A RELATED FIXED POINT THEOREM FOR TWO PAIRS OF MAPPINGS ON TWO COMPLETE METRIC SPACES

Abdelkrim Aliouche* and Brian Fisher ${ }^{\dagger}$

Received 21:06:2005 : Accepted 12:12:2005

Abstract

A related fixed point theorem for two pairs of mappings on two complete metric spaces is obtained.

Keywords: Complete metric space, Common fixed point.
2000 AMS Classification: 54 H 25

1. Introduction

In the following, we give a new related fixed point theorem. The first related fixed point theorem was the following, see [1].
1.1. Theorem. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be complete metrics spaces. If T is a mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

$$
\begin{aligned}
d_{2}(T x, T S y) & \leq c \max \left\{d_{1}(x, S y), d_{2}(y, T x), d_{2}(y, T S y)\right\}, \\
d_{1}(S y, S T x) & \leq c \max \left\{d_{2}(y, T x), d_{1}(x, S y), d_{1}(x, S T x)\right\},
\end{aligned}
$$

for all x in X and y in Y, where $0 \leq c<1$, then $S T$ has a unique fixed point z in X and $T S$ has a unique fixed point w in Y. Further, $T z=w$ and $S w=z$.

Related fixed point theorems were later extended to two pairs of mappings on metric spaces, see for example [2], where the following related fixed point theorem was proved.

[^0]1.2. Theorem. Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y and let S, T be mappings of Y into X satisfying the inequalities
\[

$$
\begin{aligned}
d\left(S A x, T B x^{\prime}\right) & \leq c \max \left\{d\left(x, x^{\prime}\right), d(x, S A x), d\left(x^{\prime}, T B x^{\prime}\right), \rho\left(A x, B x^{\prime}\right)\right\} \\
\rho\left(B S y, A T y^{\prime}\right) & \leq c \max \left\{\rho\left(y, y^{\prime}\right), \rho(y, B S y), \rho\left(y^{\prime}, A T y^{\prime}\right), d\left(S y, T y^{\prime}\right)\right\}
\end{aligned}
$$
\]

for all x, x^{\prime} in X and y, y^{\prime} in Y, where $0 \leq c<1$. If one of the mappings A, B, S and T is continuous, then $S A$ and $T B$ have a unique common fixed point u in X and $B S$ and $A T$ have a unique common fixed point v in Y. Further, $A u=B u=v$ and $S v=T v=u$.

For further related fixed point theorems see [3] to [7].

2. Main Results

We prove now the following related fixed point theorem.
2.1. Theorem. Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y and let S, T be mappings of Y into X satisfying the inequalities

$$
\begin{align*}
d\left(S A x, T B x^{\prime}\right) & \leq c \frac{f\left(x, x^{\prime}, y, y^{\prime}\right)}{h\left(x, x^{\prime}, y, y^{\prime}\right)} \tag{2.1}\\
\rho\left(B S y, A T y^{\prime}\right) & \leq c \frac{g\left(x, x^{\prime}, y, y^{\prime}\right)}{h\left(x, x^{\prime}, y, y^{\prime}\right)} \tag{2.2}
\end{align*}
$$

for all x, x^{\prime} in X and y, y^{\prime} in Y for which $h\left(x, x^{\prime}, y, y^{\prime}\right) \neq 0$, where

$$
\begin{aligned}
& f\left(x, x^{\prime}, y, y^{\prime}\right)= \max \left\{d\left(S y, T y^{\prime}\right) \rho(A x, B S y), d\left(S y, T B x^{\prime}\right) d(x, S y)\right. \\
&\left.d\left(x, x^{\prime}\right) d\left(S A x, T y^{\prime}\right), d\left(x, T y^{\prime}\right) \rho\left(y, A T y^{\prime}\right)\right\} \\
& g\left(x, x^{\prime}, y, y^{\prime}\right)= \max \left\{d(x, S y) \rho\left(y, y^{\prime}\right), d\left(x^{\prime}, T B x^{\prime}\right) \rho\left(y^{\prime}, A x\right)\right. \\
&\left.d\left(S A x, T y^{\prime}\right) \rho\left(A x, B x^{\prime}\right), \rho\left(A x, A T y^{\prime}\right) d(S A x, S y)\right\} \\
& h\left(x, x^{\prime}, y, y^{\prime}\right)=\max \left\{\rho(A x, B S y), d(x, S A x), d\left(S y, T B x^{\prime}\right), \rho\left(B x^{\prime}, A T y^{\prime}\right)\right\}
\end{aligned}
$$

and $0 \leq c<1$. If one of the mappings A, B, S and T is continuous, then $S A$ and $T B$ have a unique common fixed point u in X and $B S$ and $A T$ have a unique common fixed point v in Y. Further, $A u=B u=v$ and $S v=T v=u$.

Proof. Let x_{0} be an arbitrary point in X, let

$$
A x_{0}=y_{1}, S y_{1}=x_{1}, B x_{1}=y_{2}, T y_{2}=x_{2} \text { and } A x_{2}=y_{3}
$$

and in general let

$$
S y_{2 n-1}=x_{2 n-1}, B x_{2 n-1}=y_{2 n}, T y_{2 n}=x_{2 n} \text { and } A x_{2 n}=y_{2 n+1}
$$

for $n=1,2, \ldots$.
We will first of all suppose that for some n

$$
\begin{aligned}
h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)= & \max \left\{\rho\left(A x_{2 n}, B S y_{2 n-1}\right), d\left(x_{2 n}, S A x_{2 n}\right)\right. \\
& \left.d\left(S y_{2 n-1}, T B x_{2 n-1}\right), \rho\left(B x_{2 n-1}, A T y_{2 n}\right)\right\} \\
= & \max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right)\right. \\
= & \left.d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right\} \\
= &
\end{aligned}
$$

Then putting $x_{2 n-1}=x_{2 n}=x_{2 n+1}=u$ and $y_{2 n}=y_{2 n+1}=v$, we see that

$$
A u=B S v=v, S A u=u, S v=T B u=u \text { and } B u=A T v=v
$$

from which it follows that

$$
B u=v, T v=u \text { and } A T v=v
$$

Similarly, $h\left(x_{2 n}, x_{2 n+1}, y_{2 n+1}\right.$ and $\left.y_{2 n}\right)=0$ for some n implies that there exists u in X and v in Y such that
(2.3) $S A u=T B u=u, B S v=A T v=v, A u=B u=v$ and $S v=T v=u$.

We will now suppose that

$$
h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right) \neq 0 \neq h\left(x_{2 n}, x_{2 n+1}, y_{2 n+1}, y_{2 n}\right)
$$

for all n. Applying inequality (2.1) we get

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n}\right) & =d\left(S A x_{2 n}, T B x_{2 n-1}\right) \\
& \leq c \frac{f\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}{h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)} \\
& =c d\left(x_{2 n-1}, x_{2 n}\right) \frac{\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}}{\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}},
\end{aligned}
$$

from which it follows that
(2.4) $\quad d\left(x_{2 n+1}, x_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n+1}, y_{2 n}\right)\right\}$.

Using inequality (2.1) again, we get

$$
\begin{aligned}
d\left(x_{2 n-1}, x_{2 n}\right) & =d\left(S A x_{2 n-2}, T B x_{2 n-1}\right) \\
& \leq c \frac{f\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)}{h\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)} \\
& =c d\left(x_{2 n-1}, x_{2 n-2}\right) \frac{\max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n-2}, x_{2 n-1}\right)\right\}}{\max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}}
\end{aligned}
$$

from which it follows that
(2.5) $\quad d\left(x_{2 n-1}, x_{2 n}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\}$.

Similarly, on using inequality (2.2) we have

$$
\begin{aligned}
\rho\left(y_{2 n}, y_{2 n+1}\right) & =d\left(B S y_{2 n-1}, A T y_{2 n}\right) \\
& \leq c \frac{g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}{h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=\max \left\{d\left(x_{2 n-1}, x_{2 n}\right) \rho\left(y_{2 n-1}, y_{2 n}\right)\right. \\
& d\left(x_{2 n-1}, x_{2 n}\right) \rho\left(y_{2 n+1}, y_{2 n}\right) \\
& \left.d\left(x_{2 n+1}, x_{2 n}\right) \rho\left(y_{2 n+1}, y_{2 n}\right)\right\}
\end{aligned}
$$

We then have either

$$
g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=d\left(x_{2 n-1}, x_{2 n}\right) \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), \rho\left(y_{2 n+1}, y_{2 n}\right)\right\}
$$

or

$$
g\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right)=\rho\left(y_{2 n+1}, y_{2 n}\right) \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right\}
$$

Further,

$$
\begin{aligned}
h\left(x_{2 n}, x_{2 n-1}, y_{2 n-1}, y_{2 n}\right) & =\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\} \\
& =\max \left\{\rho\left(y_{2 n+1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}
\end{aligned}
$$

on using inequality (2.4). It follows that either

$$
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), \rho\left(y_{2 n}, y_{2 n+1}\right)\right\}=c \rho\left(y_{2 n-1}, y_{2 n}\right)
$$

or

$$
\left.\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right)\right\}, d\left(x_{2 n+1}, x_{2 n}\right)\right\}=c d\left(x_{2 n-1}, x_{2 n}\right)
$$

and so

$$
\begin{equation*}
\rho\left(y_{2 n}, y_{2 n+1}\right) \leq c \max \left\{d\left(x_{2 n-1}, x_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\} \tag{2.6}
\end{equation*}
$$

Using inequality (2.2) again, we get

$$
\begin{aligned}
\rho\left(y_{2 n}, y_{2 n-1}\right) & =\rho\left(B S y_{2 n-1}, A T y_{2 n-2}\right) \\
& \leq c \frac{g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)}{h\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)}
\end{aligned}
$$

where

$$
\begin{array}{r}
g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)=\max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right) \rho\left(y_{2 n-1}, y_{2 n-2}\right)\right. \\
d\left(x_{2 n-1}, x_{2 n}\right) \rho\left(y_{2 n-2}, y_{2 n-1}\right) \\
\left.d\left(x_{2 n-1}, x_{2 n-2}\right) \rho\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{array}
$$

We then have either

$$
\begin{aligned}
& g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)= \\
& d\left(x_{2 n-2}, x_{2 n-1}\right) \max \left\{\rho\left(y_{2 n-1}, y_{2 n-2}\right), \rho\left(y_{2 n-1}, y_{2 n}\right)\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
& g\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)= \\
& \quad \rho\left(y_{2 n-1}, y_{2 n-2}\right) \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right\}
\end{aligned}
$$

Further

$$
\begin{aligned}
h\left(x_{2 n-2}, x_{2 n-1}, y_{2 n-1}, y_{2 n-2}\right)= & \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right. \\
& \left.d\left(x_{2 n-1}, x_{2 n-2}\right)\right\} \\
= & \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n-2}\right)\right\}
\end{aligned}
$$

on using inequality (2.5). It follows that either

$$
\rho\left(y_{2 n}, y_{2 n-1}\right) \leq c \max \left\{\rho\left(y_{2 n-1}, y_{2 n}\right), \rho\left(y_{2 n-1}, y_{2 n-2}\right)\right\}=c \rho\left(y_{2 n-1}, y_{2 n-2}\right)
$$

or

$$
\left.\rho\left(y_{2 n}, y_{2 n-1}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right)\right\}, d\left(x_{2 n-1}, x_{2 n}\right)\right\}=c d\left(x_{2 n-1}, x_{2 n-2}\right)
$$

and so
(2.7) $\quad \rho\left(y_{2 n}, y_{2 n-1}\right) \leq c \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), \rho\left(y_{2 n-1}, y_{2 n-2}\right)\right\}$.

From inequalities (2.4) to (2.7), we obtain
(2.8) $\quad d\left(x_{n}, x_{n+1}\right) \leq c^{n} \max \left\{d\left(x_{1}, x_{2}\right), \rho\left(y_{0}, y_{1}\right)\right\}$,
(2.9) $\quad \rho\left(y_{n}, y_{n+1}\right) \leq c^{n} \max \left\{d\left(x_{0}, x_{1}\right), \rho\left(y_{0}, y_{1}\right)\right\}$.

Since $0<c<1$, it follows from inequalities (2.8) and (2.9) that $\left\{x_{n}\right\}$ is a Cauchy sequence in X with a limit u and $\left\{y_{n}\right\}$ is a Cauchy sequence in Y with a limit v.

Now, suppose that A is continuous. Then

$$
\begin{equation*}
v=\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} A x_{2 n}=A u \tag{2.10}
\end{equation*}
$$

and so
(2.11) $\lim _{n \rightarrow \infty} f\left(u, x_{2 n-1}, v, y_{2 n}\right)=\max \left\{d(S v, u) \rho(v, B S v), d^{2}(S v, u)\right\}$,
(2.12) $\lim _{n \rightarrow \infty} g\left(u, x_{2 n-1}, v, y_{2 n}\right)=0$, and
(2.13) $\lim _{n \rightarrow \infty} h\left(u, x_{2 n-1}, v, y_{2 n}\right)=\max \{\rho(v, B S v), d(u, S v)\}$.

If
(2.14) $\max \{\rho(v, B S v), d(u, S v)\}=0$,
then
(2.15) $B S v=v, S v=u$ and $B u=v$.

If
(2.16) $\quad \max \{\rho(v, B S v), d(u, S v)\} \neq 0$,
then we have, on using inequality (2.1) and equations (2.11) and (2.13),

$$
\begin{aligned}
d(S v, u) & =\lim _{n \rightarrow \infty} d\left(S A u, T B x_{2 n-1}\right) \\
& \leq \lim _{n \rightarrow \infty} c \frac{f\left(u, x_{2 n-1}, v, y_{2 n}\right)}{h\left(u, x_{2 n-1}, v, y_{2 n}\right)} \\
& =c \frac{\max \left\{d(S v, u) \cdot \rho(v, B S v), d^{2}(S v, u)\right\}}{\max \{\rho(v, B S v), d(u, S v)\}} \\
& \leq c d(S v, u)
\end{aligned}
$$

and so $S v=u$, since $c<1$.
Further, using inequality (2.2) and equations (2.12) and (2.13), we get

$$
\begin{aligned}
\rho(B S v, v) & =\lim _{n \rightarrow \infty} \rho\left(B S v, A T y_{2 n}\right) \\
& \leq \lim _{n \rightarrow \infty} c \frac{g\left(u, x_{2 n-1}, v, y_{2 n}\right)}{h\left(u, x_{2 n-1}, v, y_{2 n}\right)} \\
& =0
\end{aligned}
$$

and so $B S v=v$, contracting equation (2.15). Therefore equations (2.14) and (2.16) must hold.

Now suppose that $T v \neq u$. Then
(2.17)

$$
\begin{align*}
\lim _{n \rightarrow \infty} f\left(x_{2 n}, u, v, v\right) & =d(u, T v) \rho(v, A T v) \\
\lim _{n \rightarrow \infty} h\left(x_{2 n}, u, v, v\right) & \leq \max \{d(u, T v), \rho(v, A T v)\} \tag{2.18}\\
& \neq 0
\end{align*}
$$

Using inequality (2.1) and equations (2.17) and (2.18), we have

$$
\begin{aligned}
d(u, T v) & =\lim _{n \rightarrow \infty} d\left(S A x_{2 n}, T B u\right) \\
& \leq \lim _{n \rightarrow \infty} c \frac{f\left(x_{2 n}, u, v, v\right)}{h\left(x_{2 n}, u, v, v\right)} \\
& \leq \frac{c d(u, T v) \rho(v, A T v)}{\max \{d(u, T v), \rho(v, A T v)\}}
\end{aligned}
$$

and so $T v=u$, giving a contradiction. Hence $T v=u$ and equations (2.3) again follow.
It follows in a similar way that the same results hold if one of the mappings B, S or T is continuous instead of A.

To prove the uniqueness, suppose that $S A$ and $T B$ have a second distinct common fixed point u^{\prime} so that $A u \neq B u^{\prime}$. Then,

$$
\begin{align*}
f\left(u, u^{\prime}, v, v\right) & =0 \tag{2.19}\\
h\left(u, u^{\prime}, v, v\right) & =\max \left\{d\left(u, u^{\prime}\right), \rho\left(A u, B u^{\prime}\right\}\right. \\
& \neq 0 \tag{2.20}
\end{align*}
$$

Using inequality (2.1) and equations (2.19) and (2.20), we get

$$
\begin{aligned}
d\left(u, u^{\prime}\right) & =d\left(S A u, T B u^{\prime}\right) \\
& \leq c \frac{f\left(u, u^{\prime}, v, v\right)}{h\left(u, u^{\prime}, v, v\right)} \\
& =0
\end{aligned}
$$

a contradiction. Therefore u is unique. It can be proved similarly that v is the unique common fixed point of $B S$ and $A T$. This completes the proof of the theorem.
2.2. Corollary. Let A, B, S and T be self mappings on the complete metric space (X, d) satisfying the inequalities

$$
\begin{aligned}
d(S A x, T B y) & \leq c \frac{f(x,, y)}{h(x, y)} \\
d(B S x, A T y) & \leq c \frac{g(x, y)}{h(x, y)}
\end{aligned}
$$

for all x, y in X for which $h(x, y) \neq 0$, where

$$
\begin{aligned}
f(x, y)= & \max \{d(S x, T y) d(A x, B S x), d(S x, T B y) d(x, S x), \\
& d(x, y) d(S A x, T y), d(x, T y) d(x, A T y)\} \\
g(x, y)= & \max \{d(x, S x) d(x, y), d(y, T B y) d(y, A x), \\
& d(S A x, T y) d(A x, B y), d(A x, A T y) d(S A x, S x)\}, \\
h(x, y)= & \max \{d(A x, B S x), d(x, S A x), d(S x, T B y), d(B y, A T y)\},
\end{aligned}
$$

and $0 \leq c<1$. If one of the mappings A, B, S or T is continuous, then $S A$ and $T B$ have a unique common fixed point u and $B S$ and $A T$ have a unique common fixed point v. Further, $A u=B u=v$ and $S v=T v=u$.

Acknowledgment. The authors would like to thank the referee for pointing out a number of typing errors.

References

[1] Fisher, B. Fixed points on two metric spaces, Glasnik. Mat. 16 (36), 333-337, 1981.
[2] Fisher, B and Murthy, P. P. Related fixed points theorems for two pairs of mappings on two complete metric spaces, Kyngpook. Math. J. 37, 343-347, 1997.
[3] Fisher, B. and Turkoglu, D. Quasi-contractions on two metric spaces, Radovi. Math. 9 (2), 241-249, 1999.
[4] Namdeo, R. K. and Fisher, B. A related fixed point theorem for two pairs of mappings on two complete metric spaces, Stud. Cerc. St. Ser. Matematica Universitatea Bacau, 12, 141-148, 2002.
[5] Namdeo, R. K., Jain, S. and Fisher, B. Related fixed points theorems for two pairs of mappings on two complete and compact metric spaces, Stud. Cer. St. Ser. Matematica Universitatea Bacau 11, 139-144, 2001.
[6] Namdeo, R. K., Jain, S. and Fisher, B. A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe J. Math. Stat. 32, 7-11, 2003.
[7] Namdeo, R. K. and Fisher, B. A related fixed point theorem for two pairs of mappings on two metric spaces, Nonlinear Analysis Forum 8 (1), 23-27, 2003.

[^0]: *Department of Mathematics, University of Larbi Ben M'Hidi, Oum El Bouaghi, 04000, Algeria. E-mail: abdmath@hotmail.com
 ${ }^{\dagger}$ Department of Mathematics, University of Leicester, Leicester, LE1 7RH, U.K.
 E-mail: fbr@le.ac.uk

