ON A CONNECTION BETWEEN THE THEORY OF TACHIBANA OPERATORS AND THE THEORY OF B-MANIFOLDS

M. Iscan* and A. Salimov*

Received 21:09:2005 : Accepted 16:11:2005

Abstract

The main purpose of the paper is to study the Tachibana operator for a pure Riemannian metric tensor field and then to apply the results obtained to the study of paraholomorphic B-manifolds.

Keywords: Pure tensor, Tachibana operator, Diagonal lift, Sasakian metric.
2000 AMS Classification: $53 \mathrm{C} 15,53 \mathrm{C} 25,53 \mathrm{C} 55$

1. Introduction

Let M_{n} be a Riemannian manifold with metric g, which is not necessarily positive definite. We denote by $\mathcal{T}_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of type (p, q) on M_{n}. Manifolds, tensor fields and connections are always assumed to be differentiable and of class C^{∞}.

An almost paracomplex manifold is an almost product manifold $\left(M_{n}, \varphi\right), \varphi \in I$, such that the two eigenbundles $T^{+} M_{n}$ and $T^{-} M_{n}$ associated with the two eigenvalues +1 and -1 of φ, respectively, have the same rank. Note that the dimension of an almost paracomplex manifold is necessarily even.

Considering the paracomplex structure φ, we obtain the following set of affinors on M_{n} : $\{I, \varphi\}, \varphi^{2}=I$, which form a basis of a representation of an algebra of order 2 over the field of real numbers \mathbb{R}, which is called the algebra of paracomplex (or double) numbers and is denoted by $\mathbb{R}(j)=\left\{a_{0}+a_{1} j \mid j^{2}=1, a_{0}, a_{1} \in \mathbb{R}\right\}$. Obviously, it is associative, commutative and unitial, i.e., it admits a principal unit 1. The canonical basis of this algebra has the form $\{1, j\}$. The structural constants of an algebra are defined by the multiplication law of the base units of this algebra: $e_{i} e_{j}=C_{i j}^{k} e_{k}$. With respect to the canonical basis of $\mathbb{R}(j)$ the components of $C_{i j}^{k}$ are given by $C_{11}^{1}=C_{12}^{2}=C_{21}^{2}=C_{22}^{1}=1$, all the others being zero.

Consider $\mathbb{R}(j)$ endowed with the usual topology of \mathbb{R}^{2} and a domain U of $\mathbb{R}(j)$. Let

$$
X=x^{1}+j x^{2}
$$

[^0]be a variable in $\mathbb{R}(j)$, where x^{i} are the real coordinates of a point of a certain domain U for $i=1,2$. Using two real-valued functions $f^{i}\left(x^{1}, x^{2}\right), i=1,2$, we introduce a paracomplex function
$$
F=f^{1}+j f^{2}
$$
of the variable X. It is said to be paraholomorphic if we have
$$
d F=F^{\prime}(X) d X
$$

for the differentials $d X=d x^{1}+j d x^{2}, d F=d f^{1}+j d f^{2}$ and the derivative $F^{\prime}(X)$. The paraholomorphy of the function $F=f^{1}+j f^{2}$ in the variable $X=x^{1}+j x^{2}$ is equivalent to the requirement that the Jacobian matrix $D=\left(\partial_{k} f^{i}\right)$ should commute with the matrix $C_{2}=\left(C_{i j}^{k}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ (see [5, p. 87]). It follows that F is paraholomorphic if and only if f^{1} and f^{2} satisfy the para-Cauchy-Riemann equations:

$$
\frac{\partial f^{1}}{\partial x^{1}}=\frac{\partial f^{2}}{\partial x^{2}}, \frac{\partial f^{1}}{\partial x^{2}}=\frac{\partial f^{2}}{\partial x^{1}}
$$

For almost paracomplex structures, integrability is equivalent to the vanishing of the Nijenhuis tensor

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+[X, Y] .
$$

On the other hand, in order that an almost paracomplex structure be integrable, it is necessary and sufficient that we can introduce on M a torsion free linear connection such that $\nabla \varphi=0$.

A paracomplex manifold is an almost paracomplex manifold $\left(M_{2 k}, \varphi\right)$ such that the G-structure defined by the affinor field φ is integrable. We can give another, equivalent, definition of paracomplex manifold in terms of local homeomorphisms in the space $\mathbb{R}^{k}(j)=\left\{\left(X^{1}, \ldots, X^{k}\right) \mid X^{i} \in \mathbb{R}(j), i=1, \ldots, k\right\}$ and paraholomorphic changes of charts in a way similar to [1] (for more details see [5]), i.e. a manifold $M_{2 k}$ with an integrable paracomplex structure φ is a real realization of the paraholomorphic manifold $M_{k}(\mathbb{R}(j))$ over the algebra $\mathbb{R}(j)$. Let t^{*} be a paracomplex tensor field on $M_{k}(\mathbb{R}(j))$. The real model of such a tensor field is a tensor field on $M_{2 k}$ of the same order, that is independent of whether its vector or covector arguments is subject to the action of the affinor structure φ. Such tensor fields are said to be pure with respect to φ. They have been studied by many authors (see, e.g., $[2-5,7]$). In particular, when applied to a $(0, q)$-tensor field ω, purity means that for any $X_{1}, X_{2}, \ldots, X_{q} \in \mathcal{T}_{0}^{1}\left(M_{2 k}\right)$, the following conditions should hold:

$$
\omega\left(\varphi X_{1}, X_{2}, \ldots, X_{q}\right)=\omega\left(X_{1}, \varphi X_{2}, \ldots, X_{q}\right)=\cdots=\omega\left(X_{1}, X_{2}, \ldots, \varphi X_{q}\right) .
$$

We define an operator $\phi_{\varphi}: \mathcal{T}_{q}^{0}\left(M_{2 k}\right) \rightarrow \mathcal{T}_{q+1}^{0}\left(M_{2 k}\right)$, applied to the pure tensor field ω by

$$
\begin{align*}
\left(\phi_{\varphi} \omega\right)\left(X, Y_{1}, Y_{2}, \ldots, Y_{q}\right) & =(\varphi X)\left(\omega\left(Y_{1}, Y_{2}, \ldots, Y_{q}\right)\right)-X\left(\omega\left(\varphi Y_{1}, Y_{2}, \ldots, Y_{q}\right)\right)+ \\
& +\omega\left(\left(L_{Y_{1}} \varphi\right) X, Y_{2}, \ldots, Y_{q}\right)+\cdots+\omega\left(Y_{1}, Y_{2}, \ldots,\left(L_{Y_{q}} \varphi\right) X\right) \tag{1.1}
\end{align*}
$$

(see [7]), where L_{Y} denotes Lie differentiation with respect to Y.
When φ is paracomplex structure on $M_{2 k}$, and the tensor field $\phi_{\varphi} \omega$ vanishes, the paracomplex tensor field ω^{*} on $M_{k}(\mathbb{R}(j))$ is said to be paraholomorphic [2]. Thus a paraholomorphic paracomplex tensor field ω^{*} on $M_{2}(\mathbb{R}(j))$ is realized on $M_{2 k}$ in the form of a pure tensor field ω such that

$$
\begin{equation*}
\left(\phi_{\varphi} \omega\right)\left(X, Y_{1}, Y_{2}, \ldots, Y_{q}\right)=0 \tag{1.2}
\end{equation*}
$$

for any $X, Y_{1}, Y_{2}, \ldots, Y_{q} \in \mathcal{T}_{0}^{1}\left(M_{n}\right)$. Therefore such a tensor field ω on $M_{2 k}$ is also called a paraholomorphic tensor field.

2. Holomorphic B-Manifolds

A pure metric with respect to an almost paracomplex structure is a Riemannian metric g such that
(2.1) $\quad g(\varphi X, Y)=g(X, \varphi Y)$
for any $X, Y \in \mathcal{T}_{0}^{1}\left(M_{n}\right)$. Such Riemannian metrics were studied in [6], where they were called B-metrics, since the metric tensor g with respect to the structure φ is a B-tensor according to the terminology accepted in [5]. If $\left(M_{2 k}, \varphi\right)$ is an almost paracomplex manifold with a B-metric, we say that $\left(M_{2 k}, \varphi, g\right)$ is an almost B-manifold. If φ is integrable, we say that $\left(M_{2 k}, \varphi, g\right)$ is an B-manifold.

In a B-manifold, the B-metric is called paraholomorphic if $\left(\phi_{\varphi} g\right)(X, Y, Z)=0$. If $\left(M_{2 k}, \varphi, g\right)$ is a B-manifold with a paraholomorphic B-metric g, we say that $\left(M_{2 k}, \varphi, g\right)$ is a paraholomorphic B-manifold.

In some respects paraholomorphic B-manifolds may viewed as analogous to Kahler manifolds. The following theorem [3] is analogous to an almost Hermitian manifold being Kahler if and only if the almost complex structure is parallel with respect to the Levi-Civita connection.
2.1. Theorem. An almost B-manifold is a paraholomorphic B-manifold if and only if the almost paracomplex structure is parallel with respect to the Levi-Civita connection.

Let $\left(M_{2 k}, \varphi, g\right)$ be an almost B-manifold. The associated B-metric of an almost Bmanifold is defined by
(2.2) $\quad G(X, Y)=(g \circ \varphi)(X, Y)$
for all vector fields X and Y on $M_{2 k}$. We shall now apply the Tachibana operator to the pure Riemannian metric G :

$$
\begin{aligned}
\left(\phi_{\varphi} G\right)(X, Y, Z)= & \left(L_{\varphi X} G-L_{X}(G \circ \varphi)\right)(Y, Z)+G\left(Y, \varphi L_{X} Z\right)-G\left(\varphi Y, L_{X} Z\right) \\
= & \left(L_{\varphi X}(g \circ \varphi)-L_{X}((g \circ \varphi) \circ \varphi)(Y, Z)+(g \circ \varphi)\left(Y, \varphi L_{X} Z\right)\right. \\
& -(g \circ \varphi)\left(\varphi Y, L_{X} Z\right) \\
= & \left(\left(L_{\varphi X} g\right) \circ \varphi+g \circ L_{\varphi X} \varphi-L_{X}(g \circ \varphi) \circ \varphi-(g \circ \varphi) L_{X} \varphi\right)(Y, Z) \\
& \quad+(g \circ \varphi)\left(Y, \varphi L_{X} Z\right)-(g \circ \varphi)\left(\varphi Y, L_{X} Z\right) \\
= & \left(L_{\varphi X} g-L_{X}(g \circ \varphi)\right)(\varphi Y, Z)+g\left(\varphi Y, \varphi L_{X} Z\right) \\
& \quad-g\left(\varphi(\varphi Y), L_{X} Z\right)+\left(g \circ L_{\varphi X} \varphi-(g \circ \varphi) L_{X} \varphi\right)(Y, Z) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g\left(\left(L_{\varphi X}\right) Y, Z\right)-g\left(\varphi\left(\left(L_{X} \varphi\right) Y\right), Z\right) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g([\varphi X, \varphi Y]-\varphi[\varphi X, Y], Z) \\
& \quad-g\left(\varphi[X, \varphi Y]-\varphi^{2}[X, Y], Z\right) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g([\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] \\
& \left.+\varphi^{2}[X, Y], Z\right) \\
= & \left(\phi_{\varphi} g\right)(X, \varphi Y, Z)+g\left(N_{\varphi}(X, Y), Z\right) .
\end{aligned}
$$

Thus (2.3) implies the following
2.2. Theorem. In an almost B-manifold, we have

$$
\phi_{\varphi} G=\left(\phi_{\varphi} g\right) \circ \varphi+g \circ\left(N_{\varphi}\right) .
$$

From Theorem 2.1 and Theorem 2.2 we have:
2.3. Theorem. Almost B-manifold satisfying the conditions $\phi_{\varphi} G=0, N_{\varphi} \neq 0$, i.e. the analogues of the almost Kahler manifolds, do not exist.
2.4. Corollary. The following conditions are equivalent:
(a) $\phi_{\varphi} g=0$.
(b) $\phi_{\varphi} G=0$.

We denote by ∇_{g} the covariant differentiation of the Levi-Civita connection of the B-metric g. Then, we have

$$
\nabla_{g} G=\left(\nabla_{g} g\right) \circ \varphi+g \circ\left(\nabla_{g} \varphi\right)=g \circ\left(\nabla_{g} \varphi\right)
$$

which implies $\nabla_{g} G=0$ by virtue of Theorem 2.1. Therefore we have
2.5. Theorem. Let $\left(M_{2 k}, \varphi, g\right)$ be a paraholomorphic B-manifold. Then the Levi-Civita connection of the B-metric g coincides with the Levi-Civita connection of the associated B-metric G.

3. Curvature tensors in a paraholomorphic B-manifold

Let R and S be the curvature tensors formed by g and G respectively. Then for a paraholomorphic B-manifold we have $R=S$ by means of Theorem 2.5.

Applying Ricci's identity to φ, we get
(3.1) $\quad \varphi(R(X, Y) Z)=R(X, Y) \varphi Z$
by virtue of $\nabla \varphi=0$. Hence $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(R\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)$ is pure with respect to X_{3} and X_{4}, and also pure with respect to X_{1} and X_{2} :

$$
\begin{aligned}
R\left(X_{1}, X_{2}, \varphi X_{3}, X_{4}\right) & =g\left(R\left(X_{1}, X_{2}\right) \varphi X_{3}, X_{4}\right) \\
& =g\left(\varphi\left(R\left(X_{1}, X_{2}\right) X_{3}\right), X_{4}\right) \\
& =g\left(R\left(X_{1}, X_{2}\right) X_{3}, \varphi X_{4}\right) \\
& =R\left(X_{1}, X_{2}, X_{3}, \varphi X_{4}\right)
\end{aligned}
$$

On the other hand, S being the curvature tensor formed by the associated B-metric G, if we put $S\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=G\left(S\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)$, then we have

$$
\begin{equation*}
S\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=S\left(X_{3}, X_{4}, X_{1}, X_{2}\right) \tag{3.2}
\end{equation*}
$$

Taking account of (1.1), (2.2), (3.1) and $R=S$, we find that

$$
\begin{aligned}
S\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =G\left(S\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right) \\
& =g\left(\varphi\left(S\left(X_{1}, X_{2}\right) X_{3}\right), X_{4}\right) \\
& =g\left(S\left(X_{1}, X_{2}\right) X_{3}, \varphi X_{4}\right) \\
& =g\left(R\left(X_{1}, X_{2}\right) X_{3}, \varphi X_{4}\right) \\
& =R\left(X_{1}, X_{2}, X_{3}, \varphi X_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
S\left(X_{3}, X_{4}, X_{1}, X_{2}\right) & =G\left(S\left(X_{3}, X_{4}\right) X_{1}, X_{2}\right) \\
& =g\left(\varphi\left(S\left(X_{3}, X_{4}\right) X_{1}\right), X_{2}\right) \\
& =g\left(S\left(X_{3}, X_{4}\right) X_{1}, \varphi X_{2}\right) \\
& =g\left(R\left(X_{3}, X_{4}\right) X_{1}, \varphi X_{2}\right) \\
& =R\left(X_{3}, X_{4}, X_{1}, \varphi X_{2}\right) \\
& =R\left(X_{1}, \varphi X_{2}, X_{3}, X_{4}\right)
\end{aligned}
$$

Thus equation (3.2) becomes

$$
R\left(X_{1}, X_{2}, X_{3}, \varphi X_{4}\right)=R\left(X_{1}, \varphi X_{2}, X_{3}, X_{4}\right)
$$

which shows that $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is pure with respect to X_{2} and X_{4}. Therefore $R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is pure.

Thus we get
3.1. Theorem. In a paraholomorphic B-manifold, the Riemannian curvature tensor of the B-metric is pure.

Since the Riemannian curvature tensor R is pure, we can apply the ϕ-operator to R. By similar devices (see the proof of Theorem 1 in [3]), we can prove that

$$
\begin{equation*}
\left(\phi_{\varphi} R\right)\left(X, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=\left(\nabla_{\varphi X} R\right)\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)-\left(\nabla_{X} R\right)\left(\varphi Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) \tag{3.3}
\end{equation*}
$$

Using (3.1), and applying Bianchi's 2nd identity to (3.3), we get

$$
\begin{align*}
\left(\phi_{\varphi} R\right)\left(X, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) & =g\left(\left(\nabla_{\varphi X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)-\left(\nabla_{X} R\right)\left(\varphi Y_{1}, Y_{2}, Y_{3}\right), Y_{4}\right) \\
= & g\left(\left(\nabla_{\varphi X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)-\varphi\left(\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)\right), Y_{4}\right) \\
= & g\left(-\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, \varphi X, Y_{3}\right)-\left(\nabla_{Y_{1}} R\right)\left(\varphi X, Y_{1}, Y_{3}\right)\right. \tag{3.4}\\
& \left.-\varphi\left(\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)\right), Y_{4}\right) .
\end{align*}
$$

On the other hand, using $\nabla \varphi=0$, we find:

$$
\begin{aligned}
&\left(\nabla_{Y_{2}} R\right)\left(\varphi X, Y_{1}, Y_{3}\right)= \nabla_{Y_{2}}\left(R\left(\varphi X, Y_{1}, Y_{3}\right)\right)-R\left(\nabla_{Y_{2}}(\varphi X), Y_{1}, Y_{3}\right) \\
&-R\left(\varphi X, \nabla_{Y_{2}} Y_{1}, Y_{3}\right)-R\left(\varphi X, Y_{1}, \nabla_{Y_{2}} Y_{3}\right) \\
&=\left(\nabla_{Y_{2}} \varphi\right)\left(R\left(X, Y_{1}, Y_{3}\right)\right)+\varphi\left(\nabla_{Y_{2}} R\left(X, Y_{1}, Y_{3}\right)\right) \\
&-R\left(\left(\nabla_{Y_{2}} \varphi\right) X+\varphi\left(\nabla_{Y_{2}} X\right), Y_{1}, Y_{3}\right) \\
&-R\left(\varphi X, \nabla_{Y_{2}} Y_{1}, Y_{3}\right)-R\left(\varphi X, Y_{1}, \nabla_{Y_{2}} Y_{3}\right) \\
&= \varphi\left(\nabla_{Y_{2}} R\left(X, Y_{1}, Y_{3}\right)\right)-\varphi\left(R\left(\nabla_{Y_{2}} X, Y_{1}, Y_{3}\right)\right) \\
&=-\varphi\left(R\left(X, \nabla_{Y_{2}} Y_{1}, Y_{3}\right)\right)-\varphi\left(R\left(X, Y_{1}, \nabla_{Y_{2}} Y_{3}\right)\right) \\
&=\varphi\left(\left(\nabla_{Y_{2}} R\right)\left(X, Y_{1}, Y_{3}\right)\right) .
\end{aligned}
$$

Similarly

$$
\begin{equation*}
\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, \varphi X, Y_{3}\right)=\varphi\left(\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, X, Y_{3}\right)\right) . \tag{3.6}
\end{equation*}
$$

Substituting (3.5) and (3.6) in (3.4), and using again Bianchi's 2nd identity, we obtain

$$
\begin{aligned}
& \left(\phi_{\varphi} R\right)\left(X, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)=g\left(-\varphi\left(\left(\nabla_{Y_{1}} R\right)\left(Y_{2}, X, Y_{3}\right)\right)-\varphi\left(\left(\nabla_{Y_{2}} R\right)\left(X, Y_{1}, Y_{3}\right)\right)\right. \\
& \left.-\varphi\left(\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}, Y_{3}\right)\right), Y_{4}\right) \\
& =-g\left(\varphi\left(\sigma\left\{\left(\nabla_{X} R\right)\left(Y_{1}, Y_{2}\right\}, Y_{3}\right)\right), Y_{4}\right) \\
& =0,
\end{aligned}
$$

where σ denotes the cyclic sum with respect to X, Y_{1} and Y_{2}. Therefore we have:
3.2. Theorem. In a paraholomorphic B-manifold, the Riemannian curvature tensor field is a paraholomorphic tensor field
3.3. Example. We suppose that the manifold $M_{2 n}$ is the tangent bundle $\pi: T\left(V_{n}\right) \rightarrow V_{n}$ of a Riemannian manifold V_{n}. If x^{i} are the local coordinates on V_{n}, then the x^{i}, together with the fibre coordinates $x^{\bar{\imath}}=y^{i}, \bar{\imath}=n+1, \ldots 2 n$, form local coordinates on $T\left(V_{n}\right)$.

A tensor field of type $(0, q)$ on $T\left(V_{n}\right)$ is completely determined by its action on all vector fields $\widetilde{X}_{i}, i=1,2, \ldots, q$, which are of the form ${ }^{V} X$ (vertical lift) or ${ }^{H} X$ (horizontal lift) [8, p.101]:

$$
{ }^{V} X=X^{i} \frac{\partial}{\partial x^{\bar{\imath}}},{ }^{H} X=X^{i} \frac{\partial}{\partial x^{i}}-y^{s} \Gamma_{s h}^{i} X^{h} \frac{\partial}{\partial x^{\imath}} .
$$

Therefore, we define the Sasakian metric ${ }^{s} g$ on $T\left(V_{n}\right)$ by

$$
\left\{\begin{array}{l}
{ }^{s} g\left({ }^{H} X,{ }^{H} Y\right)={ }^{V}(g(X, Y)) \tag{3.7}\\
{ }^{s} g\left({ }^{V} X,{ }^{V} Y\right)={ }^{V}(g(X, Y)) \\
{ }^{s} g\left({ }^{V} X,{ }^{H} Y\right)=0
\end{array}\right.
$$

for any $X, Y \in \mathcal{T}_{0}^{1}\left(V_{n}\right)$. The metric ${ }^{s} g$ has local components

$$
{ }^{s} g=\left(\begin{array}{cc}
g_{j i}+g_{t s} y^{k} y^{l} \Gamma_{k j}^{t} \Gamma_{l i}^{s} & y^{k} \Gamma_{k j}^{s} g_{s i} \\
y^{k} \Gamma_{k i}^{s} g_{j s} & g_{j i}
\end{array}\right)
$$

with respect to the induced coordinates $\left(x^{i}, x^{\bar{\imath}}\right)$ in $T\left(V_{n}\right)$, where $\Gamma_{i j}^{k}$ are the components of the Levi-Civita connection ∇_{g} in V_{n}.

The diagonal lift ${ }^{D} \varphi$ in $T\left(V_{n}\right)$ is defined by

$$
\left\{\begin{array}{l}
{ }^{D} \varphi^{H} X={ }^{H}(\varphi X), \tag{3.8}\\
{ }^{D} \varphi^{V} X=-{ }^{V}(\varphi X),
\end{array}\right.
$$

for any $X \in \mathcal{T}_{0}^{1}\left(V_{n}\right)$ and $\varphi \in \mathcal{T}_{1}^{1}\left(M_{n}\right)$. The diagonal lift ${ }^{D} I$ of the identity tensor field $I \in \mathcal{T}_{1}^{1}\left(M_{n}\right)$ has the components

$$
{ }^{D} I=\left(\begin{array}{cc}
\delta_{i}^{j} & 0 \\
-2 y^{t} \Gamma_{t i}^{j} & -\delta_{i}^{j}
\end{array}\right)
$$

with respect to the induced coordinates and satisfies $\left({ }^{D} I\right)^{2}=I_{T\left(V_{n}\right)}$. Thus, ${ }^{D} I$ is an almost paracomplex structure determining the horizontal distribution and the distribution consisting of the tangent planes to fibres.

We put

$$
A(\tilde{X}, \tilde{Y})={ }^{s} g\left({ }^{D} I \tilde{X}, \tilde{Y}\right)-{ }^{s} g\left(\tilde{X},{ }^{D} I \tilde{Y}\right)
$$

If $A(\tilde{X}, \tilde{Y})=0$ for all vector fields \tilde{X} and \tilde{Y} which are of the form ${ }^{{ }^{V}} X,{ }^{V} Y$ or ${ }^{H^{H}} X,{ }^{H^{H}} Y$ then $A=0$. We have by virtue of ${ }^{D} I^{V} X=-{ }^{V} X,{ }^{D} I^{H} X={ }^{H} X$, (4.1) and (4.2),

$$
\begin{aligned}
& A\left({ }^{V} X,{ }^{V} Y\right)={ }^{s} g\left(-{ }^{V} X,{ }^{V} Y\right)-{ }^{s} g\left({ }^{V} X,-{ }^{V} Y\right)=0, \\
& A\left({ }^{V} X,{ }^{H} Y\right)={ }^{s} g\left(-{ }^{V} X,{ }^{H} Y\right)-{ }^{s} g\left({ }^{V} X,{ }^{H} Y\right)=0, \\
& A\left({ }^{H} X,{ }^{V} Y\right)={ }^{s} g\left({ }^{H} X,{ }^{V} Y\right)-{ }^{s} g\left({ }^{H} X,-{ }^{V} Y\right)=0, \\
& \left.A\left({ }^{H} X,{ }^{H} Y\right)={ }^{s} g\left({ }^{H} X,{ }^{H} Y\right)-{ }^{s} X,{ }^{H} Y\right)=0,
\end{aligned}
$$

i.e. ${ }^{s} g$ is B-metric with respect to ${ }^{D} I$. Hence we have:
3.4. Theorem. $\left(T\left(V_{n}\right),{ }^{D} I,{ }^{s} g\right)$ is an almost B-manifold.

Using the properties of ${ }^{V} X,{ }^{H} X$ and $\gamma R(X, Y)=y^{s} R_{i j s}^{k} X^{i} Y^{j} \frac{\partial}{\partial x^{k}}$, we have

$$
\begin{aligned}
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{V} X,{ }^{H} Y,{ }^{H} Z\right) & =-2\left({ }^{s} g{ }^{V}\left(\nabla_{Y} X\right),{ }^{H} Z+{ }^{s} g\left({ }^{H} Y,{ }^{V}\left(\nabla_{Z} X\right)\right)\right)=0 \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{V} X,{ }^{H} Y,{ }^{V} Z\right) & =-2{ }^{s} g\left({ }^{H} Y,\left[{ }^{V} Z,{ }^{V} X\right]\right)=0 \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{V} X,{ }^{V} Y,{ }^{H} Z\right) & =-2^{s} g\left(\left[{ }^{V} Y,{ }^{V} X\right],{ }^{H} Z\right)=0 \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{V} X,{ }^{V} Y,{ }^{V} Z\right) & =0 \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{H} X,{ }^{H} Y,{ }^{H} Z\right) & =0 \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{H} X,{ }^{V} Y,{ }^{V} Z\right) & =2{ }^{V}\left(\left(\nabla_{X} g\right)(Y, Z)\right)=0 \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{H} X,{ }^{H} Y,{ }^{V} Z\right) & =-2^{s} g\left(\gamma R(Y, X),{ }^{V} Z\right) \\
\left(\phi_{D_{I}}{ }^{s} g\right)\left({ }^{H} X,{ }^{V} Y,{ }^{H} Z\right) & =-2^{s} g\left({ }^{V} Y, \gamma R(Z, X)\right)
\end{aligned}
$$

Therefore we have:
3.5. Theorem. The almost B-manifold $\left(T\left(V_{n}\right),{ }^{D} I,{ }^{s} g\right)$ is paraholomorphic if and only if V_{n} is locally Euclidean.
3.6. Example. Now let M_{n} be the locally product Riemannian manifold with integrable almost product structure $\varphi=\left(\begin{array}{cc}\delta_{j}^{i} & 0 \\ 0 & -\delta_{\bar{\jmath}}^{\bar{\imath}}\end{array}\right), i, j=1, \ldots, k, \bar{\imath}, \bar{\jmath}=k+1, \ldots, n$, and let $n=2 k$. Then the paracomplex manifold $M_{2 k}$ admits the structure of a B-manifold:

$$
g=\left(\begin{array}{cc}
g_{i j} & 0 \\
0 & g_{\bar{\imath} \bar{\jmath}}
\end{array}\right), g_{i j}=g_{i j}\left(x^{t}, x^{\bar{t}}\right), g_{\bar{\imath} \bar{\jmath}}\left(x^{t}, x^{\bar{t}}\right)
$$

Suppose that the metric of the locally product Riemannian manifold $M_{2 k}$ has the form

$$
d s^{2}=g_{i j}\left(x^{t}\right) d x^{i} d x^{j}+g_{\bar{\imath} \bar{\jmath}}\left(x^{\bar{t}}\right) d x^{\bar{\imath}} d x^{\bar{\jmath}}, i, j, t=1, \ldots, k, \bar{\imath}, \bar{\jmath}, \bar{t}=k+1, \ldots, 2 k
$$

that is the $g_{i j}(x)$ are functions of x^{t} only, $g_{\bar{\imath} \bar{\jmath}}=0$ and the $g_{\bar{\imath} \bar{\jmath}}(x)$ are functions of $x^{\bar{t}}$ only, then we call the manifold a locally decomposable Riemannian manifold. A necessary and sufficient condition for a locally product Riemannian manifold to be a locally decomposable Riemannian manifold is that $\nabla_{g} \varphi=0$ [9, p. 420]. Then from Theorem 3.2 we have
3.7. Theorem. A locally decomposable Riemannian manifold $M_{2 k}$ is a paraholomorphic B-manifold.

References

[1] Cruceanu, V., Fortuny, P. and Gadea. A survey on paracomplex Geometry, Rocky Mountain J. Math. 26, 83-115, 1995.
[2] Kruchkovich, G. I. Hypercomplex structure on a manifold, I, Tr. Sem. Vect. Tens. Anal., Moscow Univ. 16, 174-201, 1972.
[3] Magden, A. On applications of the Tachibana operator, Appl. Math. Comp. 147, 45-55, 2004.
[4] Salimov, A. A. and Magden, A. Complete lift of tensor fields on a pure cross-section in the tensor bundle, Note di Matematica (Lecce) 18 (1), 27-37, 1998.
[5] Vishnevskii, V. V., Shirokov, A. P. and Shurygin, V. V. Spaces over algebras, (Kazan Gos. University, Kazan (Russian), 1985).
[6] Vishnevskii, V. V. Integrable affinor structures and their plural interpretations, J. of Math. Sciences 108 (2), 151-187, 2002.
[7] Yano, K. and Ako, M. On certain operators associated with tensor fields, Kodai Math. Sem. Rep. 20, 414-436, 1968.
[8] Yano, K. and Ishihara, S. Tangent and Cotangent Bundles, (Marcel Dekker Inc., N.Y., 1973).
[9] Yano, K. and Kon, M. Structure on manifolds, (World Scientific, Singapore, 1984).

[^0]: *Atatürk University, Faculty of Arts and Sci., Department of Mathematics, Erzurum, Turkey E-mail (M. Iscan) miscan@atauni.edu.tr (A. Salimov) asalimov@atauni.edu.tr

