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Abstract

The main purpose of the paper is to study the Tachibana operator for
a pure Riemannian metric tensor field and then to apply the results
obtained to the study of paraholomorphic B-manifolds.
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1. Introduction

Let Mn be a Riemannian manifold with metric g, which is not necessarily positive
definite. We denote by T

p
q (Mn) the set of all tensor fields of type (p, q) onMn. Manifolds,

tensor fields and connections are always assumed to be differentiable and of class C∞.

An almost paracomplex manifold is an almost product manifold (Mn, ϕ), ϕ ∈ I, such
that the two eigenbundles T+Mn and T−Mn associated with the two eigenvalues +1
and −1 of ϕ, respectively, have the same rank. Note that the dimension of an almost
paracomplex manifold is necessarily even.

Considering the paracomplex structure ϕ, we obtain the following set of affinors onMn

: {I, ϕ}, ϕ2 = I, which form a basis of a representation of an algebra of order 2 over the
field of real numbers R, which is called the algebra of paracomplex (or double) numbers
and is denoted by R(j) = {a0 + a1j | j2 = 1, a0, a1 ∈ R}. Obviously, it is associative,
commutative and unitial, i.e., it admits a principal unit 1. The canonical basis of this
algebra has the form {1, j}. The structural constants of an algebra are defined by the
multiplication law of the base units of this algebra: eiej = Ck

ijek. With respect to the

canonical basis of R(j) the components of Ck
ij are given by C1

11 = C2
12 = C2

21 = C1
22 = 1,

all the others being zero.

Consider R(j) endowed with the usual topology of R2 and a domain U of R(j). Let

X = x
1 + jx

2
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be a variable in R(j), where xi are the real coordinates of a point of a certain domain U for
i = 1, 2. Using two real-valued functions f i(x1, x2), i = 1, 2, we introduce a paracomplex
function

F = f
1 + jf

2

of the variable X. It is said to be paraholomorphic if we have

dF = F
′(X)dX

for the differentials dX = dx1 + jdx2, dF = df1 + jdf2 and the derivative F ′(X). The
paraholomorphy of the function F = f 1+jf2 in the variable X = x1+jx2 is equivalent to
the requirement that the Jacobian matrix D = (∂kf

i) should commute with the matrix

C2 = (Ck
ij) =

(
0 1
1 0

)
(see [5, p. 87]). It follows that F is paraholomorphic if and only

if f1 and f2 satisfy the para-Cauchy-Riemann equations:

∂f1

∂x1
=
∂f2

∂x2
,
∂f1

∂x2
=
∂f2

∂x1
.

For almost paracomplex structures, integrability is equivalent to the vanishing of the
Nijenhuis tensor

Nϕ(X,Y ) = [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ] + [X,Y ].

On the other hand, in order that an almost paracomplex structure be integrable, it is
necessary and sufficient that we can introduce on M a torsion free linear connection such
that ∇ϕ = 0.

A paracomplex manifold is an almost paracomplex manifold (M2k, ϕ) such that the
G-structure defined by the affinor field ϕ is integrable. We can give another, equiva-
lent, definition of paracomplex manifold in terms of local homeomorphisms in the space
Rk(j) = {(X1, . . . , Xk) | Xi ∈ R(j), i = 1, . . . , k} and paraholomorphic changes of charts
in a way similar to [1] (for more details see [5]), i.e. a manifold M2k with an integrable
paracomplex structure ϕ is a real realization of the paraholomorphic manifold Mk(R(j))
over the algebra R(j). Let t∗ be a paracomplex tensor field on Mk(R(j)). The real model
of such a tensor field is a tensor field on M2k of the same order, that is independent of
whether its vector or covector arguments is subject to the action of the affinor structure
ϕ. Such tensor fields are said to be pure with respect to ϕ. They have been studied
by many authors (see, e.g., [2–5, 7]). In particular, when applied to a (0, q)-tensor field
ω, purity means that for any X1, X2, . . . , Xq ∈ T

1
0(M2k), the following conditions should

hold:

ω(ϕX1, X2, . . . , Xq) = ω(X1, ϕX2, . . . , Xq) = · · · = ω(X1, X2, . . . , ϕXq).

We define an operator φϕ : T
0
q (M2k) → T

0
q+1(M2k), applied to the pure tensor field ω by

(1.1)
(φϕω)(X,Y1, Y2, . . . , Yq) = (ϕX)(ω(Y1, Y2, . . . , Yq))−X(ω(ϕY1, Y2, . . . , Yq))+

+ ω((LY1ϕ)X,Y2, . . . , Yq) + · · ·+ ω(Y1, Y2, . . . , (LYqϕ)X)

(see [7]), where LY denotes Lie differentiation with respect to Y .

When ϕ is paracomplex structure on M2k, and the tensor field φϕω vanishes, the
paracomplex tensor field ω∗ on Mk(R(j)) is said to be paraholomorphic [2]. Thus a
paraholomorphic paracomplex tensor field ω∗ on M2(R(j)) is realized on M2k in the
form of a pure tensor field ω such that

(1.2) (φϕω)(X,Y1, Y2, . . . , Yq) = 0

for any X,Y1, Y2, . . . , Yq ∈ T
1
0(Mn). Therefore such a tensor field ω on M2k is also called

a paraholomorphic tensor field.
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2. Holomorphic B-Manifolds

A pure metric with respect to an almost paracomplex structure is a Riemannian metric
g such that

(2.1) g(ϕX, Y ) = g(X,ϕY )

for any X,Y ∈ T
1
0(Mn). Such Riemannian metrics were studied in [6], where they were

called B-metrics, since the metric tensor g with respect to the structure ϕ is a B-tensor
according to the terminology accepted in [5]. If (M2k, ϕ) is an almost paracomplex
manifold with a B-metric, we say that (M2k, ϕ, g) is an almost B-manifold. If ϕ is
integrable, we say that (M2k, ϕ, g) is an B-manifold.

In a B-manifold, the B-metric is called paraholomorphic if (φϕg)(X,Y, Z) = 0. If
(M2k, ϕ, g) is a B-manifold with a paraholomorphic B-metric g, we say that (M2k, ϕ, g)
is a paraholomorphic B-manifold.

In some respects paraholomorphic B-manifolds may viewed as analogous to Kahler
manifolds. The following theorem [3] is analogous to an almost Hermitian manifold
being Kahler if and only if the almost complex structure is parallel with respect to the
Levi-Civita connection.

2.1. Theorem. An almost B-manifold is a paraholomorphic B-manifold if and only if

the almost paracomplex structure is parallel with respect to the Levi-Civita connection.

Let (M2k, ϕ, g) be an almost B-manifold. The associated B-metric of an almost B-
manifold is defined by

(2.2) G(X,Y ) = (g ◦ ϕ)(X,Y )

for all vector fields X and Y on M2k. We shall now apply the Tachibana operator to the
pure Riemannian metric G:

(2.3)

(φϕG)(X,Y, Z) = (LϕXG− LX(G ◦ ϕ))(Y, Z) +G(Y, ϕLXZ)−G(ϕY,LXZ)

= (LϕX(g ◦ ϕ)− LX((g ◦ ϕ) ◦ ϕ)(Y, Z) + (g ◦ ϕ)(Y, ϕLXZ)

− (g ◦ ϕ)(ϕY,LXZ)

= ((LϕXg) ◦ ϕ+ g ◦ LϕXϕ− LX(g ◦ ϕ) ◦ ϕ− (g ◦ ϕ)LXϕ)(Y, Z)

+ (g ◦ ϕ)(Y, ϕLXZ)− (g ◦ ϕ)(ϕY,LXZ)

= (LϕXg − LX(g ◦ ϕ))(ϕY,Z) + g(ϕY, ϕLXZ)

− g(ϕ(ϕY ), LXZ) + (g ◦ LϕXϕ− (g ◦ ϕ)LXϕ)(Y, Z)

= (φϕg)(X,ϕY,Z) + g((LϕXϕ)Y, Z)− g(ϕ((LXϕ)Y ), Z)

= (φϕg)(X,ϕY,Z) + g([ϕX,ϕY ]− ϕ[ϕX, Y ], Z)

− g(ϕ[X,ϕY ]− ϕ
2[X,Y ], Z)

= (φϕg)(X,ϕY,Z) + g([ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

+ ϕ
2[X,Y ], Z)

= (φϕg)(X,ϕY,Z) + g(Nϕ(X,Y ), Z).

Thus (2.3) implies the following

2.2. Theorem. In an almost B-manifold, we have

φϕG = (φϕg) ◦ ϕ+ g ◦ (Nϕ).

From Theorem 2.1 and Theorem 2.2 we have:

2.3. Theorem. Almost B-manifold satisfying the conditions φϕG = 0, Nϕ 6= 0, i.e. the
analogues of the almost Kahler manifolds, do not exist.
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2.4. Corollary. The following conditions are equivalent:

(a) φϕg = 0.
(b) φϕG = 0.

We denote by ∇g the covariant differentiation of the Levi-Civita connection of the
B-metric g. Then, we have

∇gG = (∇gg) ◦ ϕ+ g ◦ (∇gϕ) = g ◦ (∇gϕ),

which implies ∇gG = 0 by virtue of Theorem 2.1. Therefore we have

2.5. Theorem. Let (M2k, ϕ, g) be a paraholomorphic B-manifold. Then the Levi-Civita

connection of the B-metric g coincides with the Levi-Civita connection of the associated

B-metric G.

3. Curvature tensors in a paraholomorphic B-manifold

Let R and S be the curvature tensors formed by g and G respectively. Then for a
paraholomorphic B-manifold we have R = S by means of Theorem 2.5.

Applying Ricci’s identity to ϕ, we get

(3.1) ϕ(R(X,Y )Z) = R(X,Y )ϕZ

by virtue of ∇ϕ = 0. Hence R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4) is pure with
respect to X3 and X4, and also pure with respect to X1 and X2:

R(X1, X2, ϕX3, X4) = g(R(X1, X2)ϕX3, X4)

= g(ϕ(R(X1, X2)X3), X4)

= g(R(X1, X2)X3, ϕX4)

= R(X1, X2, X3, ϕX4).

On the other hand, S being the curvature tensor formed by the associated B-metric G,
if we put S(X1, X2, X3, X4) = G(S(X1, X2)X3, X4), then we have

(3.2) S(X1, X2, X3, X4) = S(X3, X4, X1, X2)

Taking account of (1.1), (2.2), (3.1) and R = S, we find that

S(X1, X2, X3, X4) = G(S(X1, X2)X3, X4)

= g(ϕ(S(X1, X2)X3), X4)

= g(S(X1, X2)X3, ϕX4)

= g(R(X1, X2)X3, ϕX4)

= R(X1, X2, X3, ϕX4)

and

S(X3, X4, X1, X2) = G(S(X3, X4)X1, X2)

= g(ϕ(S(X3, X4)X1), X2)

= g(S(X3, X4)X1, ϕX2)

= g(R(X3, X4)X1, ϕX2)

= R(X3, X4, X1, ϕX2)

= R(X1, ϕX2, X3, X4)

Thus equation (3.2) becomes

R(X1, X2, X3, ϕX4) = R(X1, ϕX2, X3, X4),
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which shows that R(X1, X2, X3, X4) is pure with respect to X2 and X4. Therefore
R(X1, X2, X3, X4) is pure.

Thus we get

3.1. Theorem. In a paraholomorphic B-manifold, the Riemannian curvature tensor of

the B-metric is pure.

Since the Riemannian curvature tensor R is pure, we can apply the φ-operator to R.
By similar devices (see the proof of Theorem 1 in [3]), we can prove that

(3.3) (φϕR)(X,Y1, Y2, Y3, Y4) = (∇ϕXR)(Y1, Y2, Y3, Y4)− (∇XR)(ϕY1, Y2, Y3, Y4).

Using (3.1), and applying Bianchi’s 2nd identity to (3.3), we get

(3.4)

(φϕR)(X,Y1, Y2, Y3, Y4) = g((∇ϕXR)(Y1, Y2, Y3)− (∇XR)(ϕY1, Y2, Y3), Y4)

= g((∇ϕXR)(Y1, Y2, Y3)− ϕ((∇XR)(Y1, Y2, Y3)), Y4)

= g(−(∇Y1R)(Y2, ϕX, Y3)− (∇Y1R)(ϕX, Y1, Y3)

− ϕ((∇XR)(Y1, Y2, Y3)), Y4).

On the other hand, using ∇ϕ = 0, we find:

(3.5)

(∇Y2R)(ϕX, Y1, Y3) = ∇Y2(R(ϕX, Y1, Y3))−R(∇Y2(ϕX), Y1, Y3)

−R(ϕX,∇Y2Y1, Y3)−R(ϕX, Y1,∇Y2Y3)

= (∇Y2ϕ)(R(X,Y1, Y3)) + ϕ(∇Y2R(X,Y1, Y3))

−R((∇Y2ϕ)X + ϕ(∇Y2X), Y1, Y3)

−R(ϕX,∇Y2Y1, Y3)−R(ϕX, Y1,∇Y2Y3)

= ϕ(∇Y2R(X,Y1, Y3))− ϕ(R(∇Y2X,Y1, Y3))

− ϕ(R(X,∇Y2Y1, Y3))− ϕ(R(X,Y1,∇Y2Y3))

= ϕ((∇Y2R)(X,Y1, Y3)).

Similarly

(3.6) (∇Y1R)(Y2, ϕX, Y3) = ϕ((∇Y1R)(Y2, X, Y3)).

Substituting (3.5) and (3.6) in (3.4), and using again Bianchi’s 2nd identity, we obtain

(φϕR)(X,Y1, Y2, Y3, Y4) = g(−ϕ((∇Y1R)(Y2, X, Y3))− ϕ((∇Y2R)(X,Y1, Y3))

− ϕ((∇XR)(Y1, Y2, Y3)), Y4)

= −g(ϕ(σ{(∇XR)(Y1, Y2}, Y3)), Y4)

= 0,

where σ denotes the cyclic sum with respect to X,Y1 and Y2. Therefore we have:

3.2. Theorem. In a paraholomorphic B-manifold, the Riemannian curvature tensor field

is a paraholomorphic tensor field

3.3. Example. We suppose that the manifoldM2n is the tangent bundle π : T (Vn) → Vn

of a Riemannian manifold Vn. If x
i are the local coordinates on Vn, then the xi, together

with the fibre coordinates xı̄ = yi, ı̄ = n+ 1, . . . 2n, form local coordinates on T (Vn).

A tensor field of type (0, q) on T (Vn) is completely determined by its action on all

vector fields X̃i, i = 1, 2, . . . , q, which are of the form VX (vertical lift) or HX (horizontal
lift) [8, p.101]:

V
X = X

i ∂

∂xı̄
,

H
X = X

i ∂

∂xi
− y

sΓi
shX

h ∂

∂xı̄
.
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Therefore, we define the Sasakian metric sg on T (Vn) by

(3.7)





sg(HX,HY ) =V (g(X,Y )),
sg(VX,V Y ) =V (g(X,Y )),
sg(VX,HY ) = 0,

for any X,Y ∈ T
1
0(Vn). The metric sg has local components

s
g =

(
gji + gtsy

kylΓt
kjΓ

s
li ykΓs

kjgsi

ykΓs
kigjs gji

)

with respect to the induced coordinates (xi, xı̄) in T (Vn), where Γk
ij are the components

of the Levi-Civita connection ∇g in Vn.

The diagonal lift Dϕ in T (Vn) is defined by

(3.8)

{
DϕHX =H(ϕX),
DϕVX = −V(ϕX),

for any X ∈ T
1
0(Vn) and ϕ ∈ T

1
1(Mn). The diagonal lift DI of the identity tensor field

I ∈ T
1
1(Mn) has the components

D
I =

(
δ

j
i 0

−2ytΓj
ti −δj

i

)

with respect to the induced coordinates and satisfies (DI)2 = IT (Vn). Thus, DI is an al-
most paracomplex structure determining the horizontal distribution and the distribution
consisting of the tangent planes to fibres.

We put

A(X̃, Ỹ ) = s
g(DIX̃, Ỹ )− s

g(X̃,
D
IỸ ).

If A(X̃, Ỹ ) = 0 for all vector fields X̃ and Ỹ which are of the form VX, VY or HX, HY

then A = 0. We have by virtue of DIV X = −VX, DIHX =HX, (4.1) and (4.2),

A(VX,V Y ) = s
g(−V

X,
V
Y )− s

g(VX,−V
Y ) = 0,

A(VX,HY ) = s
g(−V

X,
H
Y )− s

g(VX,HY ) = 0,

A(HX,V Y ) = s
g(HX,V Y )− s

g(HX,−V
Y ) = 0,

A(HX,HY ) = s
g(HX,HY )− s

g(HX,HY ) = 0,

i.e. sg is B-metric with respect to DI. Hence we have:

3.4. Theorem. (T (Vn),
DI,sg) is an almost B-manifold.

Using the properties of VX, HX and γR(X,Y ) = ysRk
ijsX

iY j ∂

∂xk̄
, we have

(φDI
s
g)(VX,HY,HZ) = −2(sg V(∇Y X),HZ + s

g(HY,V(∇ZX))) = 0,

(φDI
s
g)(VX,HY,VZ) = −2s

g(HY, [VZ,VX]) = 0,

(φDI
s
g)(VX,V Y,HZ) = −2s

g([VY,VX],HZ) = 0,

(φDI
s
g)(VX,V Y,VZ) = 0,

(φDI
s
g)(HX,HY,HZ) = 0,

(φDI
s
g)(HX,V Y,VZ) = 2 V((∇Xg)(Y, Z)) = 0,

(φDI
s
g)(HX,HY,VZ) = −2s

g(γR(Y,X),VZ),

(φDI
s
g)(HX,V Y,HZ) = −2s

g(VY, γR(Z,X)).
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Therefore we have:

3.5. Theorem. The almost B-manifold (T (Vn),
DI,sg) is paraholomorphic if and only if

Vn is locally Euclidean.

3.6. Example. Now letMn be the locally product Riemannian manifold with integrable

almost product structure ϕ =

(
δi

j 0
0 −δı̄

̄

)
, i, j = 1, . . . , k, ı̄, ̄ = k + 1, . . . , n, and let

n = 2k. Then the paracomplex manifold M2k admits the structure of a B-manifold:

g =

(
gij 0
0 gı̄̄

)
, gij = gij(x

t
, x

t̄), gı̄̄(x
t
, x

t̄).

Suppose that the metric of the locally product Riemannian manifold M2k has the form

ds
2 = gij(x

t)dxi
dx

j + gı̄̄(x
t̄)dxı̄

dx
̄
, i, j, t = 1, . . . , k, ı̄, ̄, t̄ = k + 1, . . . , 2k,

that is the gij(x) are functions of xt only, gı̄̄ = 0 and the gı̄̄(x) are functions of xt̄ only,
then we call the manifold a locally decomposable Riemannian manifold. A necessary and
sufficient condition for a locally product Riemannian manifold to be a locally decom-
posable Riemannian manifold is that ∇gϕ = 0 [9, p. 420]. Then from Theorem 3.2 we
have

3.7. Theorem. A locally decomposable Riemannian manifold M2k is a paraholomorphic

B-manifold.
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