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Is homotopy perturbation method the traditional
Taylor series expansion

M. Turkyilmazoglu ∗

Abstract
The present paper deals with the homotopy perturbation method. The
question of whether the homotopy perturbation method is simply the
conventional Taylor series expansion is examined. It is proven that
under particular choices of the auxiliary parameters the homotopy per-
turbation method is indeed the Taylor series expansion of the sought
solution of nonlinear equations.
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1. Introduction
Most of the real-life phenomena is governed by nonlinear equations whose solutions

are difficult to find. Therefore, friendly tools have been the focus of past two decade’s
research.

Recently, investigators have proposed plenty of techniques to find approximate solu-
tions. One of the most recent popular technique is the homotopy perturbation method
based on the concept of topology. This method is quite distinct from the classical per-
turbation technique and does not require a small parameter or a linear term in a dif-
ferential equation. Essentially, a homotopy with an embedding parameter p ∈ [0, 1] is
constructed. The basic details of homotopy perturbation method for solving nonlinear
differential equations were outlined in [1], see also [2, 3, 4]. A numerous nonlinear prob-
lems were recently treated by the method, see for instance [5]. The recent works highlight
clearly the fact that there is a close relationship between the Adomian decomposition and
Taylor series methods as well as the homotopy and Taylor series methods [6, 7].

The investigation of current paper focuses on the homotopy perturbation technique.
The prime motivation is to examine the method mathematically and to prove that under
certain constraints, by particular choice of auxiliary linear operator and initial approx-
imation, the homotopy perturbation method simply collapses onto the classical Taylor
series expansion.
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2. The Homotopy Perturbation Method
The essential idea of this method is to introduce a homotopy parameter, say p, which

varies from 0 to 1. Consider the nonlinear initial value problem

N(u) = 0, B(u,
du

dn
) = 0,(2.1)

where u is the function to be solved under the boundary constraints in B. He’s homotopy
perturbation technique [1, 10] defines a homotopy u(r, p) : R× [0, 1]→ R so that

H(u, p) = (1− p)[L(u)− L(u0)] + pN(u),(2.2)

where L is a suitable auxiliary linear operator, u0 is an initial approximation of equation
(2.1) satisfying exactly the boundary conditions, see also [2] for the rest. It is obvious
from equation (2.2) that

H(u, 0) = L(u)− L(u0), H(u, 1) = N(u).(2.3)

As p moves from 0 to 1, u(t, p) moves from u0(t) to u(t). Our basic assumption is that
the solution of equation (2.2) when equated to zero can be expressed as a power series
in p

u(t, p) = u0(t) + pu1(t) + p2u2(t) + · · · =
∞∑
k=0

uk(t)p
k.(2.4)

The approximate solution of equation (2.1), therefore, can be readily obtained as

u(t) = lim
p→1

u(t, p) =

∞∑
k=0

uk(t).(2.5)

3. Homotopy perturbation and Taylor expansion
To answer the question raised in the title of the paper, let’s take into account the

first-order initial value problem version of (2.1)

u′(t) = F (u), u(0) = α,(3.1)

where α is a constant. A straightforward Taylor series representation for the solution
u(t) at point t = 0 can be given in the form

u(t) = u(0) + u′(0)t+
u′′(0)

2!
t2 + · · · =

∞∑
k=0

akt
k,(3.2)

where an = u(n)(0)
n!

can be immediately found from differentiating (3.1) successively and
substituting t = 0. A few of the coefficients follow

a1 = u′(0) = F (α),(3.3)

a2 =
u′′(0)

2!
=

1

2!
Fu(α)a1,

a3 =
u′′′(0)

3!
=

1

3!
[Fuu(α)a

2
1 + 2Fu(α)a2],

a4 =
u(4)(0)

4!
=

1

4!
[Fuuu(α)a

3
1 + 6Fuu(α)a1a2 + 6Fu(α)a3],

...
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Theorem. If the auxiliary linear operator L and the initial approximation u0(t) to
the solution u(t) of equation (3.1) is taken in the homotopy procedure (2.2) as

L =
∂

∂t
, u0(t) = α,(3.4)

then the homotopy series solution (2.4) converges to the Taylor series expansion (3.2)
whose coefficients are evaluated in the order given by (3.3).

Proof. Expanding the homotopy solution u(t, p) from (2.2) into Taylor series accord-
ing to the parameter p at p = 0, it reads

u(t, p) =

∞∑
k=0

uk(t)p
k.(3.5)

When (3.5) is substituted into the homotopy equations (2.2) or equivalently differentiat-
ing (2.2) successively with respect to p and replacing p = 0 at the end yields a system of
linear ordinary differential equations for the coefficients uk(t) of (3.5)

L(uk − χkuk−1) = −u′k−1 +
1

(k − 1)!
[
∂k−1F

∂pk−1
]|p=0,(3.6)

uk(0, p) = α,

where χk = 0 for k = 1 and χk = 1 for k > 1. Having solved the equations (3.6)
iteratively, the followings result for uk(t)

u1(t) = F (α)t = a1t,(3.7)

u2(t) =
1

2!
Fu(α)a1t

2 = a2t
2,

u3(t) =
1

3!
[Fuu(α)a

2
1 + 2Fu(α)a2]t

3 = a3t
3,

u4(t) =
1

4!
[Fuuu(α)a

3
1 + 6Fuu(α)a1a2 + 6Fu(α)a3]t

4 = a4t
4,

...

which generates the homotopy series

u(t, p) =

∞∑
k=0

uk(t)p
k =

∞∑
k=0

akt
kpk.(3.8)

The convergence assumption of (3.8) at p = 1 yields the homotopy series solution (2.5)
which turns out to be the Taylor series expansion (3.2-3.3) to the solution.

Remark 1. Since the homotopy series (3.8) at p = 1 is the traditional Taylor series,
then the convergence issue of the homotopy series (3.5) is guaranteed for those values t,
|t| < R such that R = limn→∞ | anan+1

|.

Remark 2. If u = u(t, r) with r denoting space variables and the initial-value problem
consists of a partial differential equation of the form

ut = F (u, ur),(3.9)
u(t = 0, r) = f(r),

then by a similar argument to Theorem 1, the homotopy solution to (3.9) will be again the
traditional Taylor series expansion at t = 0, provided that the auxiliary linear operator
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L and the initial approximation u0(t, r) are selected as

L =
∂

∂t
, u0(t, r) = f(r).

Remark 3. If higher-order ordinary or partial differential initial-value problems (or
systems) are considered, by a particular choice of linear differential operator and initial
guess, it can be shown that the homotopy perturbation series solution and the Taylor
series solution are the same.

4. Illustrative Examples
To justify the presented analysis, the following examples are given, as also stated in

reference [2].

Example 1. The steady free convection flow over a vertical semi-infinite flat plate,
see [12] and [13] is given by

y′ + y2 = 1, y(0) = 0,(4.1)

To comply with the Theorem, u0(t) = 0 and L = d
dt

are chosen so that the homotopy
(2.2) becomes

∂u(t, p)

∂t
+ p u(x, p)2 − p = 0, u(0, p) = 0.(4.2)

A few approximate homotopy solutions via the homotopy perturbation (4.2) can be
calculated as

u1(t) = t, u2(t) = 0, u3(t) = −
t3

3
, u4(t) = 0, u5(t) =

2

15
t5,

which are the same as those generated from the classical Taylor series expansion of (4.1)
at t = 0, the validity region is determined to be −π

2
< t < π

2
.

Example 2. The steady mixed convection flow [14] is given by

2y′′ + y − y2 = 0, y(0) = 0, y′(0) = α = 1/
√
6.(4.3)

The Taylor series expansion of (4.3) at point t = 0 yields

y(t) = tα− t3α

12
+
t4α2

24
+
t5α

480
− t6α2

288
+
t7α

(
−1 + 40α2

)
40320

+
t8α2

7680
+ · · · .(4.4)

which totally corresponds to the homotopy perturbation series solution provided that we
choose the auxiliary parameters as u0(t) = αt and L = 2 ∂

2

∂t2
, see [2].

Example 3. The approximate theory of the flow through a shock wave traveling in
a viscous fluid [15] is given by

ut + uux = uxx, u(x, 0) = 2x, (x, t) ∈ R× [0, 1/2),(4.5)

which receives an exact solution given by (see [2])

u(x, t) =
2x

1 + 2t
.(4.6)

Exact solution (4.6) is approximated by the auxiliary parameters u0(x, t) = 2x and
L = ∂

∂t
. Then, the homotopy (2.2) turns out to be

ut(x, t, p) + p(u(x, t, p)ux(x, p, t)− uxx(x, t, p) = 0, u(x, 0, p) = 2x.(4.7)



655

Equation (4.7) produces the below homotopy series for the solution of (4.5)

u(x, t) = 2x− 4xt+ 8xt2 − 16xt3 + 32xt4 + ...+ (−1)n2n+1xtn + · · · ,(4.8)

which is the same as the classical Taylor series expansion of (4.6) around t = 0. The
interval of convergence is easy to identify as 0 ≤ t < 1/2.

Example 4. Consider now the well-known KdV-Burger’s equation involving both
dispersion and dissipation terms

ut + 2(u3)x − uxxx + uxx = 0, u(x, 0) =
1

6

(
1 + tanh

[x
6

])
,(4.9)

whose exact travelling-wave solution is given by

u(x, t) =
1

6

(
1 + tanh

[
1

6

(
x− 2

9
t

)])
.(4.10)

To approximate the exact solution (4.10), if we choose the auxiliary parameters u0(x, t) =
1
6

(
1 + tanh

[
x
6

])
and L = ∂

∂t
, the homotopy (2.2) turns out to be

ut(x, t, p) + p(2(u(x, t, p)3)x − uxxx(x, p, t) + uxx(x, t, p) = 0,(4.11)

u(x, 0, p) =
1

6

(
1 + tanh

[x
6

])
.

It is no hard to deduce that the Taylor series and homotopy perturbation series completely
coincide again for this specific problem.

Example 5. The transverse vibrations of a uniform flexible beam [16] is given by

utt + (
y + z

2 cosx
− 1)uxxxx + (

z + x

2 cos y
− 1)uyyyy + (

x+ y

2 cos z
− 1)uzzzz = 0,(4.12)

u(x, y, z, 0) = −ut(x, y, z, 0) = x+ y + z − (cosx+ cos y + cos z),

admitting an exact solution

u(x, t) = (x+ y + z − cosx− cos y − cos z)e−t, see[2].(4.13)

This exact solution (4.13) is approximated by selecting the auxiliary parameters respec-
tively, u0(x, t) = (x + y + z − cosx − cos y − cos z)(1 − t) and L = ∂2

∂t2
. As a result, we

obtain the homotopy series

u(x, t) = (x+ y + z − cosx− cos y − cos z)(1− t+ t2

2!
− t3

3!
+
t4

4!
+ · · · )(4.14)

which matches exactly onto the Taylor series expansion of (4.13) around t = 0

u(x, t) =

∞∑
n=0

(x+ y + z − cosx− cos y − cos z)
tn

n!
,(4.15)

that is obviously convergent for all t.

Example 6. As a final example, we consider the linear partial differential equation

ut + ux − 2uxxt = 0, u(x, 0) = e−x,(4.16)

having the exact solution

u(x, t) = e−x−t, see[2].(4.17)

Choosing the auxiliary parameters u0(x, t) = e−x and L = ∂
∂t
, then the homotopy (2.2)

becomes

ut(x, t, p) + p(ux(x, p, t)− uxxt(x, t, p) = 0, u(x, 0, p) = e−x.(4.18)
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The homotopy series solution of (4.13) from (2.1) can be found as

u(x, t) =
e−x

720
(720 + 45360t+ 46440t2 + 13320t3 + 1470t4 + 66t5 + · · · ),(4.19)

whose radius of convergence is zero, so that the homotopy series (4.19) is convergent only
at the point t = 0. On the other hand, the classical Taylor series expansion applied to
(4.16) predicts the exact result (4.17). It should be remarked that this example does not
contradict at all with the Theorem, since (4.16) involves mixed partial derivatives. The
weakness of the homotopy perturbation method on this example may be overcame by a
better choice of auxiliary parameters.

It can be concluded as an answer to the title of the paper that for specific choices of
auxiliary homotopy parameters, the homotopy perturbation technique produces exactly
the same series as the traditional Taylor series. If this is the case, then there seems no a
scientific merit to publish papers regarding the homotopy perturbation technique.

5. Concluding remarks
The homotopy perturbation method is mathematically analyzed in the present work.

The theorem presented here proves that under certain special conditions the traditional
homotopy perturbation method becomes the well-known Taylor series expansion. An
example has also been given to demonstrate the advantage of the Taylor series expan-
sion over the homotopy perturbation method. It can be concluded that a great deal of
the papers published under the topic of homotopy perturbation technique is simply the
traditional Taylor series expansion, whose contributions to science are questionable.
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