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Abstract

In this paper a theory of relations and corelations between the lattice
of fuzzy subsets of a crisp set X and that of a crisp set Y is developed,
based on the theory of relations and corelations between textures. In a
series of examples it is shown that these notions generalize in a natural
way the impotant concept of fuzzy relation from X to Y . Difunctions
are also characterized and their relationship with known mappings be-
tween fuzzy sets is investigated.
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1. Introduction

Throughout we consider fuzzy subsets of a crisp set X in the sense of Zadeh [11], that
is I-valued sets where I is the real unit interval [0, 1] endowed with the usual ordering ≤
and the order reversing involution ′ defined by s′ = 1 − s, s ∈ I. Thus a fuzzy subset µ
of X is identified with the function µ : X → I.
We will denote by F (X) the set of all fuzzy subsets of X endowed with the pointwise

order µ ≤ ν ⇐⇒ µ(x) ≤ ν(x) ∀x ∈ X and the order reversing involution µ′ given by
µ′(x) = (µ(x))′ = 1− µ(x) ∀x ∈ X.

It is well known that both I and F (X) are Hutton algebras, that is complete, completely
distributive lattices with an order reversing involution. In [3] it was shown that a texture
is associated with an arbitrary Hutton algebra L in a natural way. Here we recall that a
texture is a pair (S, S), where S is a crisp set and S a collection of subsets of S, called
a texturing of S, containing S and ∅, separating the points of S and for which (S,⊆)
is a complete, completely distributive lattice with meet

∧
coinciding with intersection
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and finite join ∨ coinciding with union. Here, to say that S separates the points of S
means that given s1, s2 ∈ S with s1 6= s2 there exists A ∈ S with s1 ∈ A, s2 /∈ A or there
exists A ∈ S with s2 ∈ A, s1 /∈ A. To associate a texture with a Hutton algebra L we
let ML denote the set of molecules of L, m ∈ L being a molecule if m is not the smallest
element of L and m ≤ a ∨ b, a, b ∈ L =⇒ m ≤ a or m ≤ b. Now for a ∈ L we set
â = {m ∈ML | m ≤ a} and ML = {â | a ∈ L}. In [3] it is shown that (ML,ML) is indeed
a texture and that the mapping a 7→ â is an isomorphism between the complete lattices
L and ML.

For the Hutton algebra I the molecules are just the non-zero elements, so MI = (0, 1]
and MI = {(0, s] | s ∈ I}, where (0, 0] is interpreted as ∅. Generally this texture is
denoted by (L,L), so throughout this paper we let MI = L and MI = L. When X is a
crisp set the molecules of F (X) are just the fuzzy points xs, x ∈ X, s ∈ L. Hence the
set MF (X) of molecules can be represented by the set X × L. Likewise for µ ∈ F (X) we
have µ̂ = {(x, s) ∈ X × L | s ≤ µ(x)} and MF (X) = {µ̂ | µ ∈ F (X)}. As in [3] we denote
the texture (MF (X),MF (X)) by (WX ,WX), or just by (W,W) if there is no danger of
confusion. Textures of the form (WX ,WX), X a crisp set, will be our main object of
study in this paper.

Several aspects of the theory of textures have been studied in the literature [1–4,8].
Here we will be mainly concerned with relations and functions between textures and the
necessary background will be included in the next section. To complete this introduction
we will just mention some basic definitions and results which will be essential for an
understanding of the material to follow.

Let (S, S) be a texture. For s ∈ S, both the sets

Ps =
⋂
{A ∈ S | s ∈ A} and Qs =

∨
{A ∈ S | s /∈ A} =

∨
{Pu | Ps 6⊆ Pu}

belong to S and play an important role in the development of the theory. For the so
called discrete texture (X,P(X)), where X is a crisp set and P(X) = {A | A ⊆ X} we
clearly have Px = {x}, Qx = X \ {x} for x ∈ X, while for the texture (L,L) and s ∈ L
we have Ps = Qs = (0, s]. Despite the considerable variation in the actual values of these
sets we have, for example,

1.1. Lemma. (cf. [4]) If (S, S) is a texture, A,B ∈ S, then

(1) A =
∨
{Ps | A 6⊆ Qs}.

(2) A =
⋂
{Qs | Ps 6⊆ A}.

(3) A 6⊆ B =⇒ ∃ s ∈ S with A 6⊆ Qs and Ps 6⊆ B.

Result (3) is particularly useful in proving inclusion by reductio ad absurdum, and will
be used without comment in the sequel. It should also be noted that A 6⊆ Qs implies
that Ps ⊆ A, but not conversely in general.

If (S, S), (T,T) are textures, their product is the texture (S × T, S ⊗ T), where the
product texturing S⊗ T consists of arbitrary intersections of sets of the form (A× T ) ∪
(S×B) for A ∈ S and B ∈ T. This definition can be extended in the obvious way to give
a product of any finite or infinite family of textures. We note in particular that

1.2. Lemma. (cf. [4]) Let (S, S), (T,T) be textures. Then for (s, t) ∈ S × T ,

(1) P(s,t) = Ps × Pt,

(2) Q(s,t) = (Qs × T ) ∪ (S ×Qt),

with an obvious extension to more than two textures.

It is verified in [3] that the texturing WX =MP (X) on WX =MP (X) = X × L is the
product of the discrete texturing P(X) of X and the texturing L of L. In particular, by
Lemma 1.2 we have P(x,s) = {x} × (0, s] and Q(x,s) = ((X \ {x})× L) ∪ (X × (0, s]) for



Relations and Corelations between Lattices of Fuzzy Subsets 71

all (x, s) ∈ X × L. Hence, in particular, P(x,s) 6⊆ Q(x′,s′) ⇐⇒ x = x′ and s′ < s, a fact
which will be used without comment below. It will be useful to identify the elements of
F (X) corresponding to P(x,s) and Q(x,s).

1.3. Lemma. For (x, s) ∈WX we have

(1) P(x,s) = x̂s, where xs ∈ F (X) given by xs(z) =

{
s z = x

0 z ∈ X \ {x}
is the fuzzy

point at x with value s.

(2) Q(x,s) = x̂s, where xs ∈ F (X) given by xs(z) =

{
s z = x

1 z ∈ X \ {x}
is called the

fuzzy copoint at x with value s.

Proof. Straightforward. ¤

If (S, S) and (T,T) are textures, a bijection ϕ : S → T is called a textural isomorphism
[2] if ϕ[A] ∈ T for every A ∈ S and the mapping A 7→ ϕ[A] is a bijection between S and
T. The reader may easily verify that for textures (S1, S1), (S2, S2), (S3, S3) the mapping
((s1, s2), s3) 7→ (s1, (s2, s3)) from (S1×S2)×S3 to S1×(S2×S3) is a textural isomorphism
between ((S1×S2)×S3, (S1⊗S2)⊗S3) and (S1× (S2×S3), S1⊗ (S2⊗S3)). This enables
us to identify these textures when convenient.

In general a texturing S need not be closed under set complementation. For example,
this is the case for the texturings L and W defined above. On the other hand, in some
cases there exists a mapping σ : S → S, called a complementation on (S, S), satisfying
σ(σ(A)) = A ∀A ∈ S and A ⊆ B =⇒ σ(B) ⊆ σ(A) ∀A,B ∈ S, which can be
thought of as a tool to compensate for the lack of set complementation. When σ is a
complementation on (S, S), (S, S, σ) is referred to as a complemented texture.

For the discrete texturing P(X) of a set X, which is closed under set complementation,
the usual complement πX : P(X)→ P(X), A 7→ X \ A, is indeed a complementation on
(X,P(X)) in the above sense. For the texture (L,L) there is a natural complementation
λ : L → L defined by λ((0, s]) = (0, 1− s], s ∈ I, where again we set (0, 0] = ∅. Likewise,
there is a complementation ωX onWX defined by ωX(µ̂) = µ̂′ = {(x, s) | s ≤ 1−µ(x)} =
{(x, s) | µ(x) ≤ 1− s}.

In [3] the product complementation on a product of complemented textures is defined
and it is shown that the complementation ω on (WX ,WX) is in fact the product of the
complementations πX and λ. By [3, Lemma 2.7] we deduce that ω(A×L) = πX(A)×L
and ω(X ×B) = X ×λ(B) for A ⊆ X, B ∈ L, from which we obtain the following useful
result:

1.4. Lemma. (cf. [4, Examples 3.11 (4)]) In the complemented texture (WX ,WX , ωX),

(1) ωX(P(x,s)) = Q(x,1−s), and

(2) ωX(Q(x,s)) = P(x,1−s)

for all (x, s) ∈WX . Here Q(x,0) is to be interpreted as (X \ {x})× L, and P(x,0) as ∅.

For notions from lattice theory not defined here the reader is referred to [6].

The original material in this paper forms part of the first author’s PhD thesis [10].

2. Representation of Relations and Corelations

The standard theory of binary relations between sets is largely inappropriate for the
study of textures, and the second author has developed a theory of relations and corela-
tions, and of pairs, called direlations, consisting of a relation and a corelation, between
two textures. This work appears in the preprint [1], and a large part of it has been
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published in [4]. For the benefit of the reader we will repeat the basic definitions and
results at the appropriate place in the text.

Let (S, S) and (T,T) be textures. Both relations and corelations from (S, S) to (T,T)
are elements of the product texturing P(S) ⊗ T. To avoid confusion we denote the p-

sets and q-sets of this texture by P (s,t), Q(s,t) for (s, t) ∈ S × T . Let X and Y be

crisp sets. Then as noted above, the Hutton algebras F (X) and F (Y ) are associated
with the Hutton textures (WX ,WX) and (WY ,WY ), respectively (for the moment we
are ignoring the complementations). How can we represent a relation or corelation from
(WX ,WX) to (WY ,WY ) in terms of fuzzy sets? Due to the previous considerations,
such a relation or corelation is an element of the product texturing P(WX) ⊗ WY =
P(X × L) ⊗ (P(Y ) ⊗ L). By the remarks following Lemma 1.3, we can identify this
texturing with (P(X × L)⊗ P(Y ))⊗ L, which is just P(X × L× Y )⊗ L. However, this
is precisely the Hutton texturing of the crisp set X ×L× Y , whose elements correspond
in a one to one way to the fuzzy subsets of X × L× Y .

Having set up a correspondence in this way between P(WX)⊗WY and the set F (X×
L × Y ), we are in a position to represent relations and corelations from (WX ,WX) to
(WY ,WY ) as elements of F (X ×L×Y ) satisfying appropriate conditions. To determine
these conditions, we recall the following:

2.1. Definition. [4] Let (S, S), (T,T) be textures. Then

(1) r ∈ P(S)⊗ T is called a relation from (S, S) to (T,T) if it satisfies

R1 r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t).

R2 r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

(2) R ∈ P(S)⊗ T is called a corelation from (S, S) to (T,T) if it satisfies

CR1 P (s,t) 6⊆ R,Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R.

CR2 P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.
(3) A pair (r,R), where r is a relation and R a corelation from (S, S) to (T,T), is

called a direlation from (S, S) to (T,T).

It will be noted that relations and corelations in the sense of Definition 2.1 are, in
particular, binary relations from S to T in the classical sense. Where confusion is likely,
the former are referred to as textural relations and textural corelations, respectively, or
the latter are referred to as point relations.

Now let r be a relation from (WX ,WX) to (WY ,WY ), and µr the corresponding
element of F (X × L × Y ). Then r = µ̂r, where we are taking µ̂r = {((x, s), (y, t)) |
t ≤ µr(x, s, y)} in place of {((x, s, y), t) | t ≤ µr(x, s, y)} in view of the identification
mentioned above. Likewise, for a corelation R from (WX ,WX) to (WY ,WY ), we also
have R = µ̂R = {((x, s), (y, t)) | t ≤ µR(x, s, y)}, where µR is the corresponding element
of F (X ×L×Y ). The next lemma will be needed in the proof of Theorem 2.3. Its proof
in straightforward, and is omitted.

2.2. Lemma. Let r be a relation and R a corelation from (WX ,WX) to (WY ,WY ).
Then:

(1) r = µ̂r 6⊆ Q((x,s),(y,t)) ⇐⇒ t < µr(x, s, y),

(2) P ((x,s),(y,t)) 6⊆ µ̂R = R ⇐⇒ t > µR(x, s, y).

Now we have:

2.3. Theorem.

(1) Take r ∈ P(WX)⊗WY and let µr be the corresponding element of F (X×L×Y ).
Then r is a relation from (WX ,WX) to (WY ,WY ) if and only if for all (x, y) ∈
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X × Y we have

µr(x, s, y) =
∨
{µr(x, s

′, y) | 0 < s′ < s} ∀ s ∈ L.

(2) Take R ∈ P(WX)⊗WY and let µR be the corresponding element of F (X×L×Y ).
Then R is a corelation from (WX ,WX) to (WY ,WY ) if and only if for all (x, y) ∈
X × Y we have

µR(x, s, y) =
∧
{µR(x, s

′, y) | s < s′ ≤ 1} ∀ s ∈ L.

In particular if r is a relation and R a corelation then µr(x, s, y), µR(x, s, y) are
monotonically increasing functions of s for fixed x and y, while µR(x, 1, y) = 1 ∀ (x, y) ∈
X × Y .

Proof. (1) =⇒ . Let r be a relation. Suppose first that there exists x ∈ X, y ∈ Y and s′,
0 < s′ < s, with µr(x, s, y) < µr(x, s

′, y). If we let t = µr(x, s, y) then r 6⊆ Q((x,s′),(y,t))

by Lemma 2.2 (1), while P(x,s) 6⊆ Q(x,s′) since s
′ < s. By the condition R1 we obtain

r 6⊆ Q((x,s),(y,t)), and hence the contradiction t < µr(x, s, y) by Lemma 2.2 (1). Thus
∨
{µr(x, s

′, y) | 0 < s′ < s} ≤ µr(x, s, y).

Now suppose that the above inequality is strict and choose t ∈ L satisfying
∨
{µr(x, s

′, y) |
0 < s′ < s} < t < µr(x, s, y). Then t < µr(x, s, y) by Lemma 2.2 (1) and so there exists

s′ ∈ L such that P(x,s) 6⊆ Q(x,s′) and r 6⊆ Q((x,s′),(y,t)) by condition R2. But now

0 < s′ < s and so t < µr(x, s
′, y) ≤

∨
{µr(x, s

′, y) | 0 < s′ < s} < t, which is a
contradiction. Hence

µr(x, s, y) =
∨
{µr(x, s

′, y) | 0 < s′ < s}

for all x ∈ X, y ∈ Y and s ∈ L.

⇐=. Take r ∈ P(X) ⊗ L with µr satisfying the stated equality. Suppose that r 6⊆
Q((x,s),(y,t)), whence t < µr(x, s, y) by Lemma 2.2 (1).

First let P(x,s′) 6⊆ Q(x,s). Then s < s′ so t < µr(x, s, y) ≤ µr(x, s
′, y) since in particular

µr is a monotonically increasing function of s, and we have r 6⊆ Q((x,s′),(y,t)). Hence R1

holds.

To establish R2 note that from t < µr(x, s, y) =
∨
{µr(x, s

′, y) | 0 < s′ < s} there
exists s′ ∈ L, s′ < s satisfying t < µr(x, s

′, y). This gives us P(x,s) 6⊆ Q(x,s′) and

r 6⊆ Q((x,s′),(y,t)), as required.

(2). The proof is dual to (1), and is omitted.

If r is a relation and R a corelation, the fact that µr(x, s.y) and µR(x, s, y) are mono-
tonically increasing functions of s for arbitrary x ∈ X, y ∈ Y is an immediate consequence
of the equalities proved in (1) and (2), respectively. Finally, µR(x, 1, y) =

∧
{µR(x, s

′, y) |
s < s′ ≤ 1} = 1 since {µR(x, s

′, y) | s < s′ ≤ 1} = ∅ and 1 is the largest element of
(L,≤). ¤

2.4. Definition. Let φ, Φ be fuzzy subsets of X × L× Y .

(1) If φ(x, s, y) =
∨
{φ(x, s′, y) | 0 < s′ < s} for all (x, s, y) ∈ X ×L× Y we call φ a

textural fuzzy relation from F (X) to F (Y ).
(2) If Φ(x, s, y) =

∧
{Φ(x, s′, y) | s < s′ ≤ 1} for all (x, s, y) ∈ X × L× Y we call Φ

a textural fuzzy corelation from F (X) to F (Y ).
(3) If φ is a textural fuzzy relation and Φ a textural fuzzy corelation, (φ,Φ) is called

a textural fuzzy direlation from F (X) to F (Y ).
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Throughout this paper we will abbreviate “textural fuzzy relation” to “relation,” and
likewise for “corelation” and “direlation.” Since we will not be considering binary relations
from F (X) to F (Y ) in the classical sense at all, this will cause no confusion.

2.5. Example. Let ϕ be a fuzzy relation from X to Y , that is a fuzzy subset of X × Y .
There are many ways in which a direlation from F (X) to F (Y ) may be associated with
ϕ. We present one such direlation (φ,Φ) for which the above mentioned association will
be found to have some useful properties, namely

φ(x, s, y) = ϕ(x, y) ∧ s, and Φ(x, s, y) = (1− ϕ(x, y)) ∨ s

for all (x, s, y) ∈ X × L × Y . It is trivial to verify that φ is indeed a relation and Φ a
corelation according to Definition 2.4.

2.6. Example. The identity direlation (i, I) on a texture (S, S) is defined by

i =
∨
{P (s,s) | s ∈ S} and I =

⋂
{Q(s,s) | s ∈ S

[}.

If we consider the identity on (WX ,WX), the corresponding direlation (µi, µI) on F (X)
is given by

µi(x, s, y) =

{
0 x 6= y

s x = y
, µI(x, s, y) =

{
1 x 6= y

s x = y
.

The proof is straightforward, and is left to the interested reader. We will refer to (µi, µI)
as the identity direlation on F (X). Note that if ϕ is the identity (fuzzy) relation on X,
that is for all x, y ∈ X

ϕ(x, y) =

{
0 x 6= y

1 x = y
,

then µi(x, s, y) = ϕ(x, y) ∧ s and µI(x, s, y) = (1 − ϕ(x, y)) ∨ s, so the correspondence
defined in Example 2.5 preserves identities.

2.7. Lemma. Let (c, C), (d,D) be direlations from (WX ,WX) to (WY ,WY ) and (µc, µC),
(µd, µD) the corresponding direlations from F (X) to F (Y ). Then:

(1) c ⊆ d ⇐⇒ µc ≤ µd.

(2) C ⊆ D ⇐⇒ µC ≤ µD.

(3) (c, C) v (d,D) ⇐⇒ µc ≤ µd and µD ≤ µC .

Proof. (1) Immediate from Lemma 2.2 (1).

(2) Immediate from Lemma 2.2 (2).

(3) By definition (c, C) v (d,D) means c ⊆ d and D ⊆ C. Hence this result follows
at once from (1) and (2). ¤

2.8. Definition. Let (φ,Φ), (ψ,Ψ) be direlations from F (X) to F (Y ). Then we write
(φ,Φ) v (ψ,Ψ) to denote φ ≤ ψ and Ψ ≤ Φ.

Let us next recall the following concepts from [4].

2.9. Definition. Let r be a relation, R a corelation from (S, S) to (T,T), and define

r← =
⋂
{Q(t,s) | r 6⊆ Q(s,t)}, R← =

∨
{P (t,s) | P (s,t) 6⊆ R}.

Then r← is a corelation and R← a relation from (T,T) to (S, S), so that (r,R)← =
(R←, r←) is a direlation from (T,T) to (S, S). Each of r←, R← and (r,R)← is known as
the inverse of r, R and (r,R), respectively.

A direlation on (S, S) is known as symmetric if (r,R)← = (r,R).
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Now consider a direlation (r,R) from (WX ,WX) to (WY ,WY ), and let (µr, µR) be the
corresponding direlation from F (X) to F (Y ). The following theorem gives formulae for
calculating the direlation (µR← , µr←) from F (Y ) to F (X) corresponding to the inverse
(r,R)← from (WY ,WY ) to (WX ,WX).

2.10. Theorem. With the notation above, for (y, t, x) ∈ Y × L×X we have:

µr←(y, t, x) =
∨
{s ∈ L | µr(x, s, y) ≤ t}, and

µR←(y, t, x) =
∧
{s ∈ L | t ≤ µR(x, s, y)}.

Proof. By [4, Lemma 2.4 (1)] we have r 6⊆ Q((x,s),(y,t)) ⇐⇒ P ((y,t),(x,s)) 6⊆ r←, so

t < µr(x, s, y) ⇐⇒ s > µr←(y, t, x) by Lemma 2.2. Thus µr(x, s, y) ≤ t ⇐⇒ s ≤
µr←(y, t, x), from which the first equality follows immediately.

The proof of the second equality is dual to the above, and is omitted. ¤

2.11. Definition. Let (φ,Φ) be a direlation from F (X) to F (Y ) and for (y, t, x) ∈
Y × L×X set

φ←(y, t, x) =
∨
{s ∈ L | φ(x, s, y) ≤ t}, Φ←(y, t, x) =

∧
{s ∈ L | t ≤ Φ(x, s, y)}.

Then the corelation φ←, the relation Φ← and the direlation (φ,Φ)← = (Φ←, φ←) from
F (Y ) to F (X) is known as the inverse of φ, Φ and (φ,Φ), respectively.

If a direlation (φ,Φ) on F (X) satisfies (φ,Φ)← = (φ,Φ) it is called symmetric.

2.12. Examples.

1. Let the direlation (φ,Φ) from F (X) to F (Y ) correspond to the fuzzy relation
ϕ from X to Y as in Example 2.5. Then it is easy to verify that (φ,Φ)← =
(Φ←, φ←) is given by

Φ←(y, t, x) =

{
0 ϕ(x, y) ≤ 1− t

t 1− t < ϕ(x, y)
, φ←(y, t, x) =

{
1 ϕ(x, y) ≤ t

t t < ϕ(x, y)
.

It is clear from the form of these equalities that Φ←, φ← do not in general
correspond to a fuzzy relation from Y to X under the correspondence described
in Example 2.5. Hence, in general, the inverses in the sense of Definition 2.11
are independent of any notion of inverse for fuzzy relations under the given
correspondence.

2. Since for any texture (S, S) the identity direlation on (S, S) is symmetric [4] it
follows that the identity direlation (µi, µI) on F (X) is symmetric. This may
also be observed directly on taking ϕ to be the identity (fuzzy) relation in (1).

It is known from [4, Lemma 2.4] that if (r,R) is a direlation from (S, S) to (T,T) then
(r←)← = r and (R←)← = R. Hence:

2.13. Proposition. Let (φ,Φ) be a direlation from F (X) to F (Y ). Then (φ←)← = φ
and (Φ←)← = Φ.

Proof. For some direlation (r,R) from (WX ,WX) to WY ,WY ) we have φ = µr and
Φ = µR by Theorem 2.3. Hence

(φ←)← = (µ←r )
← = (µr←)

← = µ(r←)← = µr = φ

by the result mentioned above. The proof of (Φ←)← = Φ is similar. ¤
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2.14. Note. Properties of relations, corelations and direlations in the sense of Defini-
tion 2.4 which depend on known results for relations, corelations or direlations between
general textures, as in the above proposition, will be given without proof in what follows.
Generally speaking only the counterparts of the more major results will be mentioned
explicitly and the interested reader may consult [1] or [4] for further information.

The counterparts of the remaining results from [4, Lemma 2.4] will also be useful.
They are given in the following proposition.

2.15. Proposition.

(1) For a direlation (φ,Φ) from F (X) to F (Y ), x ∈ X, y ∈ Y, s, t ∈ L we have

t < φ(x, s, y) ⇐⇒ φ←(y, t, x) < s and Φ(x, s, y) < t ⇐⇒ s < Φ←(y, t, x).

(2) Let (φ1,Φ1), (φ2,Φ2) be direlations from F (X) to F (Y ). Then

φ1 ≤ φ2 ⇐⇒ φ←2 ≤ φ←1 and Φ1 ≤ Φ2 ⇐⇒ Φ←2 ≤ Φ←1 .

One of the most important concepts for point relations is that of composition. We
recall the following analogues for relations, corelations and direlations between textures
[4, Definition 2.13].

2.16. Definition. Let (S, S), (T,T), (U,U) be textures.

(1) If c is a relation from (S, S) to (T,T) and d a relation from (T,T) to (U,U) then
their composition is the relation d ◦ c from (S, S) to (U,U) defined by

d ◦ c =
∨
{P (s,u) | ∃ t ∈ T with c 6⊆ Q(s,t) and d 6⊆ Q(t,u)}.

(2) If C is a corelation from (S, S) to (T,T) and D a corelation from (T,T) to (U,U)
then their composition is the corelation D ◦ C from (S, S) to (U,U) defined by

D ◦ C =
⋂
{Q(s,u) | ∃ t ∈ T with P (s,t) 6⊆ C and P (t,u) 6⊆ D}.

(3) With c, d; C, D as above, the composition of the direlations (c, C), (d,D) is the
direlation (d,D) ◦ (c, C) = (d ◦ c,D ◦ C).

Now we may give:

2.17. Theorem. Let (c, C) be a direlation from (WX ,WX) to (WY ,WY ) and (d,D)
a direlation from (WY ,WY ) to (WZ ,WZ). If (µc, µC), (µd, µD) and (µd◦c, µD◦C) are
the corresponding direlations from F (X) to F (Y ), F (Y ) to F (Z) and F (X) to F (Z),
respectively, then for (x, s, z) ∈ X × L× Z,

(1) µd◦c(x, s, z) =
∨
{µd(y, t, z) | y ∈ Y, 0 < t < µc(x, s, y)}, and

(2) µD◦C(x, s, z) =
∧
{µD(y, t, z) | y ∈ Y, µC(x, s, y) < t ≤ 1}.

In particular, the first equality may be written in the form

µd◦c(x, s, z) =
∨
{µd(y, µc(x, s, y), z) | y ∈ Y with µc(x, s, y) > 0}.

Proof. (1) Lemma 2.2 (1), together with Definition 2.16 (1), lead easily to the equivalence

w < µd◦c(x, s, z) ⇐⇒ ∃ y ∈ Y, t ∈ L with t < µc(x, s, y) and w < µd(y, t, z)

for all w ∈ L. The required equality is now immediate.

(2) The proof is dual to the above, and is omitted.

To establish the final equality, note first that the function µd is monotonically in-
creasing in its second argument (Theorem 2.3), so t < µc(x, s, y) =⇒ µd(y, t, z) ≤
µd(y, µc(x, s, y), z). Hence

µd◦c(x, s, z) ≤
∨
{µd(y, µc(x, s, y), z) | y ∈ Y, µc(x, s, y) > 0}.
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On the other hand, if w <
∨
{µd(y, µc(x, s, y), z) | y ∈ Y with µc(x, s, y) > 0} there

exists y ∈ Y with w < µd(y, µc(x, s, y), z), and then by Theorem 2.3 (1) there exists
t ∈ L with w < µd(y, t, z) and t < µc(x, s, y). Hence w < µd◦c(x, s, z) by (1), which
proves

∨
{µd(y, µc(x, s, y), z) | y ∈ Y with µc(x, s, y) > 0} ≤ µd◦c(x, s, z). ¤

2.18. Definition. Let (φ,Φ) be a direlation from F (X) to F (Y ) and (θ,Θ) a direlation
from F (Y ) to F (Z). Then the composition (θ,Θ) ◦ (φ,Φ) of (φ,Φ) and (θ,Θ) is the
direlation (θ ◦ φ,Θ ◦ Φ) from F (X) to F (Y ) defined by the equalities

(1) (θ ◦ φ)(x, s, z) =
∨
{θ(y, t, z) | y ∈ Y, 0 < t < φ(x, s, y)},

(2) (Θ ◦ Φ)(x, s, z) =
∧
{Θ(y, t, z) | y ∈ Y, Φ(x, s, y) < t ≤ 1}.

As in Theorem 2.17, an alternate formula for θ ◦ φ is

(θ ◦ φ)(x, s, z) =
∨
{θ(y, φ(x, s, y), z) | y ∈ Y, φ(x, s, y) > 0}.

2.19. Definition. A relation φ on F (X) is called transitive if φ ◦φ ≤ φ and a corelation
Φ on F (X) is transitive if Φ ≤ Φ ◦ Φ. In this case the direlation (φ,Φ) in F (X) is also
said to be transitive.

In view of [4, Proposition 2.17] we have:

2.20. Theorem.

(1) The identity direlation (µi, µI) (Example 2.6 ) is the identity for composition. In
particular, (µi, µI) is transitive.

(2) The operation of taking the composition of relations, corelations and direlations

is associative.

(3) With the notation of Definition 2.16,

(θ ◦ φ)← = φ← ◦ θ← and (Θ ◦ Φ)← = Φ← ◦Θ←.

2.21. Example. Let ϕ ∈ F (X × Y ), ϑ ∈ F (Y × Z) be fuzzy relations and (φ,Φ) (θ,Θ)
the corresponding direlations under the correspondence given in Example 2.5. Then for
(x, s, z) ∈ X × L× Z we have

(θ ◦ φ)(x, s, z) =
∨
{θ(y, φ(x, s, y), z) | y ∈ Y, φ(x, s, y) > 0}

=
∨
{ϑ(y, z) ∧ φ(x, s, y) | y ∈ Y, φ(x, s, y) > 0}

=
∨
{ϑ(y, z) ∧ ϕ(x, y) ∧ s | y ∈ Y }

=
(∨

{ϑ(y, z) ∧ ϕ(x, y) | y ∈ Y }
)
∧ s

= (ϑ ◦ ϕ)(x, z) ∧ s.

Hence θ ◦ φ corresponds to the composition ϑ ◦ ϕ of the fuzzy relations ϕ and ϑ, taken
with respect to the min t-norm [7]. Likewise it may be verified that

(Θ ◦ Φ)(x, s, z) =
(
1−

∨
{ϑ(y, z) ∧ ϕ(x, y) | y ∈ Y }

)
∨ s,

whence (Θ ◦Φ) = (1− (θ ◦φ)(x, z))∨ s, and so Θ ◦Φ also corresponds to ϑ ◦ϕ under the
correspondence given in Example 2.5.

Next we turn to a study of sections of relations and corelations.

2.22. Definition. [4, Definition 2.5], Let (S, S), (T,T) be textures, (r,R) a direlation
from (S, S) to (T,T) and A ∈ S.

(1) The A–section of r is the element r→A of T defined by

r→A =
⋂
{Qt | ∀ s, r 6⊆ Q(s,t) =⇒ A ⊆ Qs}.
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(2) The A–section of R is the element R→A of T defined by

R→A =
∨
{Pt | ∀ s, P (s,t) 6⊆ R =⇒ Ps ⊆ A}.

2.23. Theorem. Let (r,R) be a direlation from (WX ,WX) to (WY ,WY ), (µr, µR) the
direlation from F (X) to F (Y ) corresponding to (r,R), and α ∈ F (X). Then for β ∈ F (Y )
we have:

(1) r→α̂ = β̂ ⇐⇒ β(y) =
∧
{t ∈ L | s < α(x) =⇒ µr(x, s, y) ≤ t} ∀ y ∈ Y ,

(2) R→α̂ = β̂ ⇐⇒ β(y) =
∨
{t ∈ L | α(x) < s =⇒ t ≤ µR(x, s, y)} ∀ y ∈ Y ,

where the implications on the right are taken over all x ∈ X and s ∈ L.

Proof. (1) By Definition 2.22,

r→α̂ =
⋂
{Q(y,t) | (x, s) ∈ X × L, r 6⊆ Q((x,s),(y,t)) =⇒ α̂ ⊆ Q(x,s)}

=
⋂
{Q(y,t) | t < µr(x, s, y) =⇒ α(x) ≤ s}

=
⋂
{Q(y,t) | (x, s) ∈ X × L, s < α(x) =⇒ µr(x, s, y) ≤ t},

whence f→α̂ = β̂ ⇐⇒ (w ≤ β(y) ⇐⇒ (s < α(x) =⇒ µr(x, s, y) ≤ t)). The required
equality now follows easily.

(2) The proof is dual to (1), and is left to the interested reader. ¤

2.24. Definition. Let (φ,Φ) be a direlation from F (X) to F (Y ) and α ∈ F (X). Then:

(1) β ∈ F (Y ) defined by β(y) =
∧
{t ∈ L | s < α(x) =⇒ φ(x, s, y) ≤ t}, y ∈ Y , is

called the α-section of the relation φ and is denoted by β = φ→α,
(2) β ∈ F (Y ) defined by β(y) =

∨
{t ∈ L | α(x) < s =⇒ t ≤ Φ(x, s, y)}, y ∈ Y , is

called the α-section of the corelation Φ and is denoted by β = Φ→α.

The element φ→α of F (Y ) may also be called the image, and Φ→α the co-image
of α under (φ,Φ), although we normally reserve this terminology for difunctions (see
Definition 3.3). Clearly φ→, Φ→ define mappings (actually, functors) from F (X) to
F (Y ). The following gives some basic properties of these mappings.

2.25. Theorem. For direlations (φ,Φ), (φ1,Φ1), (φ2,Φ2) from F (X) to F (Y ), α, α1, α2 ∈
F (X) we have:

(1) α1 ≤ α2 =⇒ φ→α1 ≤ φ→α2 and Φ→α1 ≤ Φ
→α2.

(2) t < φ(x, s, y) ⇐⇒ φ→xs £ yt and Φ(x, s, y) < t ⇐⇒ yt £ Φ→xs.

(3) (a) (φ1 ≤ φ2) ⇐⇒ (φ→1 α ≤ φ→2 α ∀α ∈ F (X)),
(b) (Φ1 ≤ Φ2) ⇐⇒ (Φ→1 α ≤ Φ

→
2 α ∀α ∈ F (X)).

(4) For any αj ∈ F (X), j ∈ J , we have

φ→(
∨

j∈J

αj) =
∨

j∈J

φ→αj and Φ→(
∧

j∈J

αj) =
∧

j∈J

Φ→αj .

(5) If (θ,Θ) is a direlation from F (Y ) to F (Z) then

(θ ◦ φ)→α = θ→(φ→α) and (Θ ◦ Φ)→α = Θ→(Φ→α).

Proof. (1) is trivial and (2), (3) follow from [4, Lemma 2.6, Lemma 2.7], respectively. Fi-
nally, (4) is a consequence of [4, Corollary 2.12], and (5) follows from [4, Lemma 2.16 (1)].

¤

2.26. Example. In case φ corresponds to the fuzzy relation ϕ, let us verify that for
α ∈ F (X) we have

(φ→α)(y) =
∨
{ϕ(x, y) ∧ α(x) | x ∈ X}, y ∈ Y.
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Suppose first that (φ→α)(y) < w <
∨
{ϕ(x, y) ∧ α(x) | x ∈ X}. Then we have t < w

satisfying s < α(x) =⇒ ϕ(x, y) ∧ s ≤ t, and also x ∈ X with w < ϕ(x, y) ∧ α(x).
Clearly w < α(x) and ϕ(x, y) ∧ w = w, so taking s = w in the above implication gives
the contradiction w ≤ t.

On the other hand suppose that
∨
{ϕ(x, y) ∧ α(x) | x ∈ X} < w < (φ→α)(y). The

right hand inequality now gives x ∈ X and s ∈ L satisfying s < α(x) and ϕ(x, y)∧s > w.
However we now have ϕ(x, y)∧α(x) > w, and hence the contradiction

∨
{ϕ(x, y)∧α(x) |

x ∈ X} > w. This completes the proof of the above formula for (φ→α). Hence, in case φ
is obtained from ϕ as given in Example 2.5, we see that the α-section is non other than
the full image ϕ′′α of α under ϕ, calculated using the min t-norm [7, Definition 2.9].

The reader may easily verify the dual formula

(Φ→α)(y) =
∧
{(1− ϕ(x, y)) ∨ α(x) | x ∈ X}, y ∈ Y,

for Φ→α, where α ∈ F (X) and Φ is the corelation corresponding to ϕ.

We now give a definition of the presections of a relation and corelation based on [4,
Definition 2.8].

2.27. Definition. Let (φ,Φ) be a direlation from F (X) to F (Y ), and β ∈ F (Y ). Then

(1) The β-presection of φ is the β-section of the corelation φ← from F (Y ) to F (X).
(2) The β-presection of Φ is the β-section of the relation Φ← from F (Y ) to F (X).

The presection mappings (or functors) are therefore (φ←)→ and (Φ←)→. We will
normally abbreviate the β-presection (φ←)→β to φ←β, and the β-presection (Φ←)→β
to Φ←β, in conformity with standard mathematical practice. Again, φ←β may also be
called the inverse image and Φ←β the inverse co-images of β under (φ,Φ), terms which,
however, are normally reserved for difunctions.

The following gives formulae for calculating the presections directly from φ and Φ.

2.28. Lemma. Let (φ,Φ) be a direlation from F (X) to F (Y ) and β ∈ F (Y ). Then

(1) (φ←β)(x) =
∨
{s ∈ L | φ(x, s, y) ≤ β(y) ∀ y ∈ Y }.

(2) (Φ←β)(x) =
∧
{s ∈ L | β(y) ≤ Φ(x, s, y) ∀ y ∈ Y }.

Proof. (1) Applying Definition 2.23 (2) to the corelation φ← from F (Y ) to F (X) gives

(φ←β)(x) =
∨
{s ∈ L | β(y) < t =⇒ s ≤ φ←(y, t, x)},

where φ←(y, t, x) =
∨
{z ∈ L | φ(x, z, y) ≤ t} by Definition 2.11. Suppose first that

β(y) < t =⇒ s ≤ φ←(y, t, x) but that φ(x, s, y) £ β(y). Then we may choose t satisfying
β(y) < t < φ(x, s, y). Since φ is a relation, by Definition 2.4 (1) we have 0 < s′ < s
with t < φ(x, s′, y). On the other hand, since β(y) < t the above implication gives
s′ < s ≤ φ←(y, t, x), so there exists z with s′ < z and φ(x, z, y) ≤ t. By monotonicity
this gives φ(x, s′, y) ≤ t, which is a contradiction.

Conversely suppose φ(x, s, y) ≤ β(y) for all y ∈ Y and suppose that for some y ∈ Y
and t ∈ L we have β(y) < t and s > φ←(y, t, x). Now φ(x, s, y) > t, which gives the
contradiction φ(x, s, y) > β(y). This completes the proof of equality (1).

(2) The proof is dual to (1) and is left to the interested reader. ¤

2.29. Example. Let φ be the relation from F (X) to F (Y ) corresponding to the fuzzy
relation ϕ. Then we obtain (φ←β)(x) =

∨
{s ∈ L | ϕ(x, y) ∧ s ≤ β(y) ∀ y ∈ Y }

for β ∈ F (Y ). Hence φ←β is non other than the fuzzy set ϕ ↓ β [7, Definition 2.9],
calculated with respect to the min t-norm (see also [9] where ϕ ↓ α corresponds to the
@-operation).
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In case Φ is the corelation corresponding to ϕ, then for β ∈ F (Y ) we have (Φ←β)(x) =∧
{s ∈ L | β(y) ≤ (1− ϕ(x, y)) ∨ s ∀ y ∈ Y }.

Since presections are just sections of the inverse, the following is an immediate conse-
quence of Theorem 2.25, Proposition 2.13, Proposition 2.15 (1) and Theorem 2.20 (3).

2.30. Theorem. For direlations (φ,Φ), (φ1,Φ1), (φ2,Φ2) from F (X) to F (Y ), β, β1, β2 ∈
F (Y ) we have:

(1) β1 ≤ β2 =⇒ φ←β1 ≤ φ←β2 and Φ←β1 ≤ Φ
←β2.

(2) t < φ(x, s, y) ⇐⇒ xs £ φ←yt and Φ(x, s, y) < t ⇐⇒ Φ←yt £ xs.

(3) (a) (φ2 ≤ φ1) ⇐⇒ (φ←1 β ≤ φ←2 β ∀β ∈ F (Y )),
(b) (Φ2 ≤ Φ1) ⇐⇒ (Φ←1 β ≤ Φ

←
2 β ∀β ∈ F (Y )).

(4) For any βj ∈ F (Y ), j ∈ J , we have

φ←(
∧

j∈J

βj) =
∧

j∈J

(φ←βj) and Φ
←(

∨

j∈J

βj) =
∨

j∈J

(Φ←βj).

(5) If (θ,Θ) is a direlation from F (Y ) to F (Z), γ ∈ F (Z) then

(θ ◦ φ)←γ = φ←(θ←γ) and (Θ ◦ Φ)←γ = Φ←(Θ←γ).

There are also important results relating sections and presections [4, Lemma 2.9].

2.31. Theorem. Let (φ,Φ) be a direlation from F (X) to F (Y ).

(1) φ→0 = 0, where 0 denotes the zero fuzzy subset of X. Also,

α ≤ φ←(φ→α) ∀α ∈ F (X) and φ→(φ←β) ≤ β ∀β ∈ F (Y ).

(2) Φ→1 = 1, where 1 denotes the unit fuzzy subset of X. Also,

Φ←(Φ→α) ≤ α ∀α ∈ F (X) and β ≤ Φ→(Φ←β) ∀β ∈ F (Y ).

(3) For the identity direlation (µi, µI) on F (X) we have

µ→i α = µ→I α = α, µ←i α = µ←I α = α, ∀α ∈ F (X).

We conclude this section by considering the complemented textures (W,W, ω). Let us
first recall the following notions of complement for direlations in general.

2.32. Definition. [4, Definition 2.18] Let (S, S, σ) and (T,T, θ) be complemented tex-
tures and (r,R) a direlation from (S, S) to (T,T). Then:

(1) The complement r′ of the relation r is the corelation

r′ =
⋂
{Q(s,t) | ∃u, v with r 6⊆ Q(u,v), σ(Qs) 6⊆ Qu and Pv 6⊆ θ(Pt)}.

(2) The complement R′ of the corelation R is the relation

R′ =
∨
{P (s,t) | ∃u, v with P (u,v) 6⊆ R, Pu 6⊆ σ(Ps) and θ(Qt) 6⊆ Qv}.

(3) The complement (r,R)′ of the direlation (r,R) is the direlation

(r,R)′ = (R′, r′).

The direlation (r,R) is said to be complemented if (r,R)′ = (r,R).

2.33. Theorem. Let (r,R) be a direlation from (WX ,WX , ωX) to (WY ,WY , ωY ), (r,R)
′ =

(R′, r′) the complement and (µr, µR), (µR′ , µr′) the corresponding direlations from F (X)
to F (Y ). Then, for (x, s, y) ∈ X × L× Y we have

µR′(x, s, y) =

{
1− µR(x, 1− s, y) s 6= 1∨
{1− µR(x, u, y) | u ∈ L} s = 1

and

µr′(x, s, y) =

{
1− µr(x, 1− s, y) s 6= 1

1 s = 1
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Proof. We establish the result for µR′ , leaving the essentially dual proof of the equality
for µr′ to the interested reader.

By Definition 2.32 (2) we have

µ̂R′ =
∨
{P ((x,s),(y,t)) | ∃ (z, u), (w, v) with P ((z,u),(w,v)) 6⊆ R,

P(z,u) 6⊆ ωX(P(x,s)) and ωY (Q(y,t)) 6⊆ Q(w,v)}.

By Lemma 1.4 we see that P(z,u) 6⊆ ωX(P(x,s)) if and only if z = x, 1 − s < u, while
ωY (Q(y,t)) 6⊆ Q(w,v) if and only if w = y and v < 1− t. Hence,

t′ < µR′(x, s, y) ⇐⇒ ∃ t′ < t < 1, u, v with µR(x, u, y) < v, 1−s < u, v < 1−t.

Assume that s 6= 1, so that 1 − s ∈ L. Let t′ < µR′(x, s, y). Then for t, u and v
as above, µR(x, 1 − s, y) ≤ µR(x, u, y) < v < 1 − t < 1 − t′ by Theorem 2.3 and so
t′ < 1 − µR(x, 1 − s, y). Thus µR′(x, s, y) ≤ 1 − µR(x, 1 − s, y). If this inequality were
proper we could choose t′ with µR′(x, s, y) < t′ < 1 − µR(x, 1 − s, y), and then t and v
satisfying µR(x, 1− s, y) < v < 1− t < 1− t′. By Theorem 2.3 (2) we could then choose
u with 1−s < u and µR(x, u, y) < v, which would give the contradiction t′ < µR′(x, s, y)
by the above equivalence.

This establishes the required equality for s 6= 1. The case s = 1 involves basically the
same steps, and the details are left to the reader. ¤

2.34. Definition. Let (φ,Φ) be a direlation from F (X) to F (Y ).

(1) The corelation φ′ from F (X) to F (Y ) given by

φ′(x, s, y) =

{
1− φ(x, 1− s, y) s 6= 1

1 s = 1

is known as the complement of φ.
(2) The relation Φ′ from F (X) to F (Y ) given by

Φ′(x, s, y) =

{
1− Φ(x, 1− s, y) s 6= 1∨
{1− Φ(x, u, y) | u ∈ L} s = 1

is known as the complement of Φ.
(3) The direlation (φ,Φ)′ = (Φ′, φ′) is called the complement of (φ,Φ).

A direlation satisfying (φ,Φ)′ = (φ,Φ) is said to be complemented.

2.35. Example. Let ϕ be a fuzzy relation from X to Y and (φ,Φ) the corresponding
direlation from F (X) to F (Y ), as in Example 2.5. Then, for s 6= 1,

φ′(x, s, y) = 1− φ(x, 1− s, y)

= 1− (ϕ(x, y) ∧ (1− s))

= (1− ϕ(x, y)) ∨ s

= Φ(x, s, y).

This formula also clearly holds for s = 1, so φ′ = Φ. Likewise, Φ′ = φ, and we have
shown that (φ,Φ)′ = (φ,Φ). Hence the direlation corresponding to a fuzzy relation is
complemented.

Finally, we may note the following properties of complementation corresponding to
[4, Proposition 2.21 and Lemma 2.20].

2.36. Theorem. Let (φ,Φ) be a direlation from F (X) to F (Y ), (φ,Φ)′ = (Φ′, φ′) its
complement. Then:



82 İ. U. Tiryaki and L. M. Brown

(1) (φ′)′ = φ and (Φ′)′ = Φ. That is, the operations of taking the complement are

idempotent.

(2) (φ′)← = (φ←)′ and (Φ′)← = (Φ←)′. That is, the inverse operations commute

with complementation.

(3) (φ′)→α = (φ→α′)′ and (Φ′)→α = (φ→α′)′ for all α ∈ F (X).
(4) (φ′)←β = (φ←β′)′ and (Φ′)←β = (Φ←β′)′ for all β ∈ F (Y ).
(5) If (θ,Θ) is a direlation from F (Y ) to F (Z), (θ,Θ)′ = (Θ′, θ′) its complement,

then (θ ◦ φ)′ = θ′ ◦ φ′ and (Θ ◦ Φ)′ = Θ′ ◦ Φ′.
(6) The identity direlation (µi, µI) on F (X) is complemented.

3. Difunctions between Fuzzy Sets

A difunction between textures is defined as a special type of direlation, much as a point
function (i.e., function in the classical sense) is a special type of binary point relation.

3.1. Definition. [4] Let (f, F ) be a direlation from (S, S) to (T,T). Then (f, F ) is called
a difunction from (S, S) to (T,T) if it satisfies the following two conditions.

DF1 For s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃ t ∈ T with f 6⊆ Q(s,t) and P (s′,t) 6⊆ F .

DF2 For t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.

It is clear that (iS , IS) is a difunction on (S, S). In this context it is called the identity
difunction.

3.2. Theorem. Let (f, F ) be a direlation from (WX ,WX) to (WY ,WY ), and (µf , µF )
the corresponding direlation from F (X) to F (Y ). Then (f, F ) is a difunction if and only

(µf , µF ) satisfies the following conditions:

(i) ∀x ∈ X, ∀ s, s′ ∈ L, s′ < s =⇒ ∃y ∈ Y with µF (x, s
′, y) < µf (x, s, y).

(ii) µf (x, s, y) ≤ µF (x, s, y) ∀ (x, s, y) ∈ X × L× Y .
(iii) For x ∈ X, s ∈ L and y, y′ ∈ Y with y 6= y′ we have µf (x, s, y) = 0 or

µF (x, s, y
′) = 1.

Proof. First suppose that (f, F ) is a difunction. We verify (i)–(iii).

(i) Take x ∈ X, s, s′ ∈ L with s′ < s. Then P(x,s) 6⊆ Q(x,s′), so by DF1 there exists

(y, t) ∈ Y × L for which µ̂f 6⊆ Q((x,s),(y,t)) and P ((x,s′),(y,t)) 6⊆ µ̂F . For this y ∈ Y we

obtain µF (x, s
′, y) < t < µf (x, s, y) by Lemma 2.2.

(ii) Take (x, s, y) ∈ X × L × Y and suppose that µf (x, s, y) £ µF (x, s, y). Now we

may take t, t′ ∈ L with µF (x, s, y) < t′ = t < µf (x, s, y), which gives µ̂f 6⊆ Q((x,s),(y,t)),

P ((x,s),(y,t′)) 6⊆ µ̂F but P(y,t′) ⊆ Q(y,t), so contradicting DF2.

(iii) Suppose that there exist x ∈ X, s ∈ L and y, y′ ∈ L with y 6= y′ for which the
stated conclusion does not hold. Now we may choose t, t′ ∈ L for which t < µf (x, s, y) and

µF (x, s, y
′) < t′, and we have µ̂f 6⊆ Q((x,s),(y,t)), P ((x,s),(y,t′)) 6⊆ µ̂F but P(y′,t′) ⊆ Q(y,t),

which again contradicts DF2.

Conversely, let (µf , µF ) satisfy (i)–(iii). We verify DF1, DF2 for (f, F ).

DF1 Take x ∈ X, s, s′ ∈ L with P(x,s) 6⊆ Q(x,s′). Then s
′ < s and so by (i) we have

y ∈ Y with µF (x, s
′, y) < µf (x, s, y). If we choose µF (x, s

′, y) < t < µf (x, s, y) then

(y, t) ∈ Y × L and clearly f 6⊆ Q((x,s),(y,t)), P ((x,s′),(y,t)) 6⊆ F .

DF2 Take (y, t), (y′, t′) ∈ T × L and (x, s) ∈ X × L satisfying f 6⊆ Q((x,s),(y,t)),

P ((x,s),(y′,t′)) 6⊆ F . Hence, t < µf (x, s, y) and t
′ > µF (x, s, y

′). In particular µf (x, s, y) 6=
0 and µF (x, s, y

′) 6= 1, so y = y′ by (iii) and we have t < µf (x, s, y) ≤ µF (x, s, y
′) < t′

by (ii). This verifies that P(y′,t′) 6⊆ Q(y,t), as required. ¤
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This result enables us to give the following intrinsic definition of a difunction from
F (X) to F (Y ).

3.3. Definition. A direlation (φ,Φ) from F (X) to F (Y ) is called a textural fuzzy di-

function if it satisfies:

(i) ∀x ∈ X, ∀ s, s′ ∈ L, s′ < s =⇒ ∃y ∈ Y with Φ(x, s′, y) < φ(x, s, y).
(ii) φ(x, s, y) ≤ Φ(x, s, y) ∀ (x, s, y) ∈ X × L× Y .
(iii) For x ∈ X, s ∈ L, y, y′ ∈ Y with y 6= y′ we have φ(x, s, y) = 0 or Φ(x, s, y′) = 1.

Again, we will abbreviate textural fuzzy difunction to difunction throughout the re-
mainder of this paper.

3.4. Examples. (1). The identity direlation (µi, µI) on F (X) (Example 2.6) is a di-
function on F (X).

(2) Let ϕ be a fuzzy relation fromX to Y , and (φ,Φ) the corresponding direlation from
F (X) to F (Y ) as defined in Example 2.5. We seek necessary and sufficient conditions
under which (φ,Φ) is a difunction.

Let us note that for all (x, s, y) ∈ X × L× Y we have

φ(x, s, y) = ϕ(x, y) ∧ s ≤ s ≤ (1− ϕ(x, y)) ∨ s = Φ(x, s, y).

Hence, (ii) is automatically satisfied by (φ,Φ).

First suppose that (φ,Φ) is a difunction and take x ∈ X. We claim that there is a
unique y ∈ Y for which ϕ(x, y) 6= 0. To prove existence take s, s′ ∈ L with s′ < s < 1
and apply (i) to give y ∈ Y for which Φ(x, s′, y) < φ(x, s, y). In particular this gives
φ(x, s, y) = ϕ(x, y) ∧ s 6= 0, and so ϕ(x, y) 6= 0 for this y. Now take any y′ ∈ Y with
y 6= y′. By (iii) we have Φ(x, s, y′) = 1 since φ(x, s, y) 6= 0, so (1− ϕ(x, y′)) = 1 because
s < 1, whence ϕ(x, y′) = 0 as required. We denote this unique value of y by g(x), thereby
setting up a point function g : X → Y with the property that ϕ(x, y) 6= 0 ⇐⇒ y = g(x).

Finally, let us verify that ϕ(x, g(x)) = 1 for all x ∈ X. To this end suppose this is
false for some x ∈ X and choose s, s′ ∈ L satisfying ϕ(x, g(x)) ≤ s′ < s ≤ 1. Then
for y = g(x) we have Φ(x, s′, y) ≥ s′ ≥ ϕ(x, g(x)) = φ(x, s, y), while for y 6= g(x),
Φ(x, s′, y) > 0 = φ(x, s, y), which contradicts (i). We therefore deduce that if (φ,Φ) is a
difunction then ϕ is a crisp function from X to Y .

Conversely, if ϕ is a crisp function from X to Y it is straightforward to verify that
(φ,Φ) is a difunction. The details are left to the interested reader.

It is natural to ask if the crisp function that occurs for the special type of difunction
discussed in Examples 3.4 (2) arises also in the general case. In general a difunction from
a texture (S, S) to a texture (T,T) does not correspond to a point function from S to
T , and likewise a point function from S to T need not define a difunction from (S, S)
to (T,T). However, under certain special conditions such a correspondence does exist.
In particular, this is the case for difunctions between simple textures [4]. Let us recall
that a texture (S, S) is simple if every molecule is a p-set. This is easily seen to be true
of textures of the type (WX ,WX) and so each difunction from (WX ,WX) to (WY ,WY )
corresponds to a point function ϕ : X × L → Y × L. The conditions that must be
satisfied by ϕ are given in [4, Example 3.11 (4)], and we repeat these conditions below
for the benefit of the reader.

3.5. Theorem. The difunctions from (WX ,WX) to (WY ,WY ) are in one to one corre-

spondence with point functions ϕ :WX →WY satisfying the conditions

(i) ϕ(x, r) = (ϕ1(x), ϕ2(x, r)), where ϕ1 : X → Y and ϕ2 : X × L→ L.
(ii) r, s ∈ L, r < s =⇒ ϕ2(x, r) < ϕ2(x, s) ∀x ∈ X.
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(iii) x ∈ X, s, t ∈ L, t < ϕ2(x, s) =⇒ ∃ r ∈ L with r < s and t < ϕ2(x, r).

Moreover, (f, F ) is complemented if and only if ϕ satisfies in addition

(iv) (A) ϕ2(x, s) + ϕ2(x, 1− s) ≤ 1 ∀x ∈ X, ∀ s ∈ L \ {1}.

(B) ϕ2(x, v) + ϕ2(x, 1− s) > 1 ∀x ∈ X, ∀ s, v ∈ L, v > s.

Here the correspondence between (f, F ) and ϕ is given explicitly by the equality (f, F ) =
(fϕ, Fϕ), where

fϕ =
∨
{P ((x,s),(ϕ1(x),t)) | x ∈ X, s, t ∈ L, t < ϕ2(x, s)}, and

Fϕ =
⋂
{Q((x,s),(ϕ1(x),t)) | x ∈ X, s, t ∈ L, ∃ v ∈ L with s < v, ϕ2(x, v) < t}.

We are now in a position to give a useful characterization of difunctions between F (X)
and F (Y ).

3.6. Theorem. A direlation (φ,Φ) from F (X) to F (Y ) is a difunction if and only if

there exists a function ϕ : WX → WY satisfying the conditions (i)–(iii) of Theorem 3.5

for which

φ(x, s, y) =

{
ϕ2(x, s) if y = ϕ1(x),

0 otherwise
,

Φ(x, s, y) =

{∧
{t ∈ L | ∃s < v ∈ L, ϕ2(x, v) < t} if y = ϕ1(x),

1 otherwise.

The difunction (φ,Φ) is complemented if and only if ϕ also satisfies condition (iv) of
Theorem 3.5.

Proof. Straightforward from the formulae for (fϕ, Fϕ) given in Theorem 3.5. ¤

If (φ,Φ) is a difunction from F (X) to F (Y ) and α ∈ F (X) then φ→α will be called
the image and Φ→α the co-image of α under (φ,Φ). Likewise, for β ∈ F (Y ), φ←β will
be known as the inverse image and Φ←β as the inverse co-image of β under (φ,Φ). It is
known that for difunctions between textures the inverse image always coincides with the
inverse co-image [4, Theorem 2.24], and indeed that this characterizes difunctions among
the direlations. Hence, the same will be true of difunctions between Hutton algebras of
fuzzy subsets.

Let us give formulae for calculating these fuzzy sets.

3.7. Theorem. Let (φ,Φ) be a difunction from F (X) to F (Y ) and ϕ = 〈ϕ1, ϕ2〉 the
corresponding point function from X ×L to Y ×L. Then for α ∈ F (X), y ∈ Y we have:

(φ→α)(y) =
∨
{ϕ2(x, s) | (x, s) ∈ X × L, y = ϕ1(x), s < α(x)}

=
∨
{ϕ2(x, α(x)) | x ∈ X, y = ϕ(x), α(x) > 0}, and

(Φ→α)(y) =
∧
{ϕ2(x, s) | (x, s) ∈ X × L, y = ϕ1(x), α(x) < s}.

Likewise, for β ∈ F (Y ), x ∈ X we have:

(φ←β)(x) =
∨
{s ∈ L | ϕ2(x, s) ≤ β(ϕ1(x))}

= (Φ←β)(x).

Proof. To prove the first equality for (φ→α)(y) suppose first that
∨
{ϕ2(x, s) | (x, s) ∈

X × L, y = ϕ1(x), s < α(x)} £ (φ→α)(y). Now we have (x0, s0) ∈ X × L satisfying

y = ϕ1(x0), s0 < α(x0) and ϕ2(x0, s0) £ (φ→α)(y). By Definition 2.24 (1) there exists
t ∈ L with s < α(x) =⇒ φ(x, s, y) ≤ t for which ϕ2(x0, s0) £ t. On the other hand,



Relations and Corelations between Lattices of Fuzzy Subsets 85

by the above implication with (x, s) = (x0, s0) we obtain φ(x0, s0, y) ≤ t, whence by
Theorem 3.6 we obtain the contradiction

ϕ2(x0, s0) = φ(x0, s0, ϕ1(x0)) = φ(x0, s0, y) ≤ t.

Suppose now that there exists w ∈ L with
∨
{ϕ2(x, s) | (x, s) ∈ X × L, y = ϕ1(x), s < α(x)} < w < (φ→α)(y).

Using the right-hand inequality there exists (x1, s1) ∈ X × L satisfying s1 < α(x1)
and φ(x1, s1, y) £ w. It follows that φ(x1, s1, y) 6= 0 and so by Theorem 3.6 we have
y = ϕ1(x1) and φ(x1, s1, y) = ϕ2(x1, s1), whence w < ϕ2(x1, s1). However, we now have

w < ϕ2(x1, s1) ≤
∨
{ϕ2(x, s) | (x, s) ∈ X × L, y = ϕ1(x), s < α(x)} < w,

which is a contradiction.

This establishes the first equality, and the second equality for (φ→α)(y) follows easily
from this and we omit the details.

The proof of the equality for (Φ→α)(y) is essentially dual to that for φ→α)(y), and is
left to the interested reader.

Finally we note that (φ←β)(x) = (Φ←β)(x) for all β and all x by the equality of the
inverse image and inverse co-image mentioned above. Hence, it will be sufficient to prove
the equality for (φ←β)(x). To this end suppose that (φ←β)(x) £

∨
{s ∈ L | ϕ2(x, s) ≤

β(ϕ1(x))}. By Lemma 2.28 (1) we now have s ∈ L with s £
∨
{s ∈ L | ϕ2(x, s) ≤

β(ϕ1(x))} for which φ(x, s, y) ≤ β(y) for all y ∈ Y . In particular for y = ϕ1(x) we
obtain ϕ2(x, s) ≤ φ(x, s, ϕ1(x)), which gives the contradiction s ≤

∨
{s ∈ L | ϕ2(x, s) ≤

β(ϕ1(x))}.

Conversely, suppose that
∨
{s ∈ L | ϕ2(x, s) ≤ β(ϕ1(x))} £ (φ←β)(x). Then we

have s ∈ L with s £ (φ←β)(x) for which ϕ2(x, s) ≤ β(ϕ1(x)). Hence, by Theorem 3.6, if
y = ϕ1(x) then φ(x, s, y) = ϕ2(x, s) ≤ β(y), while if y 6= ϕ1(x) then φ(x, s, y) = 0 ≤ β(y),
whence we have the contradiction s ≤

∨
{s ∈ L | φ(x, s, y) ≤ β(y) ∀ y ∈ L} = (φ←β)(x)

by Lemma 2.28 (1). ¤

The following example treats a very important special case.

3.8. Example. Let g : X → Y be a point function. Then ϕ1 = g, ϕ2 = ιL, where ιL
is the identity on L, defines a function ϕg = 〈g, ιL〉 which clearly satisfies the conditions
(i)–(iv) of Theorem 3.6 and hence defines a complemented difunction from F (X) to F (Y )
that we will denote by (γ,Γ). Hence, by Theorem 3.6, we have

γ(x, s, y) =

{
s if y = g(x),

0 otherwise;
Γ(x, s, y) =

{
s if y = g(x),

1 otherwise.

See also Examples 3.4 (2). The equalities in Theorem 3.7 now lead trivially to the fol-
lowing:

(1) For α ∈ F (X),

(γ→α)(y) =

{∨
{α(x) | y = g(x)} if g−1(y) 6= ∅,

0 otherwise, and

(Γ→α)(y) =

{∧
{α(x) | y = g(x)} if g−1(y) 6= ∅,

1 otherwise.

(2) For β ∈ F (Y ),

γ←β = Γ←β = β ◦ α.
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It will be noted that the mapping γ→, α 7→ γ←α is non-other than the mapping from
F (X) to F (Y ) usually denoted by g, while the mappings (γ←)→ and (Γ←)→ each give
the mapping β 7→ β ◦ g from F (Y ) to F (X) which is often denoted by g−1. So far as
the authors are aware, the mapping Γ→, α → Γ→α from F (X) to F (Y ) has not been
considered in the context of I-valued sets before, although it does occur in the study of
intuitionistic fuzzy sets [5].

The following are important properties relating the (co)-images and inverse (co)-
images of difunctions [4, Theorem 2.24]. We have already noted the equality φ←β = Φ←β
of the inverse image and inverse co-image of β ∈ F (Y ).

3.9. Theorem. Let (φ,Φ) be a difunction from F (X) to F (Y ), α ∈ F (X) and β ∈ F (Y ).
Then

φ←(Φ→α) ≤ α ≤ Φ←(φ→α),

φ→(Φ←β) ≤ β ≤ Φ→(φ←β).

Again, these inequalities for all α and β actually characterize (φ,Φ) as a difunction
among the direlations from F (X) to F (Y ). The reader is referred to [4] for additional
details.

3.10. Definition. [4] Let (f, F ) be a difunction from (S, S) to (T,T). Then (f, F ) is
called surjective if it satisfies the condition

SUR. For t, t′ ∈ T , Pt 6⊆ Qt′ =⇒ ∃ s ∈ S with f 6⊆ Q(s,t′) and P (s,t) 6⊆ F .

Likewise, (f, F ) is called injective if it satisfies the condition

INJ. For s, s′ ∈ S and t ∈ T , f 6⊆ Q(s,t) and P (s′,t) 6⊆ F =⇒ Ps 6⊆ Qs′ .

This leads easily to the following equivalent definition of injectivity and surjectivety
of difunctions between Hutton algebras of fuzzy subsets:

3.11. Definition. Let (φ,Φ) be a difunction from F (X) to F (Y ). Then (φ,Φ) is called
surjective if it satisfies the condition

SUR. For t, t′ ∈ L, y ∈ Y ,

t′ < t =⇒ ∃ (x, s) ∈ X × L with t′ < φ(x, s, y) and Φ(x, s, y) < t.

Likewise, (φ,Φ) is called injective if it satisfies the condition

INJ. For (x, s), (x′, s′) ∈ X × L and y ∈ Y ,

Φ(x′, s′, y) < φ(x, s, y) =⇒ x = x′ and s′ < s.

We note the following counterparts of [4, Corollary 2.33 and Proposition 2.34].

3.12. Proposition. Let (φ,Φ) be a difunction from F (X) to F (Y ).

(1) If (φ,Φ) is surjective then Φ→(φ←β) = β = φ→(Φ←β) for all β ∈ F (Y ). In

particular

(a) Φ→α ≤ φ→α, ∀α ∈ F (X), and
(b) ∀β1, β2 ∈ F (Y ), φ

←β1 ≤ φ←β2 =⇒ β1 ≤ β2.

(2) If (φ,Φ) is injective then Φ←(φ→α) = α = φ←(Φ→α) for all α ∈ F (X). In

particular

(a) φ→α ≤ Φ→α, ∀α ∈ F (X), and
(b) ∀α1, α2 ∈ F (X), Φ

→α1 ≤ Φ
→α2 =⇒ α1 ≤ α2.

3.13. Proposition. Let (φ,Φ) be a difunction from F (X) to F (Y ).

(1) (φ,Φ) is surjective if and only if (φ,Φ)′ is surjective.
(2) (φ,Φ) is injective if and only if (φ,Φ)′ is injective.
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Now we give characterizations of injectivity and surjectivity in terms of the corre-
sponding point function.

3.14. Theorem. Let (φ,Φ) be a difunction from F (X) to F (Y ) which corresponds to

the point function ϕ = 〈ϕ1, ϕ2〉 as in Theorem 3.6.

(1) (φ,Φ) is injective if and only if the point function ϕ1 : X → Y is one-to-one.

(2) (φ,Φ) is surjective if and only if given y ∈ Y and t, t′ ∈ L with t′ < t there exists
(x, s) ∈ X × L satisfying y = ϕ1(x) and t

′ < ϕ2(x, s) < t.

In particular if (φ,Φ) is surjective then the point function ϕ1 : X → Y is onto,

but the converse is not true in general.

Proof. (1) Suppose that (φ,Φ) is injective, but that ϕ1 is not one-to-one. Then we have
x, x′ ∈ X with x 6= x′ and ϕ1(x) = ϕ1(x

′). Let us show first that ϕ2(x
′, s) = ϕ2(x, s)

for all s ∈ L. Suppose this is not so, then for some s ∈ L we have ϕ2(x
′, s) 6= ϕ2(x, s),

and without loss of generality we may suppose ϕ2(x
′, s) < ϕ2(x, s). By Theorem 3.5 (iii)

we have r ∈ L with r < s satisfying ϕ2(x
′, s) < ϕ2(x, r). Let y = ϕ1(x) = ϕ1(x

′). Since
x′ 6= x and r 6< r, by Theorem 3.6, INJ gives

ϕ2(x, r) = φ(x, r, y) ≤ Φ(x′, r, y) ≤ ϕ2(x
′, s)

since ϕ2(x
′, r) < ϕ2(x

′, s) by Theorem 3.5 (ii). This contradicts the above assumption.

Now choose s′ ∈ L with s′ < s. By Theorem 3.5 (ii) we deduce ϕ(x′, s′) < ϕ2(x
′, s) =

ϕ2(x, s), which gives the contradiction x = x′ by INJ.

Conversely, suppose that ϕ1 : X → Y is one to one. Take (x, s), (x′, s′) ∈ X × L and
y ∈ Y with Φ(x′, s′, y) < φ(x, s, y). Clearly φ(x, s, y) 6= 0 so by Theorem 3.6 we have
y = ϕ1(x) and φ(x, s, y) = ϕ2(x, s). Likewise, Φ(x

′, s′, y) 6= 1 so by the same theorem
we have y = ϕ1(x

′) and Φ(x′, s′, y) =
∧
{t ∈ L | ∃ s′ < v ∈ L, ϕ2(x

′, v) < t}. Since
ϕ1 is one-to-one we obtain x = x′. On the other hand there exists s′ < v ∈ L and
t ∈ L satisfying ϕ2(x

′, v) < t < ϕ2(x, s), whence ϕ2(x, s
′) = ϕ2(x

′, s′) < ϕ2(x
′, v) <

ϕ2(x, s) by Theorem 3.5 (ii). Clearly s 6= s, while s < s′ would give a contradiction by
Theorem 3.5 (ii). Hence s′ < s and we have established that (φ,Φ) is injective.

(2) The given condition is clearly equivalent to surjectivity, and so surjectivity of
(φ,Φ) certainly implies that ϕ1 is onto. To see that this is not sufficient, take Y = X,
let ϕ1 be the identity on X and consider the function

ϕ2(x, r) =





r/2, 0 < r ≤ 1/3

r/2 + 1/4, 1/3 < r ≤ 2/3

r/2 + 1/2, 2/3 < r ≤ 1.

considered in [4, Example 3.11 (4)]. Then ϕ = 〈ϕ1, ϕ2〉 satisfies (i)–(iv), and ϕ1 is
certainly onto, but the corresponding difunction is not surjective. Indeed, take x ∈ X,
t′ = (1/3)/2 = 1/6, t = (1/3)/2 + 1/4 = 5/12. Then t′ < t and x = ϕ1(x) but there is
no s ∈ L for which t′ < ϕ2(x, s) < t. ¤

3.15. Corollary. The difunction (φ,Φ) corresponding to the point function ϕ = 〈ϕ1, ϕ2〉
is an isomorphism if and only if ϕ1 is one-to-one and onto and given y ∈ Y , t, t′ ∈ L
with t′ < t there exists (x, s) ∈ X × L satisfying y = ϕ1(x) and t

′ < ϕ2(x, s) < t.

Proof. By [4, Proposition 3.14 (5)], (φ,Φ) is an isomorphism if and only if it is injective
and surjective. The result now follows from Theorem 3.14. ¤

The example given in the proof of Theorem 3.14 also shows that a difunction for which
ϕ1 is one-to-one and onto need not be an isomorphism.
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Finally, let us consider the composition of difunctions. By [4, Proposition 2.28] and
Theorem 2.20 we have:

3.16. Theorem. The composition of two difunctions is a difunction. The identity di-

function is the identity for composition and the operation of composition is associative.

It follows from this result that we may define a category whose objects are the Hutton
algebras F (X) for X ∈ ObSet, and whose morphisms are difunctions between these
objects. We shall denote this category by I-dfSet. If we take the morphisms to be
complemented difunctions then we will denote the corresponding category by I-cdfSet.
Recalling [4] that the category of simple textures and difunctions is denoted by dfSTex,
we may set up a functor E : I-dfSet → dfSTex by setting E(F (X)) = (WX ,WX) and
E(φ,Φ) = (f, F ) where φ = µf and Φ = µF . Likewise, we may set up a functor Ec

from I-cdfSet to the category cdSTex of complemented simple textures and comple-
mented difunctions by setting Ec(F (X)) = (WX ,WX , ωX) and Ec(φ,Φ) = (f, F ) for
complemented difunctions (φ,Φ) = (µf , µF ). It is immediate that:

3.17. Theorem. E is a full embedding of I-dfSet in dfSTex and Ec a full embedding

of I-cdfSet in cdfSTex.

We recall from [4] that fSTex is the construct whose objects are simple textures and
whose morphisms are point functions between the base sets satisfying certain conditions
(a) and (b). The construct fSTex is isomorphic with dfSText under the functor Ds

that is the identity on objects and takes a fStex morphism ϕ : S → T to the correspond-
ing difunction (fϕ, Fϕ) from (S, S) to (T,T) [4, Proposition 3.6]. This correspondence
between the morphisms of fSTex and those of dfSTex parallels that between a point
function between X ×L and Y ×L satisfying (i)–(iii), and the corresponding difunction
between F (X) and F (Y ). It follows that we have a category, which we will denote by
I-fSet, whose objects are the Hutton algebras F (X), X ∈ ObSet, and whose morphisms
are point functions from X × L to Y × L satisfying (i)–(iii), and an isomorphism D

I

from I-fSet to I-dfSet which is the identity on objects and takes a I-fSet morphism
ϕ : X × L → Y × L to the corresponding difunction from F (X) to F (Y ). This gives
the left-hand commutative diagram below, where G is the full embedding of I-fSet in
fSTex. The right-hand commutative diagram treats the complemented case. Here the
morphisms of I-cfSet satisfy (iv) in addition to (i)–(iii), and the difunctions involved are
complemented.

I-fSet G
//

D
I

²²

fSTex

Ds

²²

I-cfSet
Gc

//

D
I

c

²²

cfSTex

Dcs

²²

I-dfSet E
// dfSTex I-cdfSet

Ec
// cdfSTex
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