
Hacettepe Journal of Mathematics and Statistics
Volume 31 (2002), 89–97

VARIABLE SELECTION WITH AKAIKE

INFORMATION CRITERIA : A

COMPARATIVE STUDY
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Abstract

In this paper, the problem of variable selection in linear regression is
considered. This problem involves choosing the most appropriate model
from the candidate models. Variable selection criteria based on estimates of
the Kullback-Leibler information are most common. Akaike’s AIC and bias
corrected AIC belong to this group of criteria. The reduction of the bias
in estimating the Kullback-Leibler information can lead to better variable
selection. In this study we have compared the Akaike Criterion based on
Fisher Information and AIC criteria based on Kullback-Leibler.
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1. Introduction

The Akaike information criterion and the corrected Akaike information criterion
are based on estimators of expected Kullback-Leibler information. For the benifit
of the reader we briefly explain Kullback-Leibler and Fisher information.

Kullback-Leibler Information:

Kullback-Leibler (K-L) information is used as a means of discriminating be-
tween the true model and the candidate model. Suppose X is a continuous random
vector and f(x/θ) a probability density function of x, where θ is a p-dimensional
parameter vector θ = (θ1, θ2, . . . , θp), θ ∈ Rp.

Let θ∗ be the true parameter of θ with density function f(x/θ∗). Kullback-
Leibler information, or the generalized entropy B of Boltzmann, measure the close-
ness of f(x/θ∗) to f(x/θ):

B(θ∗; θ) = −I(θ∗; θ) (1)

= E[log f(x/θ)− log f(x/θ∗)]
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=

∫
f(x/θ∗) log f(x/θ) dx−

∫
f(x/θ∗) log f(x/θ∗) dx

= H(θ∗; θ)−H(θ∗; θ∗), (2)

where I denotes K-L information, E is the expected value with respect to the true
function f(x/θ∗) of x and H(θ∗; θ) is the cross-entropy.

K-L information:

I(θ∗; θ) = −B(θ∗; θ)
= H(θ∗; θ∗)−H(θ∗; θ) (3)

is minimized instead of maximizing Equation (2). Since H(θ∗; θ∗) is a constant,
B(θ∗; θ) is written as follows,

B(θ∗; θ) =

∫
f(x/θ∗) log f(x/θ) dx. (4)

The derivative of H(θ∗; θ) with respect to θ at (θ = θ∗) is equal to Fisher Infor-
mation [2].

Fisher Information:

Fisher information contributes vastly to statistical estimation and result theory.
It is closely related to efficiency and the sufficiency concept. For n independent
observations Fisher information is

IF = nEθ





(
∂

∂θ

n∑

i=1

ln f(xi; θ)

)2


 , (5)

where f(xi; θ) is the density function of the random variable. Fisher information
has a non-negative value and measures the amount of information related to θ.
Fisher information is directly related to the correction of the unbiased estimation.
Fisher information and Kullback’s discrimination information have similarities in
sufficiency, efficiency, additiveness and grouping of observations [7].

1.1 The Akaike Information Criterion

The Akaike information criterion, AIC, was developed by Akaike [1] to estimate
the expected Kullback Leibler information between the model generating the data
and a fitted candidate model.

The Akaike information criterion (AIC) is widely used in model selection be-
cause it is an estimate of the expected Kullback-Leibler information of a fitted
model [6]. AIC is a biased estimator.

AIC is given by

AIC = n(log σ̂2 + 1) + 2p, (6)

where p and σ̂2 are the number of parameter and the variance of the subsets model,
respectively [6]. AIC involves the selection of subsets which minimize Equation
(6). AIC is an asymptotically unbiased estimate. AIC is a sample estimate of
expected entropy, expected K-L information or expected cross-entropy.
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1.2 The Corrected Akaike Information Criterion

A corrected version of AIC is given by Hurvich and Tsai [6] as

AICC = AIC +
2(p+ 1)(p+ 2)

n− p− 2
. (7)

AICC, a method originally proposed for linear regression models by Sugiura [10],
is asymtotically efficient in both regression and time series. For linear regression,
AICC is unbiased, assuming that the candidate family of models includes the true
model. AICC has better bias properties than does AIC.

1.3 Robust Akaike Information Criterion

Ronchetti [8] proposed a robust version of AIC. Ronchetti’s [9] robust model se-
lection criteria is given as the function,

RAIC(p;α, ρ) = 2
∑

ρ(ri,p) + αp, (8)

where ri,p = (yi − x′iTn,p)/σ̂ and σ̂ is some robust estimate of σ, Tn,p is the
M-estimator and α = 2. We choose ρ as Huber’s function,

ρc(r) =

{
r2/2, if |r| ≤ c
c|r|2 − c2/2, otherwise,

where c is a function of the contamination ε.

RAIC(p;α, ρc), is the generalized Akaike statistics computed under the least
favorable errors’s distribution with density g0(r) = (1 − ε)(2π)−1/2eρc(r). The
extension of AIC to RAIC is the generalization of maximum likelihood estimation
to M-estimation [9].

1.4 Akaike Information Criterion with Fisher Information

In this section, we propose a biased correction for AIC used for variable selection.
Çetin [3] proposed using Fisher Information as the measure of the discrepancy
between the true and approximating models instead of Kullback-Leibler Informa-
tion.

Fisher information is now,

in(θ) = nEθ

[
∂ log g(y; θ)

∂θ

]2
,

where g(y; θ) denotes the likelihood function under the approximating model, and

gθ,σ2(y) =
1

(2πσ2)
exp

[
−
∑n

i=1

(yi − h(θ))2

2σ2

]
.

Taking the derivative of the likelihood function with respect to h(θ), we obtain

in(θ) =
n

2
EF

[
(µ+ ε− h(θ))′(µ+ ε− h(θ))

σ2

]
. (9)
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EF (in(θ)), for a real model F, is a reasonable criterion for judging the quality of the
approximating family. Of course, EF (in(θ)) is unknown, but it can be estimated.
We assume that the approximating family includes the true model. This is a strong
assumption, but it is also used in the derivation of AIC.

Thus, we can write E(in(θ)) as follows,

E(in(θ)) =
n

σ̂2

{
np

n− p− 2
+ 2

}
. (10)

AIC was designed to provide an approximately unbiased estimate of E(in(θ)).
Consequently,

AICF =
n

σ̂2

{
np

n− p− 2
+ 2

}
(11)

is an approximately unbiased estimator of E(in(θ)).

2 Simulation Study

We now present a simulation study in order to compare the robust and classical
Akaike variable selection criteria. A program was coded using S-Plus functions [3]
in order to obtain the percentages with which subsets were chosen by the crite-
ria. We generated 15 independent replicates of five independent uniform random
variables on U [−1,+1] and 15 independent normally distributed errors ei with
expectation 0 and variance σ2 = 0.01, 1, 100, respectively. Then we generated
observations yi according to the 2 models:

Beta1 : (2
√
5, 4,

√
3, 1, 0) and Beta2 : (2

√
5, 4,−

√
3, 1, 0).

The model is designed to be used without intercept. In order to see the effects
of the outliers on the estimators and selection criteria, variable selection criteria
are examined in the case of no outlier, one outlier and two outliers for ε. We
obtained 25 = 32 subsets. However, in the following tables, only the most selected
subsets out of the 32 are given. Also, the frequencies of the order selection criteria
according to σ2 are given in the following tables.

In these tables, ‘P ’ shows the model. For example, a ’1’ labels subsets contain-
ing the variable x1.
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Table 1. Percentage of subsets selected by the criteria for Beta1

σ
2 = 0.01 σ

2 = 1 σ
2 = 100

P RAIC AICF AICC RAIC AICF AICC RAIC AICF AICC

1 87.2 - - 41.6 - - 23 - 78.0

12 - - 0.22 0.2 - - 16 1 21

13 - - - 12.0 - - 16 - -

No 123 - - - 17.8 - - 7.6 - 0.6

Outlier 124 - - - 7.6 - - 9 - -

125 - - - 0.4 - - 5.2 - 0.4

1234 12.8 100 99.7 5.0 100 100 6.6 38.4 -

1235 - - - 14.2 - - 3.4 26 -

1245 - - - 1.2 - - 5.4 27.4 -

1345 - - - - - - 7.8 7.2 -

1 96.8 - - 56.0 - - 10.2 - 100

12 - - 0.4 - - 0.6 0.8 - -

13 - - - 12.8 - - 14.8 - -

One 123 - - - - - - 2.8 - -

Outlier 124 - - - - - - 2 - -

125 - - - - - - 1.2 - -

1234 3.2 100 99.6 0.6 100 99.4 14.2 47.2 -

1235 - - - 0.6 - - 7 2 -

1245 - - - - - - 0.2 - -

1345 - - - - - - 46.8 50.8 -

1 99.6 - - 49.6 - - 21.8 - 98.8

12 - - - - - 32.2 7.8 - -

13 - - - 49.0 - - 19.8 0.2 8.2

Two 123 - - - 0.4 - 30.6 11 - -

Outliers 124 - - - 0.6 - - 6.2 - -

125 - - - - - - 4.8 - -

1234 0.4 100 100 - 100 37.2 5.8 24.4 -

1235 - - - - - - 6.6 42.8 -

1245 - - - 0.4 - - 9 2 -

1345 - - - - - - 7.2 30.6 -
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Table 2. Percentage of subsets selected by the criteria for Beta2

σ
2 = 0.01 σ

2 = 1 σ
2 = 100

P RAIC AICF AICC RAIC AICF AICC RAIC AICF AICC

1 96.8 - - 96.8 - - 28 - 50.4

12 - - - - - - 13.6 - 40

13 - - - - - - 19 - 6.6

No 123 - - - - - - 8.4 - 0.8

Outlier 124 - - - - - - 8.6 - 1.4

125 - - - - - - 5.8 - 0.8

1234 3.2 100 100 3.2 100 100 5.4 39.4 -

1235 - - - - - - 2.4 27.8 -

1245 - - - - - - 3.4 24.8 -

1345 - - - - - - 5.4 8 -

1 99.4 - - 39.4 - - 26.2 - 99.8

12 - - - 3.4 - 1.6 3.6 - 0.2

13 - - - 51.8 - - 8.6 - -

One 123 - - - - - 0.2 0.4 - -

Outlier 124 - - - 0.2 - 63.2 3 - -

125 - - - 3.8 - - 4.2 - -

1234 0.6 100 100 0.4 100 35.0 10.4 45.6 -

1235 - - - 1.0 - - 4.2 2 -

1245 - - - - - - 2 4.4 -

1345 - - - - - - 37.4 48 -

1 100 - - 31.8 - - 20.4 1.4 100

12 - - - 3.0 - 32.0 8.2 - -

13 - - - 56.4 - - 18.4 0.2 -

Two 123 - - - - - 4.2 12.2 - -

Outliers 124 - - - 2.8 - 52.8 6.2 - -

125 - - - 2.8 - - 6.8 - -

1234 - 100 100 - 100 11.0 5 19 -

1235 - - - - - - 11.8 29 -

1245 - - - 3.2 - - 7.4 31.2 -

1345 - - - - - - 8.6 19.2 -
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According to Table 1, when the variance is small, the AICC and AICF criteria
select the true model ‘1234’ with 100% without outliers. On the contrary, the
RAIC criteria performs poorly in all situations. In the cases of no outlier and
one outlier, the results for the AICF and AICC criteria are similar for σ2 = 0.01
and σ2 = 1. With one outlier, AICF also selects the model ‘1234’ with 100% and
AICC selects the model ‘1234’ with 99.4%. When σ2 = 1, the AICC criterion
fails in the case of two outliers. In general, the results for σ2 = 0.01 and σ2 = 1
are similar for Beta1. Although the AICC criterion provide good performance for
σ2 = 0.01 and σ2 = 1, it fails for σ2 = 100. AICC is known to be affected by a
change in variance, and when the variance is large [4]. In the case of large variance,
with respect to outliers, the AICF criterion also selects the true model ‘1234’ and
the model ‘1345’, whereas AICC fails. When the variance gets bigger, the AICC
criterion is affected a lot by outliers. The AICF criterion also selects model ‘1234’
with 100%, even if there are two outliers.

In Table 2, it is seen that the results for Beta2 are similar to those for Beta1.
In the case of Beta2, while AICC and AICF provide as good a performance as for
Beta1, RAIC again does not provide a good performance. However, in contrast to
Beta1, in the case of one outlier the criterion AICC fails for σ2 = 1 .

An Application using Hald Data

This data set consists of 13 observations on 4 independent variables, where
these variables are related to one other. It should be pointed out that there is
multicollinearity among the regressors for this data. It has been observed that
there are no outliers in the y direction. Some of the results for 15 subsets obtained
using Hald Data [5], when there are no outliers, are given in Table 3.

Table 3. Results for some subsets using Hald Data

P RAIC AICF AICC

12 11.49 36.88 36.62

13 150.0 1.74 53.8

14 6.10 28.56 38.07

123 11.22 45.80 42.46

124 9.24 45.93 42.44

134 3.91 43.34 42.77

234 17.28 29.85 44.88

For Hald Data, model ‘12’, that is the model containing x1 and x2, is especially
preferred as the predicted model. There is not multicollinearity in this subset.
Model ‘124’ can be proposed as the best models with 3 variables.

It is seen from Table 3 and Figure 1 that the models ‘12’ and ‘124’ are selected
by the AICC criterion. When the model ‘12’ is selected by the AICC criterion, the
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‘124’ model is also a suitable 3 variable model. But, if the AICF value is plotted
against the parameter number, it is seen that ‘12’ is selected by the AICF.

AICF selects the model ‘124’ with three variable. It is seen that AICF tends
to select subsets with many variables (Çetin, [3]). RAIC also does not provide a
good performance in the simulation study.

To see the effect of outliers, outliers are generated on the dependent variable:
The dependent variable is replaced firstly with y6 = 150, later by y6 = 150 and
y8 = 150. The results are given in Figures 2 and 3.

Figure 1. AICC-p and AICF-p without outliers
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Figure 2. AICC-p and AICF-p with one outlier
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Figure 3. AICC-p and AICF-p with two outliers
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In the case of one outlier, the AICC and AICF criteria select model ‘14’. From the
former study on Hald Data, it is known that subset ‘14’ is one of the best models.
Also, subset ‘14’ is selected by AICC and AICF for one outlier.

According to figure 2, AICC and AICF select the same subset ‘13’. However,
this situation is not much desired for AICC. AICF is affected by two outliers.
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