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Existence and uniqueness of positive solutions for
boundary value problems of a fractional
differential equation with a parameter

Chen Yang ∗

Abstract

In this paper, we are concerned with the existence and uniqueness
of positive solutions for the following nonlinear fractional two-point
boundary value problem{

Dα
0+u(t) + λf(t, u(t), u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, and

λ is a positive parameter. Our analysis relies on a fixed point theorem
and some properties of eigenvalue problems for a class of general mixed
monotone operators. Our results can not only guarantee the existence
of a unique positive solution, but also be applied to construct an itera-
tive scheme for approximating it. An example is given to illustrate the
main results.
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1. Introduction
Fractional differential equations arise in many fields, such as physics, mechanics,

chemistry, economics, engineering and biological sciences,etc;see[1-15] for example. In
recent years, the study of positive solutions for fractional differential equation boundary
value problems has attracted considerable attention, and fruits from research into it
emerge continuously. For a small sample of such work, we refer the reader to [16-28] and
the references therein. In these papers, many authors have investigated the existence of
positive solutions for nonlinear fractional differential equation boundary value problems.
Their results are based on Schauder fixed point theorem, Leggett-Williams theorem,
fixed point index theorems in cones, Krasnosel’skii fixed point theorem, the method of
upper-lower solutions, fixed point theorems in cones and so on. On the other hand, the
uniqueness of positive solutions for nonlinear fractional differential equation boundary
value problems has been studied by some authors, see [20-22,24,27] for example. The
methods used in these papers are fixed point theorems for mixed monotone operators,
u0-concave operators and monotone operators in partially ordered sets.

In [26], by means of Krasnosel’skii fixed point theorem, El-Shahed considered the
existence and nonexistence of positive solutions for the nonlinear fractional boundary
value problem {

Dα
0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, a : (0, 1) → [0,+∞)

is continuous with
∫ 1

0
a(t)dt > 0, f ∈ C([0,+∞), [0,+∞)) and λ is a positive parameter.

In [28], by using the properties of the Green function, the method of upper-lower
solutions and fixed point theorem, Zhao et al. studied the existence of multiple positive
solutions for the nonlinear fractional differential equation boundary value problem{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0.

The purpose of this paper is to establish the existence and uniqueness of positive solutions
for the following nonlinear fractional two-point boundary value problem{

Dα
0+u(t) + λf(t, u(t), u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,
(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative, λ is a positive pa-

rameter and f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous.
Different from the above works mentioned, we will use a fixed point theorem and some

properties of eigenvalue problems for a class of general mixed monotone operators to show
the existence and uniqueness of positive solutions for the problem (1.1). Moreover, we
can construct two sequences for approximating the unique solution and we show that the
positive solution with respect to λ has some pleasant properties.

2. Preliminaries and previous results
For the convenience of the reader, we present here some definitions, lemmas and

basic results that will be used in the proof of our theorem.

Definition 2.1([4, Definition 2.1]). The integral

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α dt, x > 0
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is called the Riemann-Liouville fractional integral of order α, where α > 0 and Γ(α)
denotes the gamma function.

Definition 2.2([4, page 36-37]). For a function f(x) given in the interval [0,∞), the
expression

Dα
0+f(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

0

f(t)

(x− t)α−n+1
dt

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-
Liouville fractional derivative of order α.

Lemma 2.3.([26]). Given y ∈ C[0, 1] and 2 < α ≤ 3, the following boundary value
problem {

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(2.1)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds, t ∈ [0, 1],

where

G(t, s) =
1

Γ(α)

{
(1− s)α−2tα−1, 0 ≤ t ≤ s ≤ 1,
(1− s)α−2tα−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1.

Here G(t, s) is called the Green function of boundary value problem (2.1). Evidently,
G(t, s) ≥ 0 for t, s ∈ [0, 1].
The following property of the Green function plays important roles in this paper.

Lemma 2.4. Let 2 < α ≤ 3. Then the Green function G(t, s) in Lemma 2.3 has the
following property:

1

Γ(α)
s(1− s)α−2tα−1 ≤ G(t, s) ≤ 1

Γ(α)
(1− s)α−2tα−1 for t, s ∈ [0, 1].

Proof. Evidently, the right inequality holds. So we only need to prove the left inequality.
If 0 ≤ s ≤ t ≤ 1, then we have 0 ≤ t− s ≤ t− ts = (1− s)t, and thus

(t− s)α−1 ≤ (1− s)α−1tα−1.

Hence,

G(t, s) =
1

Γ(α)
[(1− s)α−2tα−1 − (t− s)α−1]

≥ 1

Γ(α)
[(1− s)α−2tα−1 − (1− s)α−1tα−1]

=
1

Γ(α)
s(1− s)α−2tα−1.

If 0 ≤ t ≤ s ≤ 1, then we have

G(t, s) =
1

Γ(α)
(1− s)α−2tα−1 ≥ 1

Γ(α)
s(1− s)α−2tα−1.

So the left inequality also holds.2

In the sequel, we present some basic concepts in ordered Banach spaces for complete-
ness and fixed point theorems which we will be used later. For convenience of readers,
we suggest that one refer to [29,30] for details.
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Suppose that (E, ‖ · ‖) is a real Banach space which is partially ordered by a cone
P ⊂ E, i.e., x ≤ y if and only if y − x ∈ P. If x ≤ y and x 6= y, then we denote x < y or
y > x. By θ we denote the zero element of E. Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥ 0⇒ λx ∈ P ; (ii) x ∈ P,−x ∈ P ⇒ x = θ.
P is called normal if there exists a constant M > 0 such that, for all x, y ∈ E, θ ≤

x ≤ y implies ‖x‖ ≤ M‖y‖; in this case M is called the normality constant of P . If
x1, x2 ∈ E, the set [x1, x2] = {x ∈ E|x1 ≤ x ≤ x2} is called the order interval between
x1 and x2.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such that
λx ≤ y ≤ µx. Clearly, ∼ is an equivalence relation. Given h > θ(i.e., h ≥ θ and h 6= θ),
we denote by Ph the set Ph = {x ∈ E| x ∼ h}. It is easy to see that Ph ⊂ P is convex
and λPh = Ph for all λ > 0.

Definition 2.5(see [29,30]). A : P × P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2
implies A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point of A if A(x, x) = x.

In a recent paper [30], Zhai and Zhang considered the following operator equations

A(x, x) = x and A(x, x) = λx,

where A : P×P → P is a mixed monotone operator which satisfy the following conditions:

(A1) there exists h ∈ P with h 6= θ such that A(h, h) ∈ Ph.
(A2) for any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1) such that A(tu, t−1v) ≥
ϕ(t)A(u, v).
They established the existence and uniqueness of positive solutions for the above equa-
tions and they present the following interesting results.

Theorem 2.6. Suppose that P is a normal cone of E, and (A1), (A2) hold. Then
operator A has a unique fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph,
constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n→∞.

Theorem 2.7. Suppose that P is a normal cone of E, and (A1), (A2) hold. Let xλ(λ > 0)
denote the unique solution of nonlinear eigenvalue equation A(x, x) = λx in Ph. Then we
have the following conclusions:

(R1) If ϕ(t) > t
1
2 for t ∈ (0, 1), then xλ is strictly decreasing in λ, that is, 0 < λ1 < λ2

implies xλ1 > xλ2 ;
(R2) If there exists β ∈ (0, 1) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then xλ is continuous in
λ, that is, λ→ λ0(λ0 > 0) implies ‖xλ − xλ0‖ → 0;
(R3) If there exists β ∈ (0, 1

2
) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then lim

λ→∞
‖xλ‖ =

0, lim
λ→0+

‖xλ‖ =∞.
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3. Existence and uniqueness of positive solutions for the problem
(1.1)
In this section, we apply Theorem 2.6 and Theorem 2.7 to study the problem (1.1),

and we obtain a new result on the existence and uniqueness of positive solutions. More-
over, we show that the positive solution with respect to λ has some pleasant properties.
The method used here is new to the literature and so is the existence and uniqueness
result to the fractional differential equations.

In our considerations we will work in the Banach space C[0, 1] = {x : [0, 1] →
R is continuous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that
this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Set P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P is a
normal cone in C[0, 1] and the normality constant is 1. Our main result is summarized
in the following theorem.

Theorem 3.1. Assume that

(H1) f(t, x, y) is nondecreasing in x for each t ∈ [0, 1] and y ∈ [0,+∞), nonincreas-
ing in y for each t ∈ [0, 1] and x ∈ [0,+∞) with f(t, 0, 1) 6≡ 0;
(H2) for any γ ∈ (0, 1), there exist constants ϕ1(γ), ϕ2(γ) ∈ (0, 1) with ϕ1(γ)ϕ2(γ) > γ
such that

f(t, γx, y) ≥ ϕ1(γ)f(t, x, y), f(t, x, γy) ≤ 1

ϕ2(γ)
f(t, x, y) for any x, y ∈ [0,+∞).

Then: (1) the problem (1.1) has a unique positive solution u∗λ in Ph, where h(t) =
tα−1, t ∈ [0, 1]. Moreover, for any initial values u0, v0 ∈ Ph, constructing successively the
sequences

un+1(t) = λ

∫ 1

0

G(t, s)f(s, un(s), vn(s))ds, vn+1(t) = λ

∫ 1

0

G(t, s)f(s, vn(s), un(s))ds, n = 0, 1, 2, . . . ,

we have un(t)→ u∗λ(t), vn(t)→ u∗λ(t) as n→∞, where G(t, s) is given as in Lemma 2.3;
(2) if ϕ1(t)ϕ2(t) > t

1
2 for t ∈ (0, 1), then u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2

implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

. If there exists β ∈ (0, 1) such that ϕ1(t)ϕ2(t) ≥ tβ for
t ∈ (0, 1), then u∗λ is continuous in λ, that is, λ → λ0(λ0 > 0) implies ‖u∗λ − u∗λ0

‖ → 0.

If there exists β ∈ (0, 1
2
) such that ϕ1(t)ϕ2(t) ≥ tβ for t ∈ (0, 1), then lim

λ→0+
‖u∗λ‖ =

0, lim
λ→∞

‖u∗λ‖ =∞.

Proof. To begin with, from [26] the problem (1.1) has an integral formulation given
by

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s), u(s))ds,

where G(t, s) is given as in Lemma 2.3. For any u, v ∈ P, we define

A(u, v)(t) =

∫ 1

0

G(t, s)f(s, u(s), v(s))ds.

Noting that f(t, x, y) ≥ 0 and G(t, s) ≥ 0, it is easy to check that A : P × P → P. In the
sequel we check that A satisfies all assumptions of Theorem 2.6.

Firstly, we prove that A is a mixed monotone operator. In fact, for ui, vi ∈ P, i = 1, 2
with u1 ≥ u2, v1 ≤ v2, we know that u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1] and by (H1)
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and Lemma 2.3,

A(u1, v1)(t) =

∫ 1

0

G(t, s)f(s, u1(s), v1(s))ds ≥
∫ 1

0

G(t, s)f(s, u2(s), v2(s))ds = A(u2, v2)(t).

That is, A(u1, v1) ≥ A(u2, v2).
Next we show that A satisfies the condition (A2). From (H2), for γ ∈ (0, 1) we can

get f(t, x, γ−1y) ≥ ϕ2(γ)f(t, x, y) for any x, y ∈ [0,+∞). Then for any γ ∈ (0, 1) and
u, v ∈ P, we obtain

A(γu, γ−1v)(t) =

∫ 1

0

G(t, s)f(s, γu(s), γ−1v(s))ds

≥
∫ 1

0

G(t, s)ϕ1(γ)f(s, u(s), γ−1v(s))ds

≥
∫ 1

0

G(t, s)ϕ1(γ)ϕ2(γ)f(s, u(s), v(s))ds

= ϕ1(γ)ϕ2(γ)A(u, v)(t), t ∈ [0, 1].

Let ϕ(t) = ϕ1(t)ϕ2(t), t ∈ (0, 1). Then ϕ(t) ∈ (t, 1) for t ∈ (0, 1). Hence, A(γu, γ−1v) ≥
ϕ(γ)A(u, v), ∀ u, v ∈ P, γ ∈ (0, 1). So the condition (A2) in Theorem 2.6 is satisfied.
Now we show that A(h, h) ∈ Ph. On one hand, it follows from (H1), (H2) and Lemma
2.4 that

A(h, h)(t) =

∫ 1

0

G(t, s)f(s, h(s), h(s))ds

=

∫ 1

0

G(t, s)f(s, sα−1, sα−1)ds

≥
∫ 1

0

1

Γ(α)
s(1− s)α−2tα−1f(s, 0, 1)ds

=
1

Γ(α)
h(t)

∫ 1

0

s(1− s)α−2f(s, 0, 1)ds, t ∈ [0, 1].

On the other hand, also from (H1), (H2) and Lemma 2.4, we obtain

A(h, h)(t) =

∫ 1

0

G(t, s)f(s, sα−1, sα−1)ds

≤
∫ 1

0

1

Γ(α)
(1− s)α−2tα−1f(s, 1, 0)ds

=
1

Γ(α)
h(t)

∫ 1

0

f(s, 1, 0)ds, t ∈ [0, 1].

Let

r1 =

∫ 1

0

s(1− s)α−2f(s, 0, 1)ds, r2 =

∫ 1

0

f(s, 1, 0)ds.

Since f is continuous and f(t, 0, 1) 6≡ 0, we can get

0 < r1 =

∫ 1

0

s(1− s)α−2f(s, 0, 1)ds ≤
∫ 1

0

f(s, 1, 0)ds = r2.

Consequently,

A(h, h)(t) ≥ r1
Γ(α)

· h(t), A(h, h)(t) ≤ r2
Γ(α)

· h(t), t ∈ [0, 1].

So we have
r1

Γ(α)
· h ≤ A(h, h) ≤ r2

Γ(α)
· h.
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Hence A(h, h) ∈ Ph, the condition (A1) in Theorem 2.6 is satisfied. Therefore, by
Theorem 2.7, there exists a unique u∗λ ∈ Ph such that A(u∗λ, u

∗
λ) = 1

λ
u∗λ. That is,

u∗λ = λA(u∗λ, u
∗
λ). It is easy to check that u∗λ is a unique positive solution of the problem

(1.1) for given λ > 0. Further, if ϕ(t) > t
1
2 for t ∈ (0, 1), then Theorem 2.7 (R1) means

that u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

.

If there exists β ∈ (0, 1) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then Theorem 2.7 (R2)
means that u∗λ is continuous in λ, that is, λ → λ0(λ0 > 0) implies ‖u∗λ − u∗λ0

‖ → 0. If
there exists β ∈ (0, 1

2
) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then Theorem 2.7 (R3) means

lim
λ→0+

‖u∗λ‖ = 0, lim
λ→∞

‖u∗λ‖ =∞.
Let Aλ = λA, then Aλ also satisfies all the conditions of Theorem 2.6. By Theorem

2.6, for any initial values u0, v0 ∈ Ph, constructing successively the sequences un+1 =
Aλ(un, vn), vn+1 = Aλ(vn, un), n = 0, 1, 2, . . . , we have un → u∗λ, vn → u∗λ as n → ∞.
That is,

un+1(t) = λ

∫ 1

0

G(t, s)f(s, un(s), vn(s))ds→ u∗λ(t),

vn+1(t) = λ

∫ 1

0

G(t, s)f(s, vn(s), un(s))ds, → u∗λ(t)

as n→∞. 2

Remark 3.1. Let f(t, x, y) ≡ C > 0. Then the conditions (H1), (H2) are satisfied
and the problem (1.1) has a unique solution uλ(t) = λC

∫ 1

0
G(t, s)ds, t ∈ [0, 1]. From

Lemma 2.4, the unique solution uλ is a positive solution and satisfies uλ ∈ Ph = Ptα−1 .

Example 3.1. Consider the following problem:{
D

5
2
0+u(t) + λa(t)[u

1
5 (t) + (u(t) + 3)−

1
4 ] = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(3.1)

where a : [0, 1]→ [0,+∞) is continuous with a 6≡ 0.
In this example, we have α = 5

2
. Let f(t, x, y) = a(t)[x

1
5 + (y + 3)−

1
4 ]. Evidently,

f(t, x, y) is increasing in x for t ∈ [0, 1], y ≥ 0, decreasing in y for t ∈ [0, 1], x ≥ 0.

Moreover, f(t, 0, 1) = a(t)4−
1
4 6≡ 0. Set ϕ1(γ) = γ

1
5 , ϕ2(γ) = γ

1
4 , γ ∈ (0, 1). Then

ϕ1(γ)ϕ2(γ) = γ
9
20 > γ and

f(t, γx, y) = a(t)[γ
1
5 x

1
5 +(y+3)−

1
4 ] ≥ ϕ1(γ)f(t, x, y), f(t, x, γy) = a(t)[x

1
5 +

1

γ
1
4

(y+3)−
1
4 ] ≤ 1

ϕ2(γ)
f(t, x, y),

for t ∈ [0, 1], x, y ≥ 0. Hence, all the conditions of Theorem 3.1 are satisfied. An appli-
cation of Theorem 3.1 implies that the problem (3.1) has a unique positive solution u∗λ
in Ph = Ptα−1 , and for any initial values u0, v0 ∈ Ptα−1 , constructing successively the
sequences

un+1(t) = λ

∫ 1

0

G(t, s)a(s)[un
1
5 (s)+(vn(s)+3)−

1
4 ]ds, vn+1(t) = λ

∫ 1

0

G(t, s)a(s)[vn
1
5 (s)+(un(s)+3)−

1
4 ]ds,

n = 0, 1, 2, . . . , we have un(t) → u∗λ(t), vn(t) → u∗λ(t) as n → ∞, where G(t, s) is given
as in Lemma 2.3. Moreover, note that ϕ1(t)ϕ2(t) > t

1
2 for t ∈ (0, 1), then from Theorem

3.1, u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

.

Take β ∈ [ 9
20
, 1
2
) and applying Theorem 3.1, we know that u∗λ is continuous in λ and

lim
λ→0+

‖u∗λ‖ = 0, lim
λ→∞

‖u∗λ‖ =∞.
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