By Lemma 2.1, we have either $[x, y]=0$ or $d(x)=0$, for all $x \in U$. By a standard argument one of these must be held for all $x \in U$. The first result cannot hold since U is noncommutative, so the second possibility gives $d(U)=0$, and hence $d=0$. Therefore, the proof may be completed by using Lemma 2.2 .
2.9. Theorem. Let R be a prime ring with characteristic different from two, U a nonzero left ideal of R which is semiprime as a ring, and f a generalized derivation of R. If U is noncommutative, $d(Z) \neq 0$ and $[f(x), f(y)]=[x, y]$, for all $x, y \in U$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

Proof. Taking $y x$ instead of y in the hypothesis, we get

$$
\begin{aligned}
{[x, y x] } & =[f(x), f(y x)], \text { whence } \\
{[x, y] x } & =[f(x), f(y) x+y d(x)] \\
& =[f(x), f(y)] x+f(y)[f(x), x]+[f(x), y] d(x)+y[f(x), d(x)]
\end{aligned}
$$

and so,
(2.7) $\quad f(y)[f(x), x]+[f(x), y] d(x)+y[f(x), d(x)]=0$, for all $x, y \in U$.

Replacing y by $c y=y c$, where $c \in Z$, and using (2.7), we arrive at

$$
y d(c)[f(x), x]=0, \text { for all } x, y \in U
$$

Since $0 \neq d(c) \in Z$ and U is a nonzero left ideal of R, we have

$$
[f(x), x]=0, \text { for all } x \in U
$$

The proof is now completed using Theorem 2.8.
2.10. Theorem. Let R be a prime ring with characteristic different from two, U a nonzero left ideal of R which is semiprime as a ring, and f a generalized derivation of R. If U is noncommutative and $f(U) \subseteq Z$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.
Proof. For all $r \in R$, we get

$$
\begin{aligned}
0 & =[f(x y), y]=[f(x) y+x d(y), y] \\
& =[x, y] d(y)+x[d(y), y]
\end{aligned}
$$

Expanding this equation we conclude that
(2.8) $y x d(y)=x d(y) y$, for all $x, y \in U$.

Writing $x z$ instead of x in (2.8), and using this equality, we get

$$
y x z d(y)=x z d(y) y=x y z d(y)
$$

That is

$$
[x, y] z d(y)=0, \text { for all } x, y, z \in U
$$

Taking $r z, r \in R$ in place of z in the above equation, and using the fact that R is prime, we conclude that $[x, y]=0$ or $d(y)=0$, for all $x, y \in U$. By the standard argument, we have either that U is commutative or $d=0$. Since U is noncommutative, the proof is complete.
2.11. Theorem. Let R be a prime ring with characteristic different from two, U a nonzero left ideal of R which is semiprime as a ring, f a generalized derivation of R and $a \in R$. If U is noncommutative, $d(Z) \neq 0$ and $[a, f(x)] \in Z$ for all $x \in U$, then $a \in Z$.
Proof. Since $d(Z) \neq 0$, there exists $c \in Z$ such that $d(c) \neq 0$. Furthermore, since d is a derivation, it is clear that $d(c) \in Z$. Replacing x by $x c=c x$ in the hypothesis, we have

$$
\begin{aligned}
Z & \ni[a, f(x c)]=[a, f(x) c+x d(c)] \\
& =[a, f(x)] c+[a, x] d(c)
\end{aligned}
$$

Since the first term lies in Z, we get

$$
[a, x] d(c) \in Z, \text { for all } x \in U
$$

Thus, we obtain that $[a, x] \in Z$, for all $x \in U$, and so
(2.9) $\quad[[a, x], r]=0$, for all $x \in U, r \in R$.

Taking x^{2} instead of x and using (2.9), we have
$0=[[a, x] x+x[a, x], r]=2[[a, x] x, r]$, for all $x \in U, r \in R$.
Since char $R \neq 2$ and $[a, x] \in Z$, we arrive at

$$
[a, x][x, r]=0, \text { for all } x \in U, r \in R
$$

and so,
$[a, x]=0 \quad$ or $\quad[x, r]=0$, for all $x \in U, r \in R$.
Let $A=\{x \in U \mid[a, x]=0\}$ and $B=\{x \in U \mid x \in Z\}$. Then A and B are two additive subgroups of $(U,+)$ such that $U=A \cup B$. By Brauer's Trick, either $U=A$ or $U=B$. Since U is noncommutative, we have $U=A$. Hence $[a, U]=0$, and so $a \in Z$.
2.12. Corollary. Let R be a prime ring with characteristic different from two, U a nonzero left ideal of R which is semiprime as a ring and f a generalized derivation of R. If U is noncommutative, $d(Z) \neq 0$ and $[f(U), f(U)] \subseteq Z$, then there exists $q \in Q_{r}\left(R_{C}\right)$ such that $f(x)=q x$, for all $x \in R$.

References

[1] Argaç, N. Generalized derivations of prime rings, Algebra Coll. 11 (3), 399-410, 2004.
[2] Bell, H. E. and Kappe, L. C. Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar, 53 (3-4), 339-346, 1989.
[3] Bell, H. E. and Daif, M. N. On derivations and commutativity in prime rings, Acta Math. Hungar, 66 (4), 337-343, 1995.
[4] Daif, M. N. and Bell, H. E. Remarks on derivations on semiprime rings, Internat J. Math. and Math. Sci. 15 (1), 205-206, 1992.
[5] Bresar, M. On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 89-93, 1991.
[6] Gölbaşı, Ö. and Aydın, N. Some results on endomorphisms of prime rings which are $(\sigma, \tau)-$ derivation, East Asian Math. J. 18 (2), 195-203, 2002.
[7] Herstein, I. N. A note on derivations II, Canad. Math. Bull. 22 (4), 509-511, 1979.
[8] Hvala, B. Generalized derivations in prime rings, Comm. Algebra 26 (4), 1147-1166, 1998.
[9] Lee, P. H. and Lee, T. K. On derivations of prime rings, Chinese j. math. 9 (2), 107-110, 1981.
[10] Posner, E. C. Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.

[^0]: ${ }^{*}$ Cumhuriyet University, Faculty of Arts and Science, Department of Mathematics, Sivas Turkey. E-mail: ogolbasi@cumhuriyet.edu.tr

