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Abstract

The main purpose of the paper is to study the Tachibana operator for
a pure Riemannian metric tensor field and then to apply the results
obtained to the study of paraholomorphic B-manifolds.
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1. Introduction

Let M, be a Riemannian manifold with metric g, which is not necessarily positive
definite. We denote by T%(M,,) the set of all tensor fields of type (p, ¢) on M. Manifolds,
tensor fields and connections are always assumed to be differentiable and of class C*°.

An almost paracomplex manifold is an almost product manifold (M,, ¢), ¢ € I, such
that the two eigenbundles T+t M, and T~ M,, associated with the two eigenvalues +1
and —1 of ¢, respectively, have the same rank. Note that the dimension of an almost
paracomplex manifold is necessarily even.

Considering the paracomplex structure o, we obtain the following set of affinors on M,
: {I, ¢}, ¢* = I, which form a basis of a representation of an algebra of order 2 over the
field of real numbers R, which is called the algebra of paracomplex (or double) numbers
and is denoted by R(j) = {ao +a1j | 52 = 1, ao,a1 € R}. Obviously, it is associative,
commutative and unitial, i.e., it admits a principal unit 1. The canonical basis of this
algebra has the form {1,j}. The structural constants of an algebra are defined by the
multiplication law of the base units of this algebra: e;e; = Cikjek. With respect to the
canonical basis of R(j) the components of C’fj are given by O}, = Ch =C% =Cl, =1,
all the others being zero.

Consider R(j) endowed with the usual topology of R? and a domain U of R(j). Let
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be a variable in R(j), where z* are the real coordinates of a point of a certain domain U for
i = 1,2. Using two real-valued functions f¢(z',z?), i = 1,2, we introduce a paracomplex
function

F=f"+if*
of the variable X. It is said to be paraholomorphic if we have
dF = F'(X)dX

for the differentials dX = da* + jda?, dF = df' + jdf? and the derivative F'(X). The
paraholomorphy of the function F = f! 452 in the variable X = z' 4 jz? is equivalent to
the requirement that the Jacobian matrix D = (9 f*) should commute with the matrix
Cy = (CF) = ((1) (1)> (see [5, p. 87]). It follows that F' is paraholomorphic if and only
if f* and f? satisfy the para-Cauchy-Riemann equations:

of _ofr oft _of

ozt Ox?’ Ox?  Oxl’
For almost paracomplex structures, integrability is equivalent to the vanishing of the
Nijenhuis tensor

No(X,Y) = [0X, Y] — p[pX, Y] — o[ X, Y] + [X,Y].

On the other hand, in order that an almost paracomplex structure be integrable, it is
necessary and sufficient that we can introduce on M a torsion free linear connection such
that Vo = 0.

A paracomplex manifold is an almost paracomplex manifold (Mazg, @) such that the
G-structure defined by the affinor field ¢ is integrable. We can give another, equiva-
lent, definition of paracomplex manifold in terms of local homeomorphisms in the space
R*(j) = {(X,...,X*) | X" €R(j),i=1,...,k} and paraholomorphic changes of charts
in a way similar to [1] (for more details see [5]), i.e. a manifold My, with an integrable
paracomplex structure ¢ is a real realization of the paraholomorphic manifold My (R(5))
over the algebra R(j). Let t* be a paracomplex tensor field on My (R(7)). The real model
of such a tensor field is a tensor field on My of the same order, that is independent of
whether its vector or covector arguments is subject to the action of the affinor structure
. Such tensor fields are said to be pure with respect to ¢. They have been studied
by many authors (see, e.g., [2-5, 7]). In particular, when applied to a (0, ¢)-tensor field
w, purity means that for any X1, Xo,..., X, € 73(M2k)7 the following conditions should
hold:

w(eX1, Xo,..., Xg) = w(X1,pXo,..., Xq) = =w(X1, Xo,...,0Xq).
We define an operator ¢, : ‘J‘g(M%) — 2+1(M2k), applied to the pure tensor field w by
(Ppw)(X,Y1,Y2, ..., Yy) = (pX)(w(Y1,Ya,...,Yy)) — X(w(pY1,Ys, ..., Yy )+
+w((Lyv; )X, Y2,...,Yy) + - +w(Y1,Ys, ..., (Ly,¢)X)

(see [7]), where Ly denotes Lie differentiation with respect to Y.

(1.1)

When ¢ is paracomplex structure on May, and the tensor field ¢,w vanishes, the
paracomplex tensor field w* on My (R(j)) is said to be paraholomorphic [2]. Thus a
paraholomorphic paracomplex tensor field w* on M2(R(j)) is realized on My in the
form of a pure tensor field w such that

(1.2)  (dpw)(X,V2,Ya,...,Y,) =0

for any X,Y1,Ya,...,Y, € T5(M,). Therefore such a tensor field w on Moy, is also called
a paraholomorphic tensor field.
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2. Holomorphic B-Manifolds

A pure metric with respect to an almost paracomplex structure is a Riemannian metric
g such that

(21)  g(eX,Y) =g(X,pY)

for any X,Y € T3(M,). Such Riemannian metrics were studied in [6], where they were
called B-metrics, since the metric tensor g with respect to the structure ¢ is a B-tensor
according to the terminology accepted in [5]. If (Mak,¢) is an almost paracomplex
manifold with a B-metric, we say that (Mak,p,g) is an almost B-manifold. If ¢ is
integrable, we say that (Mak, ¢, g) is an B-manifold.

In a B-manifold, the B-metric is called paraholomorphic if (¢p,9)(X,Y,Z) = 0. If
(M2, ¢, g) is a B-manifold with a paraholomorphic B-metric g, we say that (Mag, ¢, g)
is a paraholomorphic B-manifold.

In some respects paraholomorphic B-manifolds may viewed as analogous to Kahler
manifolds. The following theorem [3] is analogous to an almost Hermitian manifold
being Kabhler if and only if the almost complex structure is parallel with respect to the
Levi-Civita connection.

2.1. Theorem. An almost B-manifold is a paraholomorphic B-manifold if and only if
the almost paracomplex structure is parallel with respect to the Levi-Civita connection.

Let (Mak, ¢, g) be an almost B-manifold. The associated B-metric of an almost B-
manifold is defined by

(22)  GX)Y)=(g09)(X,Y)

for all vector fields X and Y on Ms,. We shall now apply the Tachibana operator to the
pure Riemannian metric G:

(0.G)(X,Y,Z) = (LoxG — Lx(Gop))(Y,2) + G(Y,¢LxZ) — G(¢Y, Lx Z)
= (Lex(g90o¢) — Lx((gow)op)(Y,Z) + (g0 p)(Y,pLx Z)
—(go9)(¢Y,LxZ)
= ((Lexg)op+goLeoxp—Lx(gop)op—(gop)Lxp)(Y,2)
+(go)(Y,pLxZ) — (g0 ) (Y, LxZ)
= (Loxg — Lx(g909))(¢Y,Z) + g(¢Y, pLx Z)
(2.3) —9(p(Y), LxZ) + (g0 Lox — (g0 0)Lxp)(Y, Z)
= (¢p9)(X, Y, Z) + g((Lox @)Y, Z) — g(¢((Lx9)Y), Z)
= (99)(X, Y, Z) + g([¢X, Y] — ¢[¢X, Y], Z)
— 9(p[X, Y] - ¢°[X,Y], 2)
= (09)(X, Y, Z) + g([pX, ¢Y] — [pX, Y] — [ X, Y]
+¢’[X,Y], Z)
= (009)(X,9Y, Z) + g(No(X,Y), Z).
Thus (2.3) implies the following
2.2. Theorem. In an almost B-manifold, we have
PG = (dpg) 0+ g o (N,).
From Theorem 2.1 and Theorem 2.2 we have:

2.3. Theorem. Almost B-manifold satisfying the conditions ¢$,G =0, N, # 0, i.e. the
analogues of the almost Kahler manifolds, do not exist.
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2.4. Corollary. The following conditions are equivalent:

(a) ¢o9 = 0.
(b) ¢,G =0.

We denote by V4 the covariant differentiation of the Levi-Civita connection of the
B-metric g. Then, we have

VeG = (Vgg)op+go(Vep)=go(Vgp),
which implies V4G = 0 by virtue of Theorem 2.1. Therefore we have

2.5. Theorem. Let (Mak, ,g) be a paraholomorphic B-manifold. Then the Levi-Civita
connection of the B-metric g coincides with the Levi-Civita connection of the associated
B-metric G.

3. Curvature tensors in a paraholomorphic B-manifold

Let R and S be the curvature tensors formed by g and G respectively. Then for a
paraholomorphic B-manifold we have R = S by means of Theorem 2.5.

Applying Ricci’s identity to ¢, we get

(3.1) e(R(X,Y)Z) = R(X,Y)pZ

by virtue of Vo = 0. Hence R(X1, X2, X3,X4) = g(R(X1,X2)X3,X4) is pure with

respect to X3 and X4, and also pure with respect to X; and Xs:

R(X1, X2, 0X3,X4) = g(R(X1, X2)pX3, X4)

= g(p(R(X1, X2)X3), X4)
= g(R(X1, X2) X3, pX4)
= R(X1, X2, X3, 0X4).

On the other hand, S being the curvature tensor formed by the associated B-metric G,
if we put S(X1, X2, X3, X4) = G(S(X1, X2) X3, X4), then we have

(3.2) S(X1, X2, X3, X4) = S(X3, X4, X1, X2)
Taking account of (1.1), (2.2), (3.1) and R = S, we find that
S(X1, X2, X3, X4) = G(S(X1, X2) X3, X4)
= 9(p(S(X1, X2) X3), Xa)
= g(5(X1, X2) X3, 0X4)
= g(R(X1, X2) X5, 0X4)
= R(X1, X2, X3,pX4)

and

S(X3, X4, X1, X2) = G(S(X3, X4) X1, X2)
= g9(p(5(X3, X4)X1), Xa2)
= 9(S(Xs, X4) X1, 0 X2)
= g(R(X3, X4) X1, pX2)
= R(X3, X4, X1, pX2)
= R(X1, pX2, X3, X4)

Thus equation (3.2) becomes

R(X17X27X37 S0X4) = R(X1790X27X37X4)7
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which shows that R(Xi, X2, X3, X4) is pure with respect to Xo and X4. Therefore
R(X1, X2, X3, X4) is pure.

Thus we get

3.1. Theorem. In a paraholomorphic B-manifold, the Riemannian curvature tensor of
the B-metric is pure.

Since the Riemannian curvature tensor R is pure, we can apply the ¢-operator to R.
By similar devices (see the proof of Theorem 1 in [3]), we can prove that

(3.3)  (9pR)(X,Y1,Y2,Y3,Ya) = (Vox R)(Y1, Y2, Y3, Ya) — (Vx R)(¢Y1, Y2, Y3, Ya).
Using (3.1), and applying Bianchi’s 2nd identity to (3.3), we get
(P R) (X, Y1,Y2,Y5,Ya) = g(Vex R)(Y1,Y2,Y3) — (Vx R)(pY1,Y2,Y5), Ya)
= 9((Vex R)(Y1,Y2,Y3) — o((Vx R)(Y1,Y2,Y3)), Ya)
= 9(=(Vvy R)(Y2, X, Y3) — (Vy, R) (X, Y1,Y3)
—o((VxR)(Y1,Y2,Y3)),Ys).

(3.4)

On the other hand, using Vi = 0, we find:
(Vv R) (X, Y1,Y5) = Vy, (R(9X, Y1, Y3)) — R(Vy, (pX), Y1, Y3)
— R(pX,Vv,Y1,Y3) — R(¢X,Y1,Vy,Y3)
= (Vv ) (R(X, Y1, Y3)) + o(Vy, R(X, Y1, Y3))
— R((Vy,0) X 4+ o(Vy, X), Y1, Y5)

(8:5) — R(pX, Vv, Y1,Y3) — R(pX, Y1, Vy, Y3)
= o(Vyv, R(X,Y1,Y3)) — ¢(R(Vy, X, Y1, Y3))
— p(R(X, Vv, Y1,Y3)) — o(R(X, Y1, Vy, Y3))
= o((Vy, R)(X,Y1,Y3)).
Similarly

(3.6)  (Vy,R)(Ya,pX,Y3) = ¢((Vy, R)(Y2, X, Y3)).
Substituting (3.5) and (3.6) in (3.4), and using again Bianchi’s 2nd identity, we obtain
(P R) (X, Y1,Y2,Y5,Ys) = g(—p((Vy, R) (Y2, X, ¥3)) — o((Vy, R)(X, Y1, Y3))
—p((VxR)(Y1,Y2,Y3)), Ys)
= —9(p(a{(Vx R)(Y1,Y2},Y3)), Ya)
=0,
where o denotes the cyclic sum with respect to X,Y: and Y3. Therefore we have:

3.2. Theorem. In a paraholomorphic B-manifold, the Riemannian curvature tensor field
is a paraholomorphic tensor field

3.3. Example. We suppose that the manifold Ma,, is the tangent bundle 7 : T(_Vn) — Va
of a Riemannian manifold V,. If z* are the local coordinates on Vi, then the z*, together
with the fibre coordinates x* = y*, 7=n+ 1,...2n, form local coordinates on T(V,,).

A tensor field of type (0,q) on T'(V,,) is completely determined by its action on all
vector fields X;, i = 1,2, ..., ¢, which are of the form VX (vertical lift) or X (horizontal
lift) [8, p.101]:

0

0 HX:X”? o
a:'L

Vs 7 s h
X=X"— - — I X
81:“ ozt Y Llsn
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Therefore, we define the Sasakian metric °g on T'(V,,) by
9("X1Y) =Y (9(X,Y)),
(3.7) L 9(XY) =Y (9(X, V),
("X, 1Y) =0,
for any X,Y € T¢(V,). The metric °g has local components
Y= <gji 919"y T T kungsi)
Y TRigis 9ii
with respect to the induced coordinates (z,2") in T(V;,), where I‘fj are the components
of the Levi-Civita connection V in V;,.
The diagonal lift P in T'(V,,) is defined by
(3.8) Pollx =M(pX),
X = —YeX),
for any X € T4(Vy) and ¢ € T1(M,). The diagonal lift PT of the identity tensor field
I € 71(M,,) has the components

op_( o 0
T\—2¢'TY, o)

with respect to the induced coordinates and satisfies (“I)*> = Ir(y,). Thus, 7 is an al-
most paracomplex structure determining the horizontal distribution and the distribution
consisting of the tangent planes to fibres.

We put
A()’Z7 )7) = Sg(%)?v ?) - Sg()?7 Dli;)
If A(X,Y) = 0 for all vector fields X and Y which are of the form ¥X, VY or X, y
then A = 0. We have by virtue of IV X = —VX, Pr X =" X (4.1) and (4.2),

ACKTY) = 9(XTY) - (K M) =0,
ACVKIY) = (=YX HY) — ("X, Y) = 0,
A(XYY) = ("X Y) = (X, ="Y) =0,
A(HX,H ) _ Sg(HX,HY) _ Sg(HX,HY) — 0,

i.e. °g is B-metric with respect to °I. Hence we have:
3.4. Theorem. (T(V,,), PI,°g) is an almost B-manifold.
Using the properties of VX, #X and yR(X,Y) =y RUSX"Yja—a,—C, we have

(601 °9) ("X, 7Y, Z) = 205 (Vy X),7Z + *9(Y,V (V2 X)) =
(607 °9)("X,1Y,VZ) = —2%9("Y, ['Z,V X)) = 0,

(607 °9) ("X, Y,2) = 29([VYVX] Z) =0,

(60, °9) ("X, Y,V Z) =

(¢or °g) ("X, Y M Z) =

(¢ °9) ("X, Y,V Z) = ((ny)(Y Z)) =0,

(601 °9)("X,V,VZ) = —2%9(VR(Y, X)," Z),

(¢0r °9) ("X, V" Z) = —2%(VY,yR(Z, X)).
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Therefore we have:

3.5. Theorem. The almost B-manifold (T (Vy,),”I,%g) is paraholomorphic if and only if
Vi is locally Euclidean.

3.6. Example. Now let M, be the locally product Riemannian manifold with integrable
0 0
0 o
n = 2k. Then the paracomplex manifold M3, admits the structure of a B-manifold:
i 0 i £
g= (goj ) , 9i = gij (2", 2"), gi(a’,a’).
93
Suppose that the metric of the locally product Riemannian manifold M3y has the form

ds® = gij(z")da' da’ + ggj(xf)dxid:cj, hht=1,... .k, 5,7,t=k+1,...,2k,

almost product structure ¢ = 4, =1,...0k, ,7=k+1,...,n, and let

that is the g;;(x) are functions of z* only, gs; = 0 and the gs7(x) are functions of z* only,
then we call the manifold a locally decomposable Riemannian manifold. A necessary and
sufficient condition for a locally product Riemannian manifold to be a locally decom-
posable Riemannian manifold is that Vo = 0 [9, p. 420]. Then from Theorem 3.2 we
have

3.7. Theorem. A locally decomposable Riemannian manifold May, is a paraholomorphic
B-manifold.
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