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The quenching behavior of a nonlinear parabolic
equation with a singular boundary condition

Nuri OZALP ∗ and Burhan SELCUK †

Abstract
In this paper, we study the quenching behavior of solution of a nonlin-
ear parabolic equation with a singular boundary condition. We prove
finite-time quenching for the solution. Further, we show that quench-
ing occurs on the boundary under certain conditions. Furthermore, we
show that the time derivative blows up at quenching point. Also, we
get a lower solution and an upper bound for quenching time. Finally,
we get a quenching rate and lower bounds for quenching time.
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1. Introduction
In this paper, we study the quenching behavior of solutions of the following nonlinear

parabolic equation with a singular boundary condition:

(1.1)

 ut = uxx + (1− u)−p , 0 < x < 1, 0 < t < T,
ux (0, t) = 0, ux (1, t) = (1− u(1, t))−q, 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ 1,

where p, q are positive constants and T ≤ ∞. The initial function u0 : [0, 1]→ (0, 1) satisfies
the compatibility conditions

u′0 (0) = 0, u′0 (1) = (1− u0(1))−q.

Throughout this paper, we also assume that the initial function u0 satisfies the inequal-
ities
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(1.2) uxx(x, 0) + (1− u(x, 0))−p ≥ 0,

(1.3) ux(x, 0) ≥ 0

Our main purpose is to examine the quenching behavior of the solutions of problem (1.1)
having two singular heat sources. A solution u(x, t) of the problem (1.1) is said to quench
if there exists a finite time T such that

lim
t→T−

max{u(x, t) : 0 ≤ x ≤ 1} → 1.

From now on, we denote the quenching time of the problem (1) with T .

The concept of quenching was first introduced by Kawarada. In [12], Kawarada has
considered an initial-boundary value problem for the parabolic equation ut = uxx+1/(1−
u). Then, the quenching problems have been studied extensively by several researchers
(cf. the surveys by Chan [1, 2] and Kirk and.Roberts [14] and [3], [4], [6], [8], [9],[10], [13], [15], [16], [17], [19]).
In the literature, the quenching problems have been less studied with two nonlinear heat
sources. We give as examples two of these papers. Chan and Yuen [5] considered the
problem

ut = uxx, in Ω,
ux (0, t) = (1− u(0, t))−p, ux (a, t) = (1− u(a, t))−q, 0 < t < T,

u (x, 0) = u0 (x) , 0 ≤ u0 (x) < 1, in
_
D,

where a, p, q > 0, T ≤ ∞, D = (0, a),Ω = D × (0, T ). They showed that x = a is
the unique quenching point in finite time if u0 is a lower solution, and ut blows up at
quenching. Further, they obtained criteria for nonquenching and quenching by using the
positive steady states. Zhi and Mu [20] considered the problem

ut = uxx + (1− u)−p, 0 < x < 1, 0 < t < T
ux (0, t) = u−q(0, t), ux (1, t) = 0, 0 < t < T,
u (x, 0) = u0 (x) , 0 < u0 (x) < 1, 0 ≤ x ≤ 1,

where p, q > 0 and T ≤ ∞. They showed that x = 0 is the unique quenching point
in finite time if u0 satisfies u′′0 (x) + (1 − u0(x))−p ≤ 0 and u′0(x) ≥ 0 . Further, they
obtained the quenching rate estimates which is (T − t)1/2(q+1) if T denotes the quenching
time. Further, the quenching problems have been less studied with combined power-
type nonlinearities ([7], [18]) in the literature. In [18], Xu et.al. the studied the following
quenching behavior for the solutions of parabolic equation with combined power-type
nonlinearities:

ut −∆u =
q∑
k=2

(b− u(x, t))−k, in Ω× (0, T ),

u (x, t) = 0, on ∂Ω× (0, T ),
u (x, 0) = u0 (x) , in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, q > 2, b = const > 0. The
initial data u0 (x) ∈ C1(Ω) is nonnegative in Ω and supx∈Ωu0(x) < b. They showed that
the solution of the above problem quenches in a finite time, and estimated its quenching
time. Finally, they given numerical examples.

Here, we would like to study how the reaction term (1 − u)−p and the boundary
absorption term (1− u)−q affect the quenching behaviour of the solution of the problem
(1.1). In Section 2, we first show that quenching occurs in finite time under the condition
(1.2). Then, we show that the only quenching point is x = 1 under the condition (1.2)
and (1.3). Further we show that ut blows up at quenching time. In Section 3, we get a
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lower solution and an upper bound for quenching time. In Section 4, we get a quenching
rate and lower bounds for quenching time.

2. Quenching on the boundary and blow-up of ut

2.1. Remark. We assume that the condition (1.2) and (1.3) is proper. Namely, we can
easily construct such a initial function satisfying (1.2),(1.3) and compatibility conditions.
Let 0 < A < 1, α = 1

A(1−A)
and u(x, 0) = Axα. For example, for q = 1 and A = 0.5,

u(x, 0) = 1
2
x4 satisfies compatibility conditions, (1.2) and (1.3).

2.2. Remark. If u0 satisfies (1.3), then we get ux > 0 in (0, 1]×(0, T ) by the maximum
principle. Thus we get u(1, t) = max

0≤x≤1
u(x, t).

2.3. Lemma. If u0 satisfies (1.2), then ut(x, t) ≥ 0 in [0, 1]× [0, T ).
Proof. Let us prove it by utilizing Lemma 3.1 of [11]. Let v = ut(x, t). Then, v(x, t)
satisfies

vt = vxx + p (1− u)−p−1 v, 0 < x < 1, 0 < t < T,

vx (0, t) = 0, vx (1, t) = q (1− u(1, t))−q−1 v(1, t), 0 < t < T,

v (x, 0) = uxx (x, 0) + (1− u (x, 0))−p ≥ 0, 0 ≤ x ≤ 1.

For any fixed τ ∈ (0, T ), let

L = max
0≤x≤1, 0≤t≤τ

(
1

2
q (1− u(x, t))−q−1

)
,

M = 2L+ 4L2 + max
0≤x≤1, 0≤t≤τ

(
p (1− u(x, t))−p−1) .

Set w(x, t) = e−Mt−Lx2v(x, t). Then w satisfies

wt = wxx + 4Lxwx + cw, 0 < x < 1, 0 < t ≤ τ,
wx(0, t) = 0, wx(1, t) = d(t)w(1, t), 0 < t ≤ τ,
w(x, 0) ≥ 0, 0 ≤ x ≤ 1,

where

c = c(x, t) = 4L2(x2−1)+p (1− u(x, t))−p−1− max
0≤x≤1, 0≤t≤τ

(
p (1− u(x, t))−p−1) ≤ 0

and

d(t) = − max
0≤x≤1, 0≤t≤τ

(
q (1− u(x, t))−q−1)+ q (1− u(1, t))−q−1 ≤ 0.

By the maximum principle and Hopf lemma, we obtain that w ≥ 0 in [0, 1]× [0, τ ]. Thus,
ut(x, t) ≥ 0 in [0, 1]× [0, T ). �

2.4. Theorem. If u0 satisfies (1.2), then there exist a finite time T , such that the
solution u of the problem (1.1) quenches at time T .
Proof. Assume that u0 satisfies (1.2). Then there exist

w = (1− u (1, 0))−q +

∫ 1

0

(1− u (x, 0))−p dx > 0.

Introduce a mass function; m (t) =
∫ 1

0
(1− u (x, t)) dx, 0 < t < T . Then

m′ (t) = − (1− u (1, t))−q −
∫ 1

0

(1− u (x, t))−p dx ≤ −w,

by Lemma 2.3. Thus, m (t) ≤ m(0) − wt; which means that m (T0) = 0 for some
T0, (0 < T ≤ T0). Then u quenches in finite time. �
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2.5. Theorem. If u0 satisfies (1.2) and (1.3), then x = 1 is the only quenching point.
Proof. Define

J(x, t) = ux − ε (x− (1− η)) in [1− η, 1]× [τ, T ),

where η ∈ (0, 1), τ ∈ (0, T ) and ε is a positive constant to be specified later. Then, J(x, t)
satisfies

Jt − Jxx = p(1− u)−p−1ux > 0 in (1− η, 1)× (τ, T ),

since ux(x, t) > 0 in (0, 1] × (0, T ). Thus, J(x, t) cannot attain a negative interior
minimum by the maximum principle. Further, if ε is small enough, J(x, τ) > 0 since
ux(x, t) > 0 in (0, 1]× (0, T ). Furthermore, if ε is small enough,

J(1− η, t) = ux(1− η, t) > 0,

J(1, t) = (1− u(1, t))−q − εη > 1− εη > 0

for t ∈ (τ, T ). By the maximum principle, we obtain that J(x, t) > 0, i.e. ux >
ε (x− (1− η)) for (x, t) ∈ [1 − η, 1] × [τ, T ). Integrating this with respect to x from
(1− η) to 1, we have

u(1− η, t) < u(1, t)− εη2

2
< 1− εη2

2
.

So u does not quench in [0, 1). The theorem is proved. �

2.6. Theorem. ut blows up at the quenching point x = 1.
Proof. We will prove that ut blows up at quenching, as in [5]. Suppose that ut is bounded
on [0, 1] × [0, T ). Then, there exists a positive constant M such that ut < M . We have
uxx + (1− u)−p < M ⇒ uxx < M . Integrating this twice with respect to x from x to 1,
and then from 0 to 1, we have

1

(1− u(1, t))q
<
M

2
+ u(1, t)− u(0, t).

As t → T−, the left-hand side tends to infinity, while the right-hand side is finite. This
contradiction shows that ut blows up somewhere. �

3. A lower solution and an upper bound for the quenching time
3.1. Definition. µ is called a lower solution of problem (1.1) if µ satisfies the following
conditions:

µt − µxx ≤ (1− µ)−p , 0 < x < 1, 0 < t < T,

µx (0, t) = 0, µx (1, t) ≤ (1− µ(1, t))−q , 0 < t < T,
µ (x, 0) ≤ u0 (x) , 0 ≤ x ≤ 1.

It is an upper solution when the inequalities are reversed.

3.2. Lemma. Let u be a solution and µ be a lower solution of problem (1.1) in
[0, 1]× [0, T ). Then u ≥ µ in [0, 1]× [0, T ).
Proof. Let v(x, t) = u(x, t)− µ(x, t). Then v(x, t) satisfies

vt ≥ vxx + p (1− η)−p−1 v, 0 < x < 1, 0 < t < T,

vx (0, t) = 0, vx (1, t) ≥ q (1− ξ(1, t))−q−1 v(1, t), 0 < t < T,
v (x, 0) ≥ 0, 0 ≤ x ≤ 1,

where η(x, t) lies between u(x, t) and µ(x, t) and ξ(1, t) lies between u(1, t) and µ(1, t).
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For any fixed τ ∈ (0, T ), let

L = max
0≤x≤1, 0≤t≤τ

(
1

2
q (1− ξ(x, t))−q−1

)
,

M = 2L+ 4L2 + max
0≤x≤1, 0≤t≤τ

(
p (1− η(x, t))−p−1) .

Set w(x, t) = e−Mt−Lx2v(x, t). Then w satisfies

wt ≥ wxx + 4Lxwx + cw, 0 < x < 1, 0 < t ≤ τ,
wx(0, t) = 0, wx(1, t) ≥ d(t)w(1, t), 0 < t ≤ τ,
w(x, 0) ≥ 0, 0 ≤ x ≤ 1,

where c = c(x, t) ≤ 0 and d = d(t) ≤ 0. By the maximum principle, we obtain that
w ≥ 0 in [0, 1]× [0, τ ]. Thus, u ≥ µ in [0, 1]× [0, T ). �

3.3. Theorem. x = 1 is a quenching point.
Proof. Let min x∈[0,1]u0(x) = c ≥ 0. Define

µ(x, t) = 1−

(
(q + 1)

(
1− x2 + τ − t

)
2

)1/(q+1)

in [0, 1]× [0, τ ],

where τ = 2(1− c)q+1/(q + 1). We have

µt − µxx =
−1

2

(
(q + 1)

(
1− x2 + τ − t

)
2

)−q/(q+1)

−x2q

(
(q + 1)

(
1− x2 + τ − t

)
2

)(−2q−1)/(q+1)

≤ 0

for x ∈ (0, 1), t ∈ (0, τ ]. Further,

µx(0, t) = 0,

µx(1, t) = (1− µ(1, t))−q

for t ∈ (0, τ ]. Furthermore,

µ(x, 0) = 1−

(
(q + 1)

(
1− x2 + τ

)
2

)1/(q+1)

≤ 1−
(

(q + 1) τ

2

)1/(q+1)

= c,

for x ∈ [0, 1]. Thus, µ(x, t) is a lower solution of the problem (1.1). In addition, at
t = τ and x = 1, we get

µ(1, τ) = 1.

Hence, we have

u(1, τ) ≥ µ(1, τ) = 1

by Lemma 3.2. Thus, x = 1 is a quenching point. �

3.4. Remark. We can calculate an upper bound for the quenching time. From Theorem
3.3, maximum upper bound is T = 2/(q + 1) (for c = 0). Also, as in Remark 2.1,
u0(x) = 1

2
x4 (for q = 1), then we have T = 1.
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4. A quenching rate and lower bounds for the quenching time
In this section, we get a quenching rate and lower bounds for quenching time. Throughout
this section, we assume that

(4.1) ux(x, 0) ≥ x(1− u(x, 0))−q, 0 < x < 1,

(4.2) ut(1, t) = uxx(1, t) + (1− u(1, t))−p, 0 < t < T.

4.1. Theorem. If u0 satisfies (1.2), (1.3), (4.1) and (4.2), then there exists positive
constants C1 and C2 such that

if p > 2q + 1, then u(1, t) ≥ 1− C1(T − t)1/(p+1),

if q ≤ p ≤ 2q + 1, then u(1, t) ≥ 1− C2(T − t)1/(2q+2),

for t sufficiently close to T .
Proof. Define

J(x, t) = ux − x(1− u)−q in [0, 1]× [0, T ).

Then, J(x, t) satisfies

Jt − Jxx − p(1− u)−p−1J = 2q(1− u)−q−1ux + (p− q)x(1− u)−p−q−1

+xq(q + 1)(1− u)−q−2u2
x,

since ux > 0 and p ≥ q, J(x, t) cannot attain a negative interior minimum. On the other
hand, J(x, 0) ≥ 0 by (4.1) and

J(0, t) = 0, J(1, t) = 0,

for t ∈ (0, T ). By the maximum principle, we obtain that J(x, t) ≥ 0 for (x, t) ∈
[0, 1]× [0, T ). Therefore

Jx(1, t) = lim
h→0+

J(1, t)− J(1− h, t)
h

= lim
h→0+

−J(1− h, t)
h

≤ 0.

From (4.2), we get

Jx(1, t) = uxx(1, t)− (1− u(1, t))−q − q(1− u(1, t))−2q−1

= ut(1, t)− (1− u(1, t))−p − (1− u(1, t))−q − q(1− u(1, t))−2q−1 ≤ 0

and

if p > 2q + 1, then ut(1, t) ≤ (q + 2)(1− u(1, t))−p,

if q ≤ p ≤ 2q + 1, then ut(1, t) ≤ (q + 2)(1− u(1, t))−2q−1.

Integrating for t from t to T we get

if p > 2q + 1, then u(1, t) ≥ 1− C1(T − t)1/(p+1),

if q ≤ p ≤ 2q + 1, then u(1, t) ≥ 1− C2(T − t)1/(2q+2),

where C1 = [(q + 2)(p+ 1)]1/(p+1) and C2 = [(q + 2)(2q + 2)]1/(2q+2). �

4.2. Remark. We can calculate a lower bound for the quenching time. From Theorem
4.1, lower bounds are

if p > 2q + 1, then T = (1− u0(1))p+1/(q + 2)(p+ 1),

if q ≤ p ≤ 2q + 1, then T = (1− u0(1))2q+2/(q + 2)(2q + 2),

for quenching time T . If we choose, as Remark 1, u0(x) = 1
2
x4 (for q = 1), then we have

T ≈ 0.0021 for p = 4, q = 1,

T ≈ 0.0052 for 1 ≤ p < 3, q = 1.
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