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Abstract
Using the theory of group corings, we study (graded) Morita contexts
associated to a comodule over a group coring, which generalize and
unify some classical morita contexts. Some applications of our theory
are also discussed.
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1. Introduction
An A-coring is a coalgebra in the monoidal category of A-bimodules over an arbitrary

ring A. The concept was introduced by M. Sweedler [14]. In 2000, Takeuchi pointed
out that to each entwining structure (A,C, ψ) over a commutative ring k, which was
introduced by T. Brzezinski and S. Majid [2], there corresponds an A-coring structure
on C := A ⊗k C. This motivated the revival of the theory of corings and comodules
and Brzezinski’s paper [3] was the engine behind the revival of the theory of corings
and comodules over corings. Many examples of classical categories in noncommutative
algebra are special cases of comodules over corings. Let us mention a few of them: the
category of a descent datum of a ring extension, graded modules, Hopf modules, Long
dimodules, Yetter-Drinfeld modules, Doi-Koppinen modules or entwined modules, and
several other categories studied earlier by Hopf algebraists.

One of the important observations is that coring theory provides an elegant approach
to descent theory and Galois theory. A systematic study of coring has been carried out
in [1, 3, 6, 7, 15]. As the generalization of coring, Caenepeel, Janssen and Wang [5]
introduced the group coring and developed Galois theory for group corings.
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It is well-known that the Morita context plays a important role in the theory of Hopf
algebras. The first Morita context was constructed by Chase and Sweedler [9], which
was generalized by Doi [12]. Morita contexts similar to the one of Doi were studied
by Cohen, Fischman and Montgomery in [11]. As the generalization of both contexts,
Caenepeel, Vercruysse and Wang associate different types of Morita contexts to a coring
with a fixed grouplike element, which was generalized by Caenepeel, Janssen and Wang
to group coring with a grouplike family [5]. Without the assumption of a coring with a
fixed grouplike element, Caenepeel, De Groot and Vercruysse associated a Morita context
to a comodule over a coring in [8]. Morita theory for group corings with fixed grouplike
family is a remarkable tool to discuss Hopf-Galois extensions. In order to further discuss
coalgebra-Galois extensions, we need to generalize the Morita context for group corings.
Naturally, it occurs to us to how to develop (graded) Morita context associated to a
comodule over a group coring. This is the motivation of this paper.

The paper is organized as follows.
In Section 2, we recall some basic definitions such as group corings, comodules over a

group coring and graded Morita contexts. In Section 3, we associate a Morita context to
a comodule over a group coring. In Section 4, we will discuss the graded Morita contexts
and their relationship. Some applications of our theory are discussed in Section 5.

2. Preliminaries
Throughout this paper, let G be a group with unit e, and A a ring with unit 1A,

and M an A-module. We will often need collections of A-modules isomorphic to M and
indexed by G. We will consider these modules as isomorphic, but distinct. Let M ×{α}
be the module with index α. We then have isomorphisms

µα : M →M × {α}, µα(m) = (m,α).

We can then write M × {α} = µα(M). µ can be considered as a dummy variable, and
we will also use the symbols ν, κ, · · · . We will identify M and M × {e} using µe.

2.1. Group Corings. Let A be an algebra. Recall from [5] that a G-group A-coring
(or shortly a G-A-coring) C is a family {Cα}α∈G of A-bimodules together with a family
of A-bimodule maps

∆α,β : Cαβ → Cα ⊗A Cβ , ε : Ce → A

such that the following conditions hold:

(∆α,β ⊗A id) ◦∆αβ,γ = (id⊗A ∆β,γ) ◦∆α,βγ ,

(id⊗A ε) ◦∆α,e = id = (ε⊗A id) ◦∆e,α

for all α, β, γ ∈ G.
For a G-A-coring C, we also use the following Sweedler-type notation for the comul-

tiplication maps ∆α,β :
∆α,β(c) = c(1,α) ⊗A c(2,β)

for all c ∈ Cαβ .
A morphism between two G-A-corings C and D consists of a family of A-bimodule

maps f = {fα : Cα → Dα}α∈G such that

(fα ⊗A fβ) ◦∆α,β = ∆α,β ◦ fαβ , ε ◦ fe = ε.

Over a G-A-coring C, we can define two different types of comodules. A right C-
comodule is a right A-module M together with a family of right A-linear maps ρM =
{ρMα : M →M ⊗A Cα}α∈G such that

(id⊗A ∆α,β) ◦ ρMαβ = (ρMα ⊗A id) ◦ ρβ , (id⊗A ε) ◦ ρMe = id.
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We use the following Sweedler-type notation:

ρMα (m) = m[0,α] ⊗A m[1,α]

for all m ∈Mα.
A morphism of right C-comodules is a right A-linear map f : M → N satisfying the

condition
(f ⊗A id) ◦ ρMα = ρNα ◦ f

for all α ∈ G. Let MC denote the category of right C-comodules.
Similarly, we can define the left C-comodule and the category CM of all left C-

comodules. We use the following Sweedler-type notation for the left C-comodule structure
maps Mρα:

Mρα(m) = m[−1,α] ⊗A m[0,α]

for all m ∈Mα.
A right G-C-comoduleM is a family of right A-modules {Mα}α∈G(meaning that each

Mα is right A-module), together with a family of right A-linear maps ρ = {ρα,β}α,β∈G,
where ρα,β : Mαβ →Mα ⊗A Cβ , such that the following conditions hold:

(id⊗A ∆β,γ) ◦ ρα,βγ = (ρα,β ⊗A id) ◦ ραβ,γ , (id⊗A ε) ◦ ρα,e = id

for all α, β, γ ∈ G.
We use the following standard notation:

ρα,β(m) = m[0,α] ⊗A m[1,β]

for m ∈Mαβ .
A morphism between two right G-C-comodules M = {Mα}α∈G and N = {Nα}α∈G is

a family of right A-linear maps f = {fα : Mα → Nα}α∈G such that

(fα ⊗A id) ◦ ρα,β = ρα,β ◦ fαβ .

The category of right G-C-comodules will be denoted by MG,C .
Let C be a G-A-coring. A family g = (gα)α∈G ∈

∏
α∈G Cα is called grouplike, if

∆α,β(gαβ) = gα ⊗A gβ and ε(ge) = 1 for all α, β ∈ G.
Let C be a G-A-coring with a fixed grouplike family g = (gα)α∈G. Then A can be

endowed with a structure of right C-comodule via the coaction maps

ρα : A→ A⊗A Cα, ρα(a) = 1A ⊗A gα · a.

For M ∈MC , we define

McoC = {m ∈M |ρα(m) = m⊗A gα,∀α ∈ G}.

In particular,
AcoC = {a ∈ A|a · gα = gα · a,∀α ∈ G}.

Let A⊗B A be the canonical Sweedler coring associated to the ring morphism B → A
with its comultiplication and counit given by the formulas

∆(a⊗B b) = (a⊗B 1A)⊗A (1A ⊗B b), ε(a⊗B b) = ab.

2.2. Graded Rings and Modules. Let A be a ring and R =
⊕

α∈G Rα a G-graded
ring. Suppose that we have a ring morphism i : A → Re. Then we call R a G-graded
A-ring. Every Rα is then an A-bimodule and the decomposition of R is a decomposition
of A-bimodules. The category of G-graded right R-modules will be denoted by MG

R .
Let C be a G-A-coring. For every α ∈ G, Rα =AHOM(Cα−1 , A) is an A-bimodule via

(a · fα · b)(c) = fα(c · a)b
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for all fα ∈ Rα, a, b ∈ A and c ∈ Cα−1 . Take fα ∈ Rα, gβ ∈ Rβ and define fα ? gβ ∈ Rαβ
by the following formula:

(fα ? gβ)(c) = gβ(c(1,β−1) · fα(c(2,α−1)))

for all c ∈ C(αβ)−1 . This defines mapsmα,β : Rα⊗ARβ → Rαβ , which make R = ⊕α∈GRα
into a G-graded ring with the unit ε. Define i : A → Re, i(a)(c) = ε(c)a is a ring
homomorphism, which make R =

⊕
α∈G Rα be a G-graded A-ring, called the (left) dual

(graded) ring of the group coring C. We will also write R =∗C.

2.3. Graded Morita Contexts. Let R be a G-graded ring, and M,N ∈MG
R . A right

R-linear map f : M → N is called homogeneous of degree σ, if f(Mα) ⊂ Mσα for all
α ∈ G. HOMR(M,N)σ denotes the additive group of all right R-module maps of degree
σ.

Let S and R be G-graded rings. A G-graded Morita context connecting S and R is
a Morita context (S,R, P,Q, ϕ, ψ) with the following additional structure: P and Q are
graded bimodules, and the maps

ϕ : P ⊗R Q→ S, ψ : Q⊗S P → R

are homogeneous of degree e.
Given two graded Morita contexts (S,R, P,Q, ϕ, ψ) and (S̃.R̃, P̃ , Q̃, ϕ̃, ψ̃), if there exist

two graded ring morphism Φ : S → S̃, Ψ : R → R̃ and two graded bimodule morphism
Θ : Q→ Q̃, Ξ : P → P̃ such that the following two diagrams

P ⊗R Q

Ξ⊗Θ

��

ϕ // S

Φ

��
P̃ ⊗R̃ Q̃

ϕ̃ // S̃

Q⊗S P

Θ⊗Ξ

��

ψ // R

Ψ

��
Q̃⊗S̃ P̃

ψ̃ // R̃

are communicative, then we say a quadruple Υ̃ = (Φ,Ψ,Θ,Ξ) a morphism from (S,R, P,Q, ϕ, ψ)

to (S̃, R̃, P̃ , Q̃, ϕ̃, ψ̃)
Let P be a G-graded right R-module. Then S =ENDR(P ) is a G-graded ring, and

Q=HOMR(P,R) ∈RMG
S with structure

(r · q · s)(p) = rq(s(p))

for all r ∈ R, s ∈ S, q ∈ Q and p ∈ P . The connecting maps are the following

ϕ : P ⊗R Q→ S, ϕ(p⊗R q)(p
′) = pq(p′),

ψ : Q⊗S P → R, ψ(q ⊗S p) = q(p).

Then (S,R, P,Q, ϕ, ψ) is a graded Morita context.

2.4. Cofree Group Corings. A G-A-coring C = {Cα}α∈G is called cofree, if there
exist A-bimodule isomorphisms γα : Ce → Cα such that

∆α,β(γαβ(c)) = γα(c(1,e))⊗A γβ(c(2,e))

for all c ∈ Ce. If C is a cofree group coring, then, for every α ∈ G, we have A-bimodule
isomorphisms

γα−1 : Ce → Cα−1 ,
∗γα−1 : Rα → Re,

and
χα = (∗γα−1)−1 : Re → Rα.

From Proposition 4.6 in [5], the left dual R =∗C is the group ring Re[G].
Let C = Ce〈G〉 be a cofree G-A-coring and M be a right C-comodule. Recall from

[10] that we call that M is a cofree C-comodule, if (id⊗A γα) ◦ ρMe = ρMα .
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2.1. Example. If C = Ce〈G〉 is a cofree G-A-coring and g = (gα)α∈G a grouplike family
of C such that gα = γα(ge). Then A can be endowed with a structure of right C-comodule
via the coaction maps

ρAα : A→ A⊗A Cα, ρAα (a) = 1A ⊗A gα · a.
For all a ∈ A, we have

(id⊗A γα) ◦ ρAe (a) = 1A ⊗A γα(ge · a) = 1A ⊗A gα · a = ρAα (a),

this shows that A is a cofree C-module.

2.5. Group Entwining Structures. Let C = {Cα}α∈G be a G-coalgebra and A an
algebra. We say that the G-coalgebra C and the algebra A are G-entwined, if there is a
family of linear maps ψ = {ψα : Cα ⊗A→ A⊗ Cα}α∈G such that

• (ab)ψα ⊗ cψα = aψαbψ′α ⊗ c
ψαψ

′
α ,

• 1Aψα ⊗ cψα = 1A ⊗ c, for any c ∈ Cα,
• aψαβ ⊗ c

ψαβ
(1,α) ⊗ cψαβ(2,β) = aψβψα ⊗ c(1,α)

ψα ⊗ c(2,β)
ψβ ,

• aψeε(cψe) = aε(c), for any c ∈ Ce and a ∈ A.
where, we set ψα(c⊗a) = aψα⊗cψα = aψ′α⊗c

ψ′α = · · · , for a ∈ A and c ∈ Cα. The triple
(A,C, ψ) is called a right and right G-entwining structure and is denoted by (A,C)G−ψ.

Given a right-right G-entwining structure (A,C)G−ψ, then U
C
A(ψ) is the category of

right (A,C)ψ. The object of U
C
A(ψ) are right C-comodules (M,ρMα ) which is also A-

module such that
ρMα (m · a) = m[0,α] · aψα ⊗m[1,α]

ψα

for allm ∈M and a ∈ A. Morphisms in U
C
A(ψ) are right C-comodule and right A-module

maps and let UG,CA (ψ) be the category of right (A,C)G−ψ of which the objects are right
G-C-comodules (M,ρ

M
α,β) which is also right A-module, i.e., each Mα is right A-module,

such that
ρMα,β(m · a) = m[0,α] · aψβ ⊗m[1,β]

ψβ

for all m ∈ Mαβ and a ∈ A. Morphisms in U
G,C
A (ψ) are right G-C-comodule and right

A-module maps.

2.6. Group Coalgebra Galois Extensions. Let C be aG-coalgebra andA an algebra.
Let A be a right C-comodule. Let

B = AcoC = {a ∈ A|ρAα (ab) = aρAα (b), ∀b ∈ A,α ∈ G}.
We say that A is a right G-C-Galois extension of B, if the canonical left A-module right
G-C-comodule map can = {canα : A ⊗B A → A ⊗ Cα}, by a ⊗B b 7→ ab[0,α] ⊗ b[1,α] for
all a, b ∈ A is bijective, i.e., every map canα is bijective for al α ∈ G.

3. Morita Context associated to a Comodule over a Group Coring
Let C be a G-A-coring, and M ∈ CM. We can associate a Morita context to M . The

context will connect T =CEND(M)op and ∗C = R.
For every α ∈ G, Qα =AHOM(Cα−1 ,M) ∈RMT is a left A-module with

(a · fα)(c) = fα(c · a)

for all fα ∈ Qα, a ∈ A and c ∈ Cα−1 . Let

Q = {q ∈
⊕
α∈G

Qα|qαβ(c)[−1,β−1]⊗Aqαβ(c)[0,β−1]

= c(1,β−1) ⊗A qα(c(2,α−1)),∀c ∈ Cβ−1α−1}.
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3.1. Lemma. With the notation as above, ∗M =AHOM(M,A) ∈T MR and Q ∈RMT .

Proof. Let ζ ∈∗M , fα ∈ Rα, t ∈ T , qβ ∈ Qβ and m ∈ M . We define the bimodule
structure on ∗M as follows:

(ζ · fα)(m) = fα(m[−1,α−1] · ζ(m[0,α−1])) and t · ζ = ζ ◦ t.

For all gβ ∈ Rβ , we have

((ζ · fα) · gβ)(m)

= gβ(m[−1,β−1] · fα(m[0,β−1][−1,α−1] · ζ(m[0,β−1][0,α−1])))

= gβ(m[−1,β−1α−1](1,β−1) · fα(m[−1,β−1α−1](2,α−1) · ζ(m[0,β−1α−1])))

= (fα ? gβ)(m[−1,β−1α−1] · ζ(m[0,β−1α−1]))

= (ζ · (fα ? gβ))(m).

This shows that ∗M is a G-graded right R-module. Let us show that the two actions
commute. Indeed, we compute

(t · (ζ · fα))(m) =(ζ · fα)(t(m))

=fα(t(m)[−1,α−1] · ζ(t(m)[0,α−1]))

=fα(m[−1,α−1] · ζ(t(m[0,α−1])))

=(t · ζ) · fα.

The bimodule structure on Q is defined by

(fα · qβ)(c) = qβ(c(1,β−1) · fα(c(2,α−1)))

for all c ∈ Cβ−1α−1 and qβ · t = t ◦ qβ . �

3.2. Lemma. With the notation as above, we have well-defined bimodule maps

µ : Q⊗T ∗M → R, µ((q ⊗T ζ) =
∑
α∈G

ζ ◦ qα,

τ :∗M ⊗R Q→ T, τ(ζ ⊗R q)(m) =
∑
α∈G

qα(m[−1,α−1] · ζ(m[0,α−1])).

3.3. Theorem. With the notation as above, we have a Morita context (T,R,∗M, Q, τ,
µ).

Proof. Here we only check that, for ζ, ζ′ ∈∗M , q, q′ ∈ Q and m ∈M ,

(3.1) q′ · τ(ζ ⊗R q) = µ(q′ ⊗T ζ) · q, ζ · µ(q ⊗T ζ′) = τ(ζ ⊗R q) · ζ′

hold. Indeed, for all c ∈ C(αγ)−1 , we compute

(q′αγ · τ(ζ ⊗R q))(c) = τ(ζ ⊗R q)(q
′
αγ(c))

=
∑
β∈G

qβ(q′αγ(c)[−1,β−1] · ζ(q
′
αγ(c)[0,β−1]))

=
∑
β∈G

qβ(c(1,β−1) · ζ(q
′
αγβ−1(c(2,βγ−1α−1))))

=
∑
β∈G

((ζ ◦ q′αγβ−1) · qβ)(c)

= (µ(q′αγ ⊗T ζ) · q)(c).

Thus we show that the first identity in (3.1) holds. The other identity can be checked
similarly. �
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Next, we want to make an application of Theorem 3.3 in order to get a new Morita
context.

Let M be a right C-comodule. Assume that M is finitely generated and projective
with the finite dual basis {ei, e∗i } or {e′i, e′∗i }. M∗ =HomA(M,A) can be viewed as a left
A-module via (a ·f)(m) = af(m). ThenM∗ is a left C-comodule with the coaction maps

M∗ρα : M∗ → Cα ⊗AM∗, M
∗
ρα(f) =

∑
i

f(ei[0,α]) · ei[1,α] ⊗A e∗i

Indeed, we compute

(id⊗M
∗
ρβ) ◦M

∗
ρα(f) = (id⊗M

∗
ρβ)(

∑
i

f(ei[0,α]) · ei[1,α] ⊗A e∗i )

=
∑
i,j

f(ei[0,α]) · ei[1,α] ⊗A e∗i (e′j[0,β]) · e′j[1,β] ⊗A e′∗j

=
∑
i,j

f(ei[0,α]) · ei[1,α] · e∗i (e′j[0,β])⊗A e′j[1,β] ⊗A e′∗j

=
∑
i

f(ei[0,β][0,α]]) · ei[0,β][1,α] ⊗A ei[1,β] ⊗A e∗i

=
∑
i

f(ei[0,αβ]) · ei[1,αβ](1,α) ⊗A ei[1,αβ](2,β) ⊗A e∗i .

This shows that M
∗
ρ = {M

∗
ρα}α∈G is C-colinear.

3.4. Lemma. Let M be a right C-comodule. Assume that M is finitely generated and
projective. Then

CEND(M∗)op ∼= ENDC(M).

Proof. Let {ei, e∗i } be the dual basis of M . We construct the desired maps as follows:

Φ :C END(M∗)op → ENDC(M), Φ(f)(m) =
∑
i

ei · f(e∗i )(m)

and
Ψ : ENDC(M)→C END(M∗)op, Ψ(f)(g)(m) = g(f(m)).

The other verifications are straightforward. �

From Lemma 3.4 and Theorem 3.3, we have the following result.

3.5. Corollary. Let M be a right C-comodule. Assume that M is finitely generated and
projective. We obtain a Morita context

(ENDC(M),R,M,Q =C HOM(C,M∗), τ, µ)

with M ∈TMR by

m · fα = m[0,α−1] · fα(m[1,α−1]) and t ·m = t(m)

for all m ∈M , f ∈ Rα, t ∈ T , and Q ∈R MT by

(fα · qβ)(c) = qβ(c(1,β−1) · fα(c(2,α−1)))

for all c ∈ Cβ−1α−1 and qβ ∈ Qβ and (qβ · t)(c′) = qβ(c′) ◦ t for all c′ ∈ Cβ−1 , and

µ : Q⊗T M → R, µ(q ⊗T m)α(c) = qα(c)(m), ∀c ∈ Cα−1

τ : M ⊗R Q→ T, τ(m⊗R q)(m′) =
∑
α∈G

m[0,α−1] · (qα(m[0,α−1])(m
′)).
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3.6. Example. Let C be a G-A-coring with a grouplike family g = (gα)α∈G. Then A is
a right C-comodule via

ρAα : A→ A⊗A Cα, ρAα (a) = 1A ⊗A gα · a.

By [10], T = ENDC(A) is nothing but the AcoC . Since A∗ ∼= A, we have

Q = {q ∈ R|qαβ(c)gβ−1 = c(1,β−1) · qα(c(2,α−1)), ∀c ∈ Cβ−1α−1}.

Applying Corollary 3.5, we have a Morita context as in [5].

4. Graded Morita Context associated to a Comodule over a Group
Coring
In this section, we assume that M ∈MC is finitely generated and projective with the

dual basis {ei, e∗i }. We say that a G-A-coring C is left homogeneously finite, if each Cα
is finitely generated and projective as a left A-module. For M ∈ MC , it follows that
{µα(M)}α∈G ∈MG,C with the coaction maps

ρα,β : µαβ(M)→ µα(M)⊗A Cβ , ρα,β(µαβ(m)) = µα(m[0,β])⊗A m[1,β].

From Proposition 4.1 in [5], we then obtain that

M{G} =
⊕
α∈G

µα(M) ∈M
G
R .

The right R-action is defined by the following formula,

µα(m) · fβ = µαβ(m[0,β−1]) · fβ(m[1,β−1])

for all fβ ∈ Rβ and m ∈M .
Next, we will compute the graded Morita context associated to the graded right R-

module M{G}. Consider the ring

S = {f = (fα)α∈G ∈
∏
α∈G

ENDA(M)|fα(m)[0,β−1] ⊗A fα(m)[1,β−1]

= fαβ(m[0,β−1])⊗A m[1,β−1]}.

Observe that we have a ring monomorphism

i : T → S, i(f) = f = (f)α.

On S, we have the following right G-action:

fσ = f · σ = (fσα)α∈G.

Indeed, if f ∈ S, we have f · σ ∈ S, since

fσα(m)[0,β−1] ⊗A fσα(m)[1,β−1] = fσαβ(m[0,β−1])⊗A m[1,β−1],

Now, we consider the twisted group ring G ∗ S =
⊕

α∈G µαS with multiplication

µαfµβg = µαβ((f · β)g).

4.1. Proposition. If G-A-coring C is left homogeneously finite, We then have a graded
ring isomorphism

Ω : ENDR(M{G})→ G ∗ S.
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Proof. For each σ ∈ G, we construct a map by

Ωσ : ENDR(M{G})α → µσS, Ωσ(h) = µσf

with fα(m) = µ−1
σα(h(µα(m))). Since h is right R-linear, we have, for all m ∈ M and

g ∈ Rβ that
h(µα(m) · gβ) = h(µαβ(m[0,β−1]) · gβ(m[1,β−1]))

= µσαβ(fαβ(m[0,β−1])) · gβ(m[1,β−1])).

Since
h(µα(m) · gβ) = h(µα(m)) · gβ

= µσα(fα(m)) · gβ
= µσαβ((fα(m)[0,β−1]) · gβ(fα(m)[1,β−1])),

it follows that

(fα(m)[0,β−1]) · gβ(fα(m)[1,β−1]) = fαβ(m[0,β−1]) · gβ(m[1,β−1]).

Since C is left homogeneously finite (also see Lemma 4.2 in [5]), we have

(fα(m)[0,β−1])⊗A fα(m)[1,β−1]) = fαβ(m[0,β−1])⊗A m[1,β−1].

This means f ∈ S. Next, we define a map

Υσ : µσS → ENDR(M{G})α, Υσ(f) = h

where h satisfies h(µα(m)) = µσα(fα(m)). It is straightforward to check that Υσ and
Ωσ are mutually inverses. It is routine to check that

Ω =
⊕
α∈G

Ωα : ENDR(M{G})→ G ∗ S

preserves the multiplication and the unit. �

Our next aim is to describe HOMR(M{G},R). Consider

Q = {q = (qα)α∈G ∈
∏
α∈G

AHOM(Cα−1 ,M
∗)|

c(1,β−1) ⊗A qα(c(2,α−1)) = qαβ(c)(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i , c ∈ C(αβ)−1}.

4.2. Lemma. If fγ ∈ Rγ and q ∈ Q, then

fγ · q = (fγ · qγ−1α)α∈G ∈ Q.

Proof. For all c ∈ C(αβ)−1 and m ∈M , we have

c(1,β−1) ⊗A (fγ · qγ−1α)(c(2,α−1))

= c(1,β−1) ⊗A qγ−1α(c(2,α−1γ) · fγ(c(3,γ−1)))

= (c(1,β−1α−1γ) · fγ(c(2,γ−1)))(1,β−1) ⊗A qγ−1α((c(1,β−1α−1γ) · fγ(c(2,γ−1)))(2,α−1γ))

=
∑
i

qγ−1αβ(c(1,β−1α−1γ) · fγ(c(2,γ−1)))(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i

= (fγ · qγ−1αβ)(c)(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i .

�

4.3. Lemma. If q ∈ Q and f ∈ S, then q · f = (qα · fα)α∈G ∈ Q, where

(qα · fα)(c) = qα(c) ◦ fα
for all c ∈ Cα−1 .
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4.4. Lemma.
QG =

⊕
α∈G

ωα(Q) ∈RM
G
G∗S

with bimodule structures defined as follows: for all f ∈ Rβ, q ∈ Q and b ∈ S,

fβ · ωα(q) = ωβα(fβ · q), ωα(q) · µτ b = ωατ (q · (b · (ατ)−1)).

4.5. Proposition. If G-A coring C is left homogeneously finite, and M ∈MC is finitely
generated and projective as a right A-module. We then have an isomorphism of graded
bimodules

Ψ : HOMR(M{G},R)→ QG

Proof. For each σ ∈ G, we construct a map by

Ψσ : HOMR(M{G},R)σ → ωσ(Q), Ψσ(g) = ωσ(q)

with qα(c)(m) = g(µσ−1α(m))(c) for all c ∈ Cα−1 and m ∈M . Take β ∈ G and fβ ∈ Rβ .
Since g is right R-linear, we have, for all m ∈M that

g(µσ−1α(m) · fβ) = g(µσ−1αβ(m[0,β−1]) · fβ(m[1,β−1]))

= g(µσ−1αβ(m[0,β−1])) · fβ(m[1,β−1]).

Notice that
g(µσ−1α(m) · fβ) = g(µσ−1α(m)) · fβ .

Thus, for all c ∈ C(αβ)−1 , we have

(g(µσ−1αβ(m[0,β−1])) · fβ(m[1,β−1]))(c)

= (g(µσ−1αβ(m[0,β−1])))(c)fβ(m[1,β−1])

= qαβ(c)(m[0,β−1])fβ(m[1,β−1])

and
(g(µσ−1α(m)) · fβ)(c) = fβ(c(1,β−1) · (qα(c(2,α−1)))(m)),

it follows that

f(qαβ(c)(m[0,β−1]) ·m[1,β−1]) = f(c(1,β−1) · g(µσ−1α(m))(c(2,α−1))).

Since C is left homogeneously finite, we have

qαβ(c)(m[0,β−1]) ·m[1,β−1] = c(1,β−1) · (qα(c(2,α−1)))(m).

Using the above equation and by M being finitely generated and projective (also see
Lemma 4.2 in [5]), we have

c(1,β−1) ⊗A qα(c(2,α−1)) = qαβ(c)(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i .

This means q ∈ Q. Next, we define a map

Φσ : ωσ(Q)→ HOMR(M{G},R)σ, Φσ(ωσ(q)) = g

where g satisfies g(µσ−1α(m))(c) = qα(c)(m) for all c ∈ Cα−1 with α ∈ G. It is straight-
forward to check that Ψσ and Φσ are mutually inverse. It is routine to check that the
bijection

Ψ =
⊕
α∈G

Ψα : HOMR(M{G},R)→ QG

preserves the bimodule structure. �

Now, we will achieve the main goal in this section.
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4.6. Theorem. If G-A coring C is left homogeneously finite, andM ∈MC is finitely gen-
erated and projective as a right A-module. Consider the graded Morita context (ENDR(M{G}),R,M{G},
HOMR(M{G},R),R, ϕ, ψ) associated to the graded R-module M{G}. Using the isomor-
phism Ω and Ψ from Proposition 4.1 and 4.5, we find an isomorphic graded Morita
context GM = (G ∗ S,R,M{G}, QG, ω′, ν′) with connecting map ω′ and ν′ given by the
formulas

ω′ : M{G} ⊗R QG→ G ∗ S,
ω′(µα(m)⊗R ωσ(q)) = µασ({fσβ}β∈G),

fσβ(m′) = m[0,(σβ)−1] · qσβ(m[1,(σβ)−1])(m
′)

ν′ : QG⊗G∗S M{G} → R,

ν′(ωσ(q)⊗G∗S µα(m))(c) = qσα(c)(m), ∀c ∈ C(σα)−1 .

Proof. It is routine to check that the following two diagrams are commutative

M{G} ⊗R HOMR(M{G},R)

id⊗RΨ

��

// ENDR(M{G})

Ω

��
M{G} ⊗R QG

ω′ // G ∗ S

HOMR(M{G},R)⊗ENDR(M{G}) M{G}

Ψ⊗Rid

��

// R

=

��
QG⊗G∗S M{G} ν′ // R

This ends the proof. �

4.7. Remark. Let (C, x) be a G-A-coring with a fixed grouplike family x = (xα)α∈G.
The Morita context in Theorem 4.6 is just the Morita context studied in [5].

Let Ce be an A-coring and M a Ce-comodule such that M is finitely generated and
projective as right A-module. Recall from [8] that we have a Morita context

Me = (T = ENDCe(M),Re,M,Qe =CeHOM(Ce,M
∗), τe, µe)

with M ∈TMRe by

m · fe = m[0,e] · fe(m[1,e]) and t ·m = t(m)

for all m ∈M , fe ∈ Re, t ∈ T , and Qe ∈ReMT by

(fe · qe)(c) = qe(c(1,e) · fe(c(2,e)))
for all c ∈ Ce and qe ∈ Qe and (qe · t)(c′) = qe(c

′) ◦ t for all c′ ∈ Ce, and
µe : Qe ⊗T M → Re, µe(qe ⊗T m)(c) = qe(c)(m),∀c ∈ Ce

τe : M ⊗Re Qe → T, τe(m⊗Re qe)(m
′) = m[0,e] · (qe(m[1,e])(m

′)).

4.8. Proposition. Let Me be the Morita context defined as above. Consider the group
rings T [G] and Re[G]. ThenM [G] =

⊕
σ∈GMµσ ∈T [G] M

G
Re[G] and Qe[G] =

⊕
σ∈GQeµσ ∈Re[G]

MG
T [G] with

fµσ ·mµα · reµβ = (f ·m · re)µσαβ , reµβ · qeµα · fµσ = (re · qe · f)µβασ

for all σ, α, β ∈ G, f ∈ T , re ∈ Re, m ∈M and qe ∈ Qe. We have well-defined maps

µ : Qe[G]⊗T [G] M [G]→ Re[G], µ(qeµσ ⊗T [G] mµα) = µe(qe ⊗T m)µσα,

τ : M [G]⊗Re[G] Qe[G]→ T [G], τ(mµσ ⊗Re[G] qeµα) = τe(m⊗Re qe)µσα.
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Then Me[G] = (T [G],Re[G],M [G], Qe[G], τ, µ) is a graded Morita context.

4.9. Lemma. Let C be a cofree group coring and M a cofree C-comodule such that M is
finitely generated and projective. Then i : T → S is isomorphism, and ENDR(M{G}) ∼=
G ∗ S is isomorphic as a graded ring to the group ring T [G].

Proof. It suffices to show that i is surjective. For f ∈ S, we have that

fα(m)[0,e] ⊗A γβ−1(fα(m)[1,e]) = fα(m)[0,β−1] ⊗A fα(m)[1,β−1]

= fαβ(m[0,β−1])⊗A m[1,β−1]

= fαβ(m[0,e])⊗A γβ−1(m[1,e]).

Applying id ⊗A ε ◦ γ−1
β−1 , we have fα(m) = fαβ(m), hence fe = fβ for all β ∈ G, and

f = i(fe). �

4.10. Proposition. Let C be a cofree group coring and M a cofree C-comodule. Then
we have an isomorphism of G-graded (G ∗ S,R)-bimodules

ϑ : M{G} →M [G], ϑ(µα(m)) = mµα.

Proof. Straightforward. �

4.11. Lemma. Let C be a cofree group coring and M a cofree C-comodule such that
M is finitely generated and projective. Then Q ∼= Qe. Consequently HOMR(M{G},
R) ∼= Qe[G].

Proof. Let us take q = {qα}α∈G ∈ Q. Then for all α, β ∈ G and c ∈ Ce, we have

γβ−1(c(1,e))⊗A qα(γα−1(c(2,e)))

=γ(αβ)−1(c)(1,β−1) ⊗A qα(γ(αβ)−1(c)(2,α−1))

=qαβ(γ(αβ)−1(c))(ei[0,e]) · γβ−1(ei[1,e])⊗A e∗i

Taking α = β = e, we find that qe ∈ Qe. For all m ∈M , it follows that

γβ−1(c(1,e)) · qα(γα−1(c(2,e)))(m) = qαβ(γ(αβ)−1(c))(m[0,e]) · γβ−1(m[1,e]).

Applying γ−1
β−1 to both sides of the equation above, we have

c(1,e) · qα(γα−1(c(2,e)))(m) = qαβ(γ(αβ)−1(c))(m[0,e]) ·m[1,e].

Applying ε to both sides, we find that

qα(γα−1(c))(m) = qαβ(γ(αβ)−1(c))(m),

and
qe(c) = qβ(γβ−1(c)).

Hence, we have qβ = qe ◦ γ−1
β−1 . These arguments show that the map

j : Qe → Q, j(q) = (σα(q))α∈π

is a well-defined isomorphism. �

4.12. Theorem. Let C be a cofree group coring and M a cofree C-comodule such that
M is finitely generated and projective. Then the graded Morita contexts GM and Me[G]
are isomorphic.
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Proof. Let Ξ : G ∗ S → T [G] be the isomorphism in Lemma 4.9. We will show that the
diagram

M{G} ⊗R QG

ϑ⊗j−1G

��

ω′ // G ∗ S

Ξ

��
M [G]⊗Re[G] Qe[G]

ϕ // T [G]

commutes. Indeed, for α, σ ∈ G, a ∈ A and q ∈ Q, we have

(Ξ ◦ ω′)(µα(m)⊗ ωσ(q)) =Ξ(µασ((fσβ)β∈G))

=fσµασ

where fσβ(m′) = m[0,(σβ)−1] · qσβ(m[1,(σβ)−1])(m
′), and

(ϕ ◦ (ϑ⊗ j−1G))(µα(m)⊗ ωσ(q))

= ϕ(mµα ⊗ qeµσ)

= ϕe(m⊗ qe)µασ,

for all m′ ∈M , since

fσ(m′) =m[0,σ−1] · qσ(m[1,σ−1])(m
′)

=m[0,e] · qσ(γσ−1(m[1,e]))(m
′)

=m[0,e] · qe(m[1,e])(m
′)

=ϕe(m⊗ qe)(m′),

it follows that Ξ ◦ ω = ϕ ◦ (ϑ⊗ j−1G). Let

Γ : Re[G]→ R, Γ(fµα) = f ◦ γ−1
α−1

be the isomorphism from Proposition 4.6 in [5]. We will show that the diagram

QG⊗G∗S M{G}

j−1G⊗ϑ
��

ν′ // R

Γ−1

��
Qe[G]⊗T [G] M [G]

ψ // Re[G]

commutes. Take σ, α ∈ G, q ∈ Q and a ∈ A,

(Γ ◦ ψ ◦ (j−1G⊗ ϑ))(ωσ(q)⊗ µα(m))

= (Γ ◦ ψ)(qeµσ ⊗mµα)

= Γ(qe(−)(m)µσα)

= qe(−)(m) ◦ γ−1
(σα)−1

and
ν′(ωσ(q)⊗G∗S µα(m))(−) = qσα(−)(m).

For γ(σα)−1(c) ∈ C(σα)−1 , we compute that

(qe(−)(m) ◦ γ−1
(σα)−1)(γ(σα)−1(c)) =qe((γ

−1
(σα)−1 ◦ γ(σα)−1)(c))(m)

=qσα(γ(σα)−1(c))(m)

=ν′(ωσ(q)⊗G∗S µα(m))(γ(σα)−1(c)).

Thus we have ψ ◦ (j−1G⊗ ϑ) = Γ−1 ◦ ν′. �
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5. Applications
In this section, we will give the application of our theory to G-entwining structure.
Given a G-entwining structure (A,C)G−ψ, then we have a G-A-coring {A⊗ Cα}α∈G

arising from (A,C)G−ψ. First observe that

Rα =AHOM(A⊗ Cα−1 , A) ∼= HOM(Cα−1 , A)

as spaces. This graded ring structure on R induces a graded ring structure on
⊕

α∈GHOM(Cα−1 , A),
and this graded ring is denoted by ](C,A). The product is given by the formula

(fα]gβ)(c) = fα(c(2,α−1))ψβ−1 gβ(c(1,β−1)
ψ
β−1 )

for all fα ∈ HOM(Cα−1 , A), gβ ∈ HOM(Cβ−1 , A) and c ∈ C(αβ)−1 .
Fix a grouplike family x = {xα}α∈G of C, then we have that A ∈ U

C
A(ψ) with right

C-coaction ρAα (a) = aψα ⊗ xαψα .
Generally, let A be a right C-comodule. Suppose that A is an object of UCA(ψ) with

the structure maps mA and ρA = {ρAα}. Then we have ρAα (ab) = a[0,α]bψα ⊗ a[1,α]
ψα .

Specially, the coaction can be written as ρAα (b) = 1A[0,α]bψα ⊗ 1A[1,α]
ψα . The ring of

coinvariants is

B = {a ∈ A|1A[0,α]aψα ⊗ 1A[1,α]
ψα = a1A[0,α] ⊗ 1A[1,α], ∀α ∈ G}.

Q and S can be described as follows:

Q ={q = (qα)α∈G ∈
∏
α∈G

](Cα−1 , A)α|

qα(c(2,α−1))ψβ−1 ⊗ c(1,β−1)
ψ
β−1 = qαβ(c)1A[0,β−1] ⊗ 1A[1,β−1], c ∈ C(αβ)−1}

and

S = {b =(bα)α∈G ∈
∏
α∈G

A|

1A[0,β−1]bαψβ−1 ⊗ 1A[0,β−1]
ψ
β−1 = 1A[0,β−1]bαβ ⊗ 1A[1,β−1]}.

Then we have the twisted group ring G ∗ S =
⊕

α∈G µαS with the multiplication given
by µαbµβc = µαβ(bβc), where bβ = (bβα)α∈G.

From Theorem 4.6, we have the following result.

5.1. Theorem. With the notation as above, we have a graded Morita context GM =
(G ∗ S, ](C,A), A{G}, QG, ω′, ν′) with connecting map ω′ and ν′ given by the formulas

ω′ : A{G} ⊗](C,A) QG→ G ∗ S,

ω′(µα(a)⊗](C,A) ωσ(q)) = µασ(1A[0,(σβ)−1]aψ(σβ)−1 qσβ(1A[1,(σβ)−1]
(σβ)−1

)),

ν′ : QG⊗G∗S A{G} → ](C,A),

ν′(ωσ(q)⊗G∗S µα(a))(c) = qσα(c)a,∀c ∈ C(σα)−1 .

As was stated above, if we fix a grouplike family x = {xα}α∈G of C, then we have
that A ∈ U

C
A(ψ) with right G-C-coaction ρAα (a) = aψα ⊗ xαψα . In particular, it follows

that ρAα (1A) = 1A ⊗ xα. Then B, S and Q have the following forms:

B = {a ∈ A|aψα ⊗ xα
ψα = a⊗ xα, ∀α ∈ G},

Q ={q = (qα)α∈G ∈
∏
α∈G

](Cα−1 , A)α|

qα(c(2,α−1))ψβ−1 ⊗ c(1,β−1)
ψ
β−1 = qαβ(c)⊗ xβ−1 , c ∈ C(αβ)−1}
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and

S = {b =(bα)α∈G ∈
∏
α∈G

A|bαψ
β−1 ⊗ xβ−1

ψ
β−1 = bαβ ⊗ xβ−1}.

From Theorem 5.1, we have a graded Morita context GM = (G ∗ S, ](C,A), A{G},
QG, ω′, ν′) with connecting map ω′ and ν′ given by the formulas

ω′ : A{G} ⊗](C,A) QG→ G ∗ S,

ω′(µα(a)⊗](C,A) ωσ(q)) = µασ(aψ
(σβ)−1 qσβ(x(σβ)−1

(σβ)−1

)),

ν′ : QG⊗G∗S A{G} → ](C,A),

ν′(ωσ(q)⊗G∗S µα(a))(c) = qσα(c)a,∀c ∈ C(σα)−1 .

Furthermore, if G is a trivial group, then B = S and the graded Morita context GM =
(G∗S, ](C,A), A{G}, QG, ω′, ν′) recovers to the Morita context in the sense of [7, Section
4].

In order to proceed the further discussion, we need the following result [10].

5.2. Proposition. Let A and E be rings, and C a G-A-coring, andM both a C-comodule
and a (E,A)-bimodule such that the comodule maps ρα are left E-linear. Then we have
a pair of adjoint functors (F,U):

F : ME →M
G,C , F (N) = {µα(N ⊗E M)}α∈G.

The coaction maps are

ρα,β : µαβ(N ⊗E M)→ µα(N ⊗E M)⊗A Cβ ,

ρα,β(µαβ(n⊗E m)) = µα(n⊗E m[0,β])⊗A m[1,β].

For X ∈MG,C , define U as follows:

U : MG,C →ME , U2(X) = HOMG,C(µα(M), X).

Next, we apply Proposition 5.2 to the particular G-A-coring {A ⊗ Cα}α∈G arising
from (A,C)G−ψ. Under the assumption that A is an object of UCA(ψ) with the structure
maps mA and ρA = {ρAα}, we have a special pair of adjoint functors (F̃ , Ũ):

F̃ : MB → U
G,C
A (ψ), F̃(N) = {µα(N ⊗B A)}α∈G.

The coaction maps are

ρα,β : µαβ(N ⊗B A)→ µα(N ⊗B A)⊗A Cβ ,

ρα,β(µαβ(n⊗B a)) = µα(n⊗B 1A[0,β]aψβ )⊗A 1A[1,β]
ψβ .

For X ∈ U
G,C
A (ψ), define Ũ as follows:

Ũ : U
G,C
A (ψ)→MB , Ũ(X) = HOMC

A(µα(A), X).

For M ∈ U
G,C
A , we define

Mco = {m = (mα)α∈G ∈
∏
α∈G

Mα|m[0,α] ⊗m[1,β] = m · 1A[0,β] ⊗ 1A[1,β]}.

Then we have

5.3. Lemma. There exists an isomorphism

HOMC
A(µα(A),M) ∼= Mco

as right B-modules.
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Proof. For any f ∈ HOMC
A(µα(A),M), since f is a right C-comodule, then we have

ρ
M
αβ(fαβ(µαβ(1A))) = fα(µα(1A[0,β]))⊗ 1A[1,β].

Set m = (mα)α∈G, where mα = fα(µα(1A)). Straightforward calculation can show that
m ∈Mco. Thus we define a map

Φ̂ : HOMC
A(µα(A),M)→Mco, Φ̂(f) = (fα(µα(1A)))α∈G.

Take m ∈Mco, we define a map

Ψ̂ : Mco → HOMC
A(µα(A),M), Ψ̂(m)α(µα(a)) = mα · a.

It follow easily that Φ̂ and Ψ̂ are both B-linear and mutually inverses. �

From Lemma 5.3 and what was discussed above, we have a pair of adjoint functors
(F̃ , Ũ):

F̃ : MB → U
G,C
A (ψ), F̃(N) = {µα(N ⊗B A)}α∈G.

Ũ : U
G,C
A (ψ)→MB , Ũ(X) = Xco.

By the discussion as above, and [7, Theorem 9.2], we can achieve the main goal in this
section.

5.4. Theorem. Let (A,C) be a G-entwined structure. Suppose that A ∈ U
C
A(ψ). Con-

sider the map

can : (A⊗B A)〈G〉 → A⊗ C, canα(a⊗B b) = a1A[0,α]bψβ ⊗ 1A[1,α]
ψβ .

Then the following statements are equivalent:
(1) can is an isomorphism of group corings, and A is faithfully flat as a left B-

module,
(2) ∗can is an isomorphism of graded rings and A is a left B-progenerator,
(3) The graded Morita context GM = (G ∗ S, ](C,A), A{G}, QG, ω′, ν′) is strict,
(4) (F̃ , Ũ) is an equivalence of categories.

As the end of this paper, we discuss the (H,A)-Hopf module for an H-comodule
algebra A over a Hopf G-coalgebra H.

Let H = ({Hα,mα, 1α,∆, ε}) be a Hopf G-coalgebra in the sense of [16] and A an
algebra. We recall from [16] that a right H-comodule algebra is a right H-comodule
(A, ρA = {ρAα}), such that the following conditions are satisfied:

• ρAα (ab) = a[0,α]b[0,α] ⊗ a[1,α]b[1,α] for all a, b ∈ A and α ∈ G,
• ρAα (1A) = 1A ⊗ 1α for all α ∈ G.

Given an H-comodule algebra A, we have a G-entwined structure ψα : Hα ⊗ A →
A ⊗ Hα, ψα(h ⊗ a) = a[0,α] ⊗ ha[1,α]. We call a special (A,C)ψ-module a (right-right)
(H,A)-Hopf module and denote the category of (H,A)-Hopf modules by U

H
A . It is easy

to see that A ∈ U
H
A . Let us take the grouplike family {1α}α∈G. Then we have a graded

Morita context GM = (G ∗ S, ](H,A), A{G}, QG, ω′, ν′) with connecting map ω′ and ν′

given by the formulas
ω′ : A{G} ⊗](H,A) QG→ G ∗ S,

ω′(µα(a)⊗](H,A) ωσ(q)) = µασ(a[0,(σβ)−1]qσβ(a[1,(σβ)−1])),

ν′ : QG⊗G∗S A{G} → ](H,A),

ν′(ωσ(q)⊗G∗S µα(a))(c) = qσα(c)a,∀c ∈ C(σα)−1 ,
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where

Q ={q = (qα)α∈G ∈
∏
α∈G

](Hα−1 , A)α|

qα(h(2,α−1))[0,β−1] ⊗ h(1,β−1)qα(h(2,α−1))[1,β−1] = qαβ(h)⊗ 1β−1 , h ∈ H(αβ)−1}

and

S = {b =(bα)α∈G ∈
∏
α∈G

A|bα[0,β−1] ⊗ bα[1,β−1] = bαβ ⊗ 1β−1}.

5.5. Remark. If π is a trivial group, then S = AcoH and

Q = {q ∈ ](H,A)|q(h(2))[0] ⊗ h(1)q(h)[1] = q(h)⊗ 1H , h ∈ H}.

Hence, the graded Morita context GM = (G ∗ S, ](H,A), A{G}, QG, ω′, ν′) is just the
Morita context of Doi in [12].

Acknowledgement
The authors sincerely thank the referee for his/her numerous very valuable comments

and suggestions on this article. This work was supported by the National Natural Sci-
ence Foundation of China (No.11261063 and 11471186) and the Foundation for Excelent
Youth Science and Technology Innovation Talents of Xin Jiang Uygur Autonomous Re-
gion(No.2013 721043)

References
[1] J. Abuhlail, Morita contexts for corings and equivalence, in“Hopf algebras in non-

commutative geometry and physics" S. Caenepeel and F. Van Oystaeyen, eds., Lect. Notes
Pure Appl. Math. 239, Dekker, New York, 2004.
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[13] L. EI Kaoutit, J. Gómez Torrecillas, Comatrix corings: Galois corings, descent theory, and
structure Theorem for cosemisimple corings, Math. Z., 224(2003), 887-906.

[14] M. E. Sweedler, The predual theorem to the Jacobson-bourbaki theorem, Trans. Amer. Math.
Soc., 213(1975), 391-406.



1350

[15] R. Wisbauer, On the category of comodules over corings, in “Mathematics and mathematics
education(Bethlehem, 2000)", World Sci. Publishing, River Edge, NJ, 2002, 325-336.

[16] V. G. Turaev, Homotopy field theory in dimension3 and crossed group-categories, Preprint
math.GT/000529, 2000.


