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Abstract

If all cell counts nij of a given R × C contingency table are positive,
estimates of the expected frequencies mij can be found by applying any
regression estimator to the logarithm of the observed counts. If an R × C

table contains outlier(s), ordinary least squares estimates will be affected
by the outlier(s). Various authors have proposed several robust estimators
sensitive to outliers. In this study, robust estimators were applied to an R×C

contingency table with an outlier to obtain the robust parameter estimates
instead of the maximum likelihood (ML) estimates, and the results were
discussed.
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1. Introduction

We consider two-dimensional tables with r rows and c columns. If both variables of
the two-dimensional table are ordinal, and the scores are assigned to the row and
column variables {ui} and {vj}, where u1 < u2 < · · · < ur and v1 < v2 < · · · < vc,
the linear-by-linear association model is defined by Agresti [1] to be,

logmij = µ+ αi + βj + γ(ui − ū)(vj − v̄), ı = 1, . . . , r, j = 1, . . . , c (1)

When the scores are ui = i and vj = j, model (1) is represented by the following
uniform association model,

logmij = µ+ αi + βj + γ(uivj), i = 1, . . . , r, j = 1, . . . , c, (2)

where the constrains are
∑

i αi = 0 and
∑

j βj = 0 .

In model (2), for γ = 0 we obtain the usual independence model [4]. Since
model (2) has one more parameter than the usual independence model, the degree
of freedom is (r − 1)(c− 1)− 1.
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If all the cell counts nij of a given table are positive, estimates of the expected
frequenciesmij can be found by applying any regression estimator to the logarithm
of the observed counts [7]. The explanatory variables then consist of dummy
variables. Model (2) can be defined with dummy variables,

log nij = µ+

r−1
∑

k=1

αkIik +

c−1
∑

l=1

βlJlj , i = 1, . . . , r, j = 1, . . . , c, (3)

where I − ik and Jjl indicate the position of the cell in the table [7]. It is known
that outlier(s) affect the results of the analysis [2]. The least squares estimates
is very sensitive to outliers, so it is proposed some robust estimates have been
proposed for use in the precence of outliers. Robust regression is an alternative to
ordinary least squares that can be used when there is evidence that the distribution
of the error term is non-normal and/or there are outliers [10]. One class of robust
regression estimators is the M-estimators. Huber [5,6] introduced M-estimators
that minimizes the objective function of the residual,

min
θ

n
∑

i=1

ρ(ei), (4)

where ρ(ei) denotes the objective function. The derivative of ρ is denoted by ψ.
This may be more convenient when calculating estimators. ψ should be bounded
and approximately linear at the origin. If ψ is linear, the M-estimator become the
least squares estimator.

Some alternative choices for ψ are given below:

Hubers ψ function [5]:

ψ(x) =







k if x ≥ k

x if |x| < k

−k if x ≤ −k
(5)

Tukey’s ψ function (biweight),

ψ(x) =

{

0 if |x| > k

x(1− (x
k
)2) if |x| ≤ k

(6)

Andrew’s ψ function (sine),

ψ(x) =

{

sin(x
a
) if − πa < x < πa

0 otherwise,
(7)

where a = 1.142 and k = 1.345 [8].

In earlier studies, alternative solutions to ML were not mentioned when the
R × C tables included outlier(s). But Hubert [7] proposed a maximal breakdown
value of the L1 estimator in contingency tables. As ML estimators give biased
results, we applied the robust regression estimator [9] to an R×C table to see the
influence of the outlier.
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2. Numerical Example

Robust estimators and Least Absolute Regression (L1) were applied to an R× C
contingency table, and parameter estimates were obtained (Çetin and Aktaş, [3]).
Both variables in two-way contingency table are ordinal, so we may fit model (2).
Age is classified into the six groups 12− 14, 15− 19, 20− 24, 25− 34, 35− 54 and
55+. Similarly, educational status is classified into the seven groups illiterate (1),
literate without diploma (2), primary school (3), junior high school or equivalent

(4), high school (5), vocational high school (6), and universities and other higher

educational institutions (7). The 6× 7 contingency table is given below.

Table 1. Unemployment data by educational status and age groups

Educational Status

Age group 1 2 3 4 5 6 7

12− 14 1 1 23 2 0 0 0

15− 19 8 3 112 66 98 43 2

20− 24 2 0 76 58 165 42 69

25− 34 4 13 151 49 58 17 54

35− 54 22 19 161 39 34 18 21

55+ 26 4 5 12 2 2 2

Source: SIS Statistical yearbook of Turkey, 1999 [11].

Unemployed persons data, classified by educational status and broad age group,
for the year of 1999 in Turkey, are used in this study. We fit regression models
to Table 1 and the results are given in Table 2, Table 3 and Table 4. where, ai
indicate the row parameters and bj the column parameters. Statistically significant
parameter estimates are denoted by a star. Standardized residuals are plotted
against predicted values for all the estimators given in Figure 1.

3. Conclusion

To see the influence of an outlier, we created an outlier corresponding to the
(3, 5) th cell before applying the M-Estimator to the 6 × 7 unemployment data.
Tables 2 and 3 give the parameter estimates and estimated standard errors for the
OLS, ML and robust estimates with and without outlier, respectively. In Table 2,
all parameter estimates in ML are almost statistically significant, other estimators
have less significant estimates. While the age groups 25 − 34 and 35 − 54 are
significant for all estimates, the age group 20 − 24 is found to be significant only
for Huber and Andrews.
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Table 2. Parameter estimates and standard errors of OLS, Huber,
Tukey, Andrews and ML without outlier

Parameter Ordinary Least Huber Tukey Andrews Maximum

Estimates Squares Likelihood

µ 2.4255 ± 2.0037 1.8852± 1.8501 2.1797± 1.8974 1.6877 ± 1.7731 5.6306± 0.5196∗

α1 −2.0775± 1.2766 −1.6495± 1.1783 −1.9033± 1.2095 −1.5792± 1.1318 −3.1317± 0.3966∗

α2 0.8436 ± 1.0932 1.3900± 0.9965 1.0699± 1.0277 1.4028 ± 0.9601 −0.0691± 0.2813

α3 1.0520 ± 0.9258 1.7514± 0.8703 ∗ ∗ 1.3664± 0.8898 1.8806± 0.8449∗ 0.6683± 0.2227∗

α4 1.5332± 0.7846 ∗ ∗ 1.8279± 0.7137∗ 1.6551± 0.7377∗ 1.8460± 0.6862∗ 0.9841± 0.1810∗

α5 1.8130± 0.6861∗ 2.0502± 0.6152∗ 1.9004± 0.6374∗ 2.0422± 0.5880∗ 1.3473± 0.1564∗

β1 −1.0022± 1.3505 −0.9776± 1.2026 −0.9652± 1.2595 −0.8163± 1.1569 −0.1178± 0.0152∗

β2 −1.4632± 1.1905 −1.0761± 1.0972 −1.2112± 1.1312 −0.7854± 1.0590 −3.3505± 0.3583∗

β3 1.4423 ± 1.0414 1.4138± 0.9508 1.4676± 0.9793 1.5664± 0.9059 ∗ ∗ −3.3401± 0.3143∗

β4 0.7580 ± 0.9087 0.7367± 0.8196 0.7658± 0.8485 0.8399 ± 0.7800 −0.3146± 0.2183

β5 0.6136 ± 0.8005 0.5520± 0.7193 0.5968± 0.7520 0.6389 ± 0.6900 −0.7377± 0.1762∗

β6 0.0743 ± 0.7279 −0.0436± 0.6457 0.0340± 0.6741 0.0238 ± 0.6137 0.1254 ± 0.1324

γ −0.0392± 0.0549 −0.0253± 0.0496 −0.0332± 0.0512 −0.0213± 0.0474 −0.5615± 0.1294∗

∗P < 0.05, ∗∗P < 0.10

Table 3. Parameter estimates and standard errors of OLS, Huber,
Tukey, Andrews and ML with an outlier

Parameter Ordinary Least Huber Tukey Andrews Maximum

Estimates Squares Likelihood

µ 2.4812± 2.6616 1.8858± 2.0177 2.2232 ± 1.8767 1.9865± 1.8212 24.3658± 0.7787∗

α1 −2.1773± 1.6958 −1.6499± 1.2851 −1.9091± 1.1947 −1.7398± 1.1595 −17.9113± 0.5615∗

α2 0.7638± 1.4522 1.3898± 1.0869 1.0604 ± 1.0157 1.2567± 0.9823 −11.4966± 0.4053∗

α3 1.6907± 1.2298 1.7514 ± 0.9662 ∗ ∗ 0.9600 ± 0.8937 1.2117± 0.8742 −3.4801± 0.2906∗

α4 1.4933± 1.0423 1.8279± 0.7784∗ 1.6541± 0.7294∗ 1.7673 ± 0.7040∗ −3.9186± 0.2062∗

α5 1.7931 ± 1.9114 ∗ ∗ 2.0501± 0.6709∗ 1.8963± 0.6300∗ 1.9833 ± 0.6036∗ −0.6097± 0.1614∗

β1 −1.1070± 1.7940 −0.9777± 1.3224 −0.9528± 1.2473 −0.9296± 1.1945 −0.7609± 0.0247∗

β2 −1.5505± 1.5814 −1.0663± 1.1966 −1.2654± 1.1178 −1.0884± 1.0843 −16.5960± 0.6085∗

β3 1.3725± 1.3833 1.4134± 1.0369 1.5013 ± 0.9708 1.5340± 0.9358 −13.4736± 0.4631∗

β4 0.7056± 1.2070 0.7364± 0.8938 0.7091 ± 0.8426 0.8105± 0.8091 −8.0211± 0.3179∗

β5 1.3937± 1.0633 0.5518± 0.8074 0.2502 ± 0.7724 0.2648± 0.7406 −6.4129± 0.2426∗

β6 0.0568± 0.9670 −0.0441± 0.7042 0.0486 ± 0.6710 0.0254± 0.6401 0.4964± 0.1651∗

γ −0.0442± 0.0729 −0.0253± 0.0541 −0.0328± 0.0506 −0.0271± 0.0487 −2.4301± 0.1409∗

∗P < 0.05, ∗∗P < 0.10
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Table 4. Model Results

Without outlier

Mean Squares R2 Coefficient of P

Error variation (Model)

OLS 1.4789 0.6792 49.3550 0.0002

Huber 1.0925 0.7429 41.1919 0.0001

Tukey 1.1856 0.7181 43.2007 0.0001

Andrews 0.7099 0.7599 32.8498 0.001

With outlier

Mean Squares R2 Coefficient of P

Error variation (Model)

OLS 2.6095 0.5863 62.6014 0.0033

Huber 1.2994 0.7056 45.3542 0.0001

Tukey 1.1641 0.7227 44.2376 0.0001

Andrews 0.7573 0.7468 35.2856 0.0001

Figure 1. Scatter plots of standardized residuals against predicted
values with outlier
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The results were obtained in the presence of an outlier in Table 3. “Primary
school” is found to be significant only for Andrews (P < 0.10). Unlike the OLS
and ML estimators, robust parameter estimates were not affected by the outlier.
Standard errors of the OLS estimates are larger when there is an outlier. Note
that the highest mean squared error in Table 4 is obtained for the OLS method
when an outlier exists. The coefficient of variation is the minimum and R-squared
is the maximum for Andrews. In equation (2), γ indicates the association between
the row and column variables. In both cases of having outlier and no outlier,
we accept the hypothesis that there is no association between education and age,
H0 : γ = 0.

Standardized residuals are plotted against predicted values given in Figure 1.
We can see the influence of outliers for all estimates in Figure 1.

If the data does not contain an outlier, then OLS and robust regression give
similar estimates. Robust regression procedures give a weight to each observation
and will be able to detect outlier(s); weights close to zero show the outlier(s).
Robust estimators detected the (3, 5) th cell as an outlier, giving zero weight in
Table 1.
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