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Abstract

Using the theory of group corings, we study (graded) Morita contexts
associated to a comodule over a group coring, which generalize and
unify some classical morita contexts. Some applications of our theory
are also discussed.
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1. Introduction

An A-coring is a coalgebra in the monoidal category of A-bimodules over an arbitrary
ring A. The concept was introduced by M. Sweedler [14]. In 2000, Takeuchi pointed
out that to each entwining structure (A, C,v) over a commutative ring k, which was
introduced by T. Brzezinski and S. Majid [2], there corresponds an A-coring structure
on C := A ® C. This motivated the revival of the theory of corings and comodules
and Brzezinski’s paper [3] was the engine behind the revival of the theory of corings
and comodules over corings. Many examples of classical categories in noncommutative
algebra are special cases of comodules over corings. Let us mention a few of them: the
category of a descent datum of a ring extension, graded modules, Hopf modules, Long
dimodules, Yetter-Drinfeld modules, Doi-Koppinen modules or entwined modules, and
several other categories studied earlier by Hopf algebraists.

One of the important observations is that coring theory provides an elegant approach
to descent theory and Galois theory. A systematic study of coring has been carried out
in [1, 3, 6, 7, 15]. As the generalization of coring, Caenepeel, Janssen and Wang |[5]
introduced the group coring and developed Galois theory for group corings.
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It is well-known that the Morita context plays a important role in the theory of Hopf
algebras. The first Morita context was constructed by Chase and Sweedler [9], which
was generalized by Doi [12]. Morita contexts similar to the one of Doi were studied
by Cohen, Fischman and Montgomery in [11]. As the generalization of both contexts,
Caenepeel, Vercruysse and Wang associate different types of Morita contexts to a coring
with a fixed grouplike element, which was generalized by Caenepeel, Janssen and Wang
to group coring with a grouplike family [5]. Without the assumption of a coring with a
fixed grouplike element, Caenepeel, De Groot and Vercruysse associated a Morita context
to a comodule over a coring in [8]. Morita theory for group corings with fixed grouplike
family is a remarkable tool to discuss Hopf-Galois extensions. In order to further discuss
coalgebra-Galois extensions, we need to generalize the Morita context for group corings.
Naturally, it occurs to us to how to develop (graded) Morita context associated to a
comodule over a group coring. This is the motivation of this paper.

The paper is organized as follows.

In Section 2, we recall some basic definitions such as group corings, comodules over a
group coring and graded Morita contexts. In Section 3, we associate a Morita context to
a comodule over a group coring. In Section 4, we will discuss the graded Morita contexts
and their relationship. Some applications of our theory are discussed in Section 5.

2. Preliminaries

Throughout this paper, let G be a group with unit e, and A a ring with unit 14,
and M an A-module. We will often need collections of A-modules isomorphic to M and
indexed by G. We will consider these modules as isomorphic, but distinct. Let M x {a}
be the module with index a. We then have isomorphisms

ta : M — M x {a}, pa(m)=(m,a).

We can then write M x {a} = pa(M). p can be considered as a dummy variable, and
we will also use the symbols v, &, - - -. We will identify M and M x {e} using pe.

2.1. Group Corings. Let A be an algebra. Recall from [5] that a G-group A-coring
(or shortly a G-A-coring) C' is a family {C4 }aecc of A-bimodules together with a family
of A-bimodule maps

Agp:Cop—Co®aCs,e:Ce— A

such that the following conditions hold:
(Aap @aid) o Aap,y = (1d @4 Apy) 0 A gy,
(id®ae)oAqe =1d = (e ®a id) 0 Aca

for all o, 8,7y € G.

For a G-A-coring C, we also use the following Sweedler-type notation for the comul-
tiplication maps Ay g:

Aap(c) = c1,a) @A C(2,)

for all ¢ € Cup.

A morphism between two G-A-corings C and D consists of a family of A-bimodule
maps f = {fa : Ca = Da}acc such that

(fa ®a fo) 0o Aap =Aapo fap, €0fe=c¢.

Over a G-A-coring C, we can define two different types of comodules. A right C-
comodule is a right A-module M together with a family of right A-linear maps p™ =
{pi‘f : M — M ®4 Cq}acc such that

(id ®a Aa,) 0 pas = (pa’ ®aid)o pg, (id@ac)op = id.
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We use the following Sweedler-type notation:
Pa (M) = mio,a) @4 M1,0)
for all m € M,.
A morphism of right C-comodules is a right A-linear map f : M — N satisfying the
condition
(f ®@aid)ops’ =pa of
for all o € G. Let M€ denote the category of right C-comodules.
Similarly, we can define the left C-comodule and the category €M of all left C-
comodules. We use the following Sweedler-type notation for the left C-comodule structure
M.
maps " pa:
Mpa(m) = m(_1,a) ®a Mo, a)
for all m € M,.
A right G-C-comodule M is a family of right A-modules { M, }acc(meaning that each
M, is right A-module), together with a family of right A-linear maps p = {pa.3}a,sea,
where pa.g : Map — Mo ®4 Cg, such that the following conditions hold:

(id®a Apy) © pa,py = (Pa,p @4 id) © pap,y, (id®a )0 pa,c =id

for all o, 8,7 € G.
We use the following standard notation:

Pa,p(m) =mo ) ®a M1 g]

for m € Mag.
A morphism between two right G-C-comodules M = {Ma}acc and N = {Nq }aca is
a family of right A-linear maps f = {fa : Ma — Na}aec such that

(fa ®aid) 0 pa,g = pa,s © fap-

The category of right G-C-comodules will be denoted by M%<,

Let C be a G-A-coring. A family g = (ga)acc € [[ e Co is called grouplike, if
Aa,p(gap) = ga ®a gp and e(ge) =1 for all o, 5 € G.

Let C be a G-A-coring with a fixed grouplike family g = (ga)ace. Then A can be
endowed with a structure of right C'-comodule via the coaction maps

Pa A= ARACy, pala) =14 ®a4 go - a.
For M € MY, we define
M = {m € M|pa(m) =m®a ga,Yo € G}.
In particular,
AC — {a € Ala - ga = ga - a,Ya € G}.

Let A®p A be the canonical Sweedler coring associated to the ring morphism B — A
with its comultiplication and counit given by the formulas

Ala®pb) =(a®p1a) ®a (14 ®p D), c(a®@p b) = ab.

2.2. Graded Rings and Modules. Let A be a ring and R = @, Ra a G-graded
ring. Suppose that we have a ring morphism ¢ : A — R.. Then we call R a G-graded
A-ring. Every R, is then an A-bimodule and the decomposition of R is a decomposition
of A-bimodules. The category of G-graded right R-modules will be denoted by M$.

Let C be a G-A-coring. For every a € G, Ry, =saHOM(C,, -1, A) is an A-bimodule via

(@- fa-b)(c) = falc-a)b
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for all fo € Ra, a,b € Aand c € Cyp-1. Take fo € Ra,gs € Rp and define fo * g € Rap
by the following formulas:

(faxg8)(c) = ga(ca -1y - falcz,a-1)))
for all ¢ € C,5y-1. This defines maps ma,g : Ra®aRg — Rap, which make R = BaccRa
into a G-graded ring with the unit €. Define ¢ : A — R¢,i(a)(c) = e(c)a is a ring
homomorphism, which make R = @ . Ra be a G-graded A-ring, called the (left) dual
(graded) ring of the group coring C. We will also write R =*C.

2.3. Graded Morita Contexts. Let R be a G-graded ring, and M, N € M. A right
R-linear map f : M — N is called homogeneous of degree o, if f(Ms) C Myq for all
a € G. HOMg (M, N), denotes the additive group of all right R-module maps of degree
.

Let S and R be G-graded rings. A G-graded Morita context connecting S and R is
a Morita context (S, R, P, @, p,1) with the following additional structure: P and Q are
graded bimodules, and the maps

p:PRrQ—S, Vv:QRs P >R

are homogeneous of degree e.

Given two graded Morita contexts (S, R, P, @, ¢, 1) and (5‘5%, P,Q,¢, 17/;), if there exist
two graded ring morphism ® : S — S’, U : R — R and two graded bimodule morphism
©:Q — Q, =: P — P such that the following two diagrams

P2rQf—>8 QosPt—>R

p Rz Q £ .3 Q Rz P L> R
are communicative, then we say a quadruple T = (@, ¥, 0,E) amorphism from (S, R, P, Q, ¢, )
t’O (S7 92'7 P7 Q7 @7 w)
Let P be a G-graded right R-module. Then S =ENDx(P) is a G-graded ring, and
Q=HOMg(P, R) €gM§ with structure
(r-q-s)(p) =rq(s(p))
forallr € R, s€ S, g€ Q and p € P. The connecting maps are the following
p:PoxQ— S, o(p@xq)(p) = pa(p),

V:Q®s P — R, ¥(q®sp)=q(p)
Then (S, R, P,Q, ¢,v) is a graded Morita context.

2.4. Cofree Group Corings. A G-A-coring C = {Ca}acc is called cofree, if there
exist A-bimodule isomorphisms 7, : Ce — Cy such that

Aa,p(Yap(c)) = valc@.e) ®avs(ce)
for all ¢ € C.. If C is a cofree group coring, then, for every a € G, we have A-bimodule
isomorphisms

Va1 :Ce = Cpe1, "va-1: Ro = Re,
and

Xo = (Ya-1) "'t Re = Ra.
From Proposition 4.6 in [5], the left dual R =*C is the group ring R.[G].
Let C = C.(G) be a cofree G-A-coring and M be a right C-comodule. Recall from

[10] that we call that M is a cofree C-comodule, if (id ® 4 7o) 0 p2 = pM.
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2.1. Example. If C = C.(G) is a cofree G-A-coring and g = (ga)acc @ grouplike family
of C such that go = Ya(ge). Then A can be endowed with a structure of right C-comodule
via the coaction maps

pﬁ A= ARa Cy, pﬁ(a) =14 QA Go - a.
For all a € A, we have
(id @4 ya) 0 pi(a) =14 @4 Ya(ge -a) = 14 @4 ga - a = pis (a),
this shows that A is a cofree C-module.

2.5. Group Entwining Structures. Let C = {Ca}acce be a G-coalgebra and A an
algebra. We say that the G-coalgebra C' and the algebra A are G-entwined, if there is a
family of linear maps 1) = {tpa : Ca ® A = A ® Ca}aca such that

(ab)yo ® ¥ = ay, by, @ cPeva,

L]
o lay, ®c¥* =14 ®c, for any c € Cl,
® ayys @ V1 0) @ VP28 = Aygua ® 1) B €20,
o ay,e(c’e) = ag(c), for any ¢ € C.. and a € A.
where, we set Vo (c®a) = ay, @c¥e = Ay, ®c?a = ... fora € Aand c € Cy. The triple

(A, C, ) is called a right and right G-entwining structure and is denoted by (A4, C)g—y.
Given a right-right G-entwining structure (A, C)g—y, then U%(w) is the category of

right (A,C)y. The object of u%(@/)) are right C-comodules (M, p) which is also A-
module such that

py(m 1a) = Mo,a] * Gpo @ M[1,4] Va
for allm € M and a € A. Morphisms in U%(w) are right C-comodule and right A-module
maps and let uj*g(w) be the category of right (A, C')g— of which the objects are right
G-C-comodules (M, p%ﬁ) which is also right A-module, i.e., each M, is right A-module,
such that

Pop (M- @) = mip.o) - ayy @ mp g ¥

for all m € Mg and a € A. Morphisms in ui’g(w) are right G-C-comodule and right
A-module maps.

2.6. Group Coalgebra Galois Extensions. Let C be a G-coalgebra and A an algebra.
Let A be a right C-comodule. Let

B = A% = {a € A|pi(ab) = api(b),Vb € A, a € G}.

We say that A is a right G-C-Galois extension of B, if the canonical left A-module right
G-C-comodule map can = {cana : A®p A - AQ Ca}, by a ®p b — abjg,q) ® b1,q for
all a,b € A is bijective, i.e., every map cang is bijective for al a € G.

3. Morita Context associated to a Comodule over a Group Coring

Let C be a G-A-coring, and M € M. We can associate a Morita context to M. The
context will connect T =SEND(M)°? and *C = R.

For every a € G, Qo =aHOM(C\y-1, M) €pMr is a left A-module with

(a- fa)(c) = falc-a)
for all fo € Qa,a € Aand c€ C-1. Let
Q={q¢c EB Qalqap(c)_1,5-11®4Gas(C)j0,5-1)
aeG
= C(I,Bfl) ®A qa(C<2,a—1>)7VC c Cﬁ—la—l}.
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3.1. Lemma. With the notation as above, *M = sHOM(M, A) €Er Mz and Q ExMr.

Proof. Let ¢ €*M, fo € Ra, t € T, gz € Qp and m € M. We define the bimodule
structure on *M as follows:
(€ fa)(m) = fa(mp_1,a-1) - {(mpgo-17)) and - ¢ = (ot

For all gg € Rg, we have

((C- fa) - g8)(m)

= gﬁ(m[fl B— fa( H=1,0-1] " C(m[o,,@‘ll[o,a—l])))

=gs(m_1 g-1a-1)(1,8-1) " fa( “1.8-1a-1)2,a-1) - C(Mp g-10-11)))
= (faxgs)(m_1 g-14-1] ’C(m[o,ﬁflml]))
= (¢ (fa*gp))(m).

This shows that *M is a G-graded right R-module. Let us show that the two actions
commute. Indeed, we compute

(- (¢ fa))(m) =(¢ - fa)(t(m))
=fa(t(m)(—1,a-1) - C(t(M)[0,0-17))
=fa(m_1,a-1) - C(t(m)g,4-11)))
=(t-¢) - fa.
The bimodule structure on @ is defined by
(fa - a8)(c) = qs(ca 1) - falc(a,a-1)))
for all c € Cg-1,-1 and gg -t =t o gg. O

3.2. Lemma. With the notation as above, we have well-defined bimodule maps

p:Qer "M—R, pu((gor¢) =Y ¢oda,

ae@G
TIM@r Q= T, T(C®x q)(m) = Y qa(m_1.a-1) - {(Mmyp.a-1)))-
aceG
3.3. Theorem. With the notation as above, we have a Morita context (T, R,* M, Q, T,

1)
Proof. Here we only check that, for ¢,¢’ €*M, ¢,q' € Q and m € M,
1) ¢ -17C®rq)=pd @1 q, ¢ plger)=1((®xq)
hold. Indeed, for all ¢ € C,.)-1, we compute
(g0 - (¢ @2 9))(¢) = T(C @ ) (dhr(c))
= Z 48(qary () —1,5-17 - C(@ar () 10,5-1))

BEG

= Z qs(ca -1y - C(@nrp—1(C2,py-1a-1))))
BEG

= ((¢Coguys-1)-a8)(c)
BEG

= (u(gary @1 €) - q)(c).

Thus we show that the first identity in (3.1) holds. The other identity can be checked
similarly. O
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Next, we want to make an application of Theorem 3.3 in order to get a new Morita
context.

Let M be a right C-comodule. Assume that M is finitely generated and projective
with the finite dual basis {e;, e} } or {e},e;*}. M* =Hom4 (M, A) can be viewed as a left
A-module via (a- f)(m) = af(m). Then M* is a left C-comodule with the coaction maps

M pa t M — Ca®a M*, ™ palf) =D flei0,a)) - €i1,a] ®a €f

Indeed, we compute

(id @™ pg) o™ pa(f) = (id & Z F(eio.0) - €if1.0] ®4 €7)
= Z f(€ij0,0]) - €if1,a] ®a €] (€)10,5]) - €11,5 Da €]
= Z feifo,a]) - €ift,a] - (e;'[o,B]) XA e;[l,ﬁ] XA e}*
- Z fleio,g0.011) - €if0.8)11,0] ®a i1, ®a €
= f(eip.as) - €il1,a8)10) ®A €il1,as](2,8) DA €;-
[

This shows that M*p = {M*pa}aec is C-colinear.

3.4. Lemma. Let M be a right C-comodule. Assume that M is finitely generated and
projective. Then
CEND(M*)°P =~ ENDE(M).

Proof. Let {es, e; } be the dual basis of M. We construct the desired maps as follows:
© S END(M*)? — ENDE(M), &(f)(m) = > e; - f(e})(m)
and
¥ : ENDS(M) =< END(M*)*”, (f)(g)(m) = g(f(m)).
The other verifications are straightforward. O
From Lemma 3.4 and Theorem 3.3, we have the following result.

3.5. Corollary. Let M be a right C-comodule. Assume that M is finitely generated and
projective. We obtain a Morita context

(ENDY(M), R, M,Q =< HOM(C, M*), T, 1)
with M erMxz by
m - fo =mpg -1y fa(mpa-1)) and t-m = t(m)

forallme M, f € Ra, t €T, and Q €r Mr by

(fa-gp)(c) = QB(C(Lefl) : fa(C(z,orl)))
for all c € Cg-1,-1 and qz € Qp and (g - t)(c') = qs(c) ot for all ¢ € Cy-1, and

p:Qer M — R, u(q®r m)a(C) = ga(c)(m),Vc € Cy

T:M®rQ—T, T(m®r q)(m mea o (Mg a-17)(m")).
acelG
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3.6. Example. Let C be a G-A-coring with a grouplike family g = (ga)acc. Then A is
a right C-comodule via

Pt A= AR Ca, pi(a) =14 ®4 ga - a.
By [10], T = END(A) is nothing but the A°<. Since A* = A, we have

Q= {q € fR|Qo¢B(C)95—1 = C1,—1) 'Qa(C(z,a—l))7VC € Oﬁ—la—l}'

Applying Corollary 3.5, we have a Morita context as in [5].

4. Graded Morita Context associated to a Comodule over a Group
Coring

In this section, we assume that M € M is finitely generated and projective with the
dual basis {e;,e;}. We say that a G-A-coring C is left homogeneously finite, if each C,
is finitely generated and projective as a left A-module. For M € MY, it follows that
{ppa(M)}aca € MPE with the coaction maps

pap  Has(M) = pa(M) ®a Cp, pa,s(pas(m)) = pa(mo,g) @4 mp g)-
From Proposition 4.1 in [5], we then obtain that
MG} = @ na(M) € MS.
aceG

The right R-action is defined by the following formula,

pa(m) - fg = pag(mig g-1)) - fa(mp, g-17)

for all fs € Rg and m € M.
Next, we will compute the graded Morita context associated to the graded right R-
module M{G}. Consider the ring

S= {i: (fa)aca € H ENDA(M)|fa(m)[0,5—1] A fa(m)[l,ﬁ—l]
aceG

= fap(mpo,g-11) ®a mp -1}

Observe that we have a ring monomorphism

i:T— 5, i(f)=f=(fa

On S, we have the following right G-action:
ia :i'ff = (foa)aca-
Indeed, if f € S, we have f -0 € S, since
foa(M)o,5-1] ®4 foa(Mm)1 g-1] = foas(Mp g-11) ®a M1 g-1,
Now, we consider the twisted group ring G * S = @ oS with multiplication
pafusg = pas((f - B)g)-

4.1. Proposition. If G-A-coring C is left homogeneously finite, We then have a graded
ring isomorphism

Q: ENDx(M{G}) = G S.
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Proof. For each o € GG, we construct a map by

Qo : ENDg(M{G})a — oS, Qu(h) = pio f

with fo(m) = psd(h(a(m))). Since h is right R-linear, we have, for all m € M and
g € Rp that

h(pa(m) - gs) = hpras(mig s-17) - 98(mp1,g-11))
= ptoap(fap(mi g-17)) - gs(mp g-11))-

Since
h(pa(m) - gs) = h(pa(m)) - gs

= poa(fa(m)) - gs

= Mmﬁ((fa(m)[o,/afl]) : gﬁ(fa(m)[l,ﬁfl])),
it follows that

(fa(m)o,5-11) - 98 (fa(Mm)1,5-1)) = fap(mg g-11) - 98 (M1 g-17)-
Since C is left homogeneously finite (also see Lemma 4.2 in [5]), we have
(fa(m)o,5-11) @4 fa(m)p,g-11) = fap(mp g-11) ®a M1 g1
This means f € S. Next, we define a map
Yo : pieS = ENDR(M{G})a, Yo(f) =h

where h satisfies h(ua(m)) = poa(fo(m)). It is straightforward to check that Y, and
Q, are mutually inverses. It is routine to check that

Q=P Qu : ENDg(M{G}) - G xS
aeG

preserves the multiplication and the unit. O
Our next aim is to describe HOMx (M{G}, R). Consider
Q= {Q = (ga)acc € H AHOM(C\,,—1, M™)]|

acG
c1,8-1) ®a qa(C(2,a-1)) = dap(c)(€ipo p-1)) - €i1,5-1] ®a ei, CE Clap)-1}-
4.2. Lemma. If f, € R, and q € Q, then
f'Y 4= (f’Y : q'y_la)OLEG € Q

Proof. For all ¢ € C,gy-1 and m € M, we have

ca,-1) ®a (fy - ¢y-10)(C2,0-1))

= a1 @4 &y-1a(Ca-1y)  fr(e@,-1)

= (cp-1a-19) " Fr(Cn-1)))a5-1) @4 gy-1a((Cc,p-1a-14) - F1(C2y 1)) 2ia-17)

= quflaﬁ(cu,ﬁfla*l«,) : fw(cmﬁfl)))(ei[o,ﬁfl]) “€i1,5-1] ®A e

=(fy- qw—laﬂ)(c)(ei[o,,ﬁ—l]) “€i1,5-1] DA e;.

4.3. Lemma. Ifge Q and f € S, then ¢ f = (¢ - fa)acc € Q, where

(9o - fa)(€) = ga(c) © fa
forallce Cy-1.
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4.4. Lemma.

QG = P wa(Q) ExME.s

aeG
with bimodule structures defined as follows: for all f € Rg, ¢ € Q and b€ S,

I walq) = wpa(fs - @) walq) - prb=war(g- (b~ (ar)™h)).

4.5. Proposition. If G-A coring C is left homogeneously finite, and M € M is finitely
generated and projective as a right A-module. We then have an isomorphism of graded
bimodules

¥ : HOM%x(M{G},R) — QG
Proof. For each o € G, we construct a map by

U, : HOMg(M{G},R)s — wo(Q), ¥s(g) = wo(q)

with ga(c)(m) = g(pe-14(m))(c) for all c € C,—1 and m € M. Take 8 € G and fp € Rg.
Since g is right R-linear, we have, for all m € M that
9(pg—14(m) - fp) = Q(Ma—laﬂ(m[o,ﬁ—l]) : fﬂ(m[l,ﬁ—l]))
= g(po-1a5(mig-17)) - fa(mp g-17)-
Notice that
9(bo-10(m) - f5) = g(ttg-14(m)) - f5.
Thus, for all ¢ € C(,)-1, we have
(g(Ho—108(mg g-11)) - fa(mp g-17))(c)
= (9(po-1a(Mmio,g-1))) () fa(mp g-17)
= qap(c)(mp g-11)fa(mp g-11)
and
(9(Ho-14(m)) - f5)(c) = fB(C(L,e—l) : (Qa(C@,a—l)))(m)):
it follows that

f(QaB(C)(m[o,B—l]) : m[l,B_l]) = f(0(1,5—1) 'Q(Ma—la(m))(c(z,a—l)))~

Since C is left homogeneously finite, we have

%B(C)(m[o,ﬁ—l]) “My1,8-1] = C(1,8-1) * (Qa(c(z,a—l)))(m)-

Using the above equation and by M being finitely generated and projective (also see
Lemma 4.2 in [5]), we have

c1,5-1) ®A qalCz,a-1)) = qas(c)(€i0,5-1)) - €ij1,5-1) ®a €.
This means g € Q. Next, we define a map
P wo(Q) = HOMg(M{G}, R)s, Po(ws(q)) =g

where g satisfies g(p,-14(m))(c) = ga(c)(m) for all ¢ € C,-1 with a € G. It is straight-
forward to check that ¥, and ®, are mutually inverse. It is routine to check that the
bijection
¥ = P V. : HOMx(M{G},R) — QG
acG
preserves the bimodule structure. O

Now, we will achieve the main goal in this section.
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4.6. Theorem. If G-A coring C is left homogeneously finite, and M € M is finitely gen-

erated and projective as a right A-module. Consider the graded Morita context (ENDx(M{G}), R, M{G},
HOMx (M{G},R), R, ¢,v) associated to the graded R-module M{G}. Using the isomor-

phism Q and V from Proposition 4.1 and 4.5, we find an isomorphic graded Morita

context GM = (G * S, R, M{G}, QG,w’,v") with connecting map w' and v’ given by the

formulas

W M{GY ©% QG — G % 5,
W' (pa(m) Ox wo(q)) = pao {fos}sea),

fos(m') =m ()11 - Gos (M1 (o5)-1)) (M)
V' QG ®axs M{G} = R,
V (wo(q) ®Gs pa(m))(c) = goa(c)(m), Ve € Clyay-1.
Proof. It is routine to check that the following two diagrams are commutative

M{G} ®x HOMx(M{G}, R) —= ENDx(M{G})

id@qul iﬂ
’

M{G} ®xz QG @ Gx*S
HOMJ{(M{G}, :R) ®END:R(M{G}) M{G} ——R
QG ®c+s M{G} v R
This ends the proof. O

4.7. Remark. Let (C,z) be a G-A-coring with a fixed grouplike family z = (za)acc-
The Morita context in Theorem 4.6 is just the Morita context studied in [5].

Let C. be an A-coring and M a Ce.-comodule such that M is finitely generated and
projective as right A-module. Recall from [8] that we have a Morita context

M. = (T = END (M), Re, M, Q. =““HOM(Ce, M), e, tc)
with M €rMgx,_ by
m - fe = mjo,e] - fe(Mmp,e) and t-m = t(m)
forallme M, fo € Re, t € T, and Q. €x, Mr by

(fe - ge)(c) = ge(ci,e) - fe(ez,e)))
for all c € C. and qe € Qe and (ge - t)(c') = ge(c¢’) ot for all ¢’ € Ce, and

fe : Qe @1 M — Re, pe(ge @1 m)(c) = ge(c)(m),Ve € Ce
Te : M ®925 Qe — T» Te(m ®IRe QG)(ml) = Mjo,e] * (qe(m[l,e])(ml))-

4.8. Proposition. Let M. be the Morita context defined as above. Consider the group
rings T[G] and Re|G]. Then M|[G] = @GGG Mus €rig Mge[g] and Q.[G] = @GEG Qello €Er (]

flio - Mpta - Tepig = (f sme Te),uaocﬁz Tells * Gefba * fllo = (7"6 “qe - f):uﬂaa
foralo,a,peG, feT, re €Re, me M and qe € Q.. We have well-defined maps

t: Qe|G] ®ric) M[G] = Re[G], plgetto @ric) Mita) = pe(qe T M) lioa,

T: M[G] QR [G] Qe[G] — T[GL T(Mpte R [G] Gepra) = Te(M O, Ge)toa-
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Then ML [G] = (T[G], RG], M[G], Qc[G], 7, ) is a graded Morita context.

4.9. Lemma. Let C be a cofree group coring and M a cofree C-comodule such that M is
finitely generated and projective. Then i:T — S is isomorphism, and ENDx(M{G}) =
G % S is isomorphic as a graded ring to the group ring T|G].

Proof. It suffices to show that i is surjective. For f € S, we have that

fa(m)jo,e) ®a vg-1(fa(Mm)1,e]) = fa(m)js-1] ®a fa(m)p g-1]
= fap(myg g-11) ®a mp -1
= fap(mo,e)) ®a -1 (my1,e)-
Applying id ®4 € o fyﬂill, we have fo(m) = fap(m), hence f. = fg for all 8 € G, and
f=i(fe). U

4.10. Proposition. Let C' be a cofree group coring and M a cofree C-comodule. Then
we have an isomorphism of G-graded (G * S, R)-bimodules

9 : M{G} — MI[G], ¥(pa(m)) = mpa.
Proof. Straightforward. ]

4.11. Lemma. Let C be a cofree group coring and M a cofree C-comodule such that
M s finitely generated and projective. Then @ =2 Q.. Consequently HOMx(M{G},

R) = Q.[G].
Proof. Let us take ¢ = {ga}aecc € Q. Then for all o, 8 € G and c € C., we have
Ys-1(c1,e)) ®4 qa(Ya-1(c(2,0)))
ZV(aﬁrl(c)(l,ﬁ*l) ®a qa(’y(aﬁ)*l(c)(zofl))
=qap(V(ap)-1(¢))(€ijo,e]) - V-1 (€if1,e]) Da €
Taking o = 8 = e, we find that ¢. € Q.. For all m € M, it follows that
Yp-1(C(1,e)) * da(Va-1(c(2,¢))) (M) = Gas(V(ap)-1(€))(M(o,e]) - Vg-1(M[1,e])-
Applying 73_,11 to both sides of the equation above, we have
c(1,e) * da(Ya—1(¢(2,))) () = Gap(V(ap)-1(c))(Mio.e]) - M1,
Applying e to both sides, we find that
o (Va—1(¢))(m) = qas(V(ap)-1(c)) (M),
and
ge(c) = qs(v5-1(c))-
Hence, we have gg = ¢e o fy[;ll. These arguments show that the map
J:Qe = @, j(a) = (0a(q))acn

is a well-defined isomorphism. |
4.12. Theorem. Let C be a cofree group coring and M a cofree C-comodule such that

M s finitely generated and projective. Then the graded Morita contexts GM and M.[G]
are tsomorphic.
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Proof. Let E: G * S — T[G] be the isomorphism in Lemma 4.9. We will show that the
diagram

M{G) @2 QG —“ =G %S

M[G] @x, ) Qe[G] ——T[G]
commutes. Indeed, for o,0 € G, a € A and ¢q € Q, we have
(Eow)(pa(m) ® we(q)) =E(pac((fos)sec))
=fottas
where f,5(m') = Mo, (08)~1] 'qgﬁ(m[17(gﬁ)—1])(m/)7 and
(po (@5 G))(1a(m) ®ws(q))
= p(Mpia ® geplo)
= pe(m @ ge) pao
for all m’ € M, since
fo(m') =myg o1y - go (M 5—17) (M)
=M[o,e] Qo(%fl(m[l,e]))(m,)
=myo,¢] - ge(my1,e))(m”)
=pe(m® qe)(m'),
it, follows that Zow = @ o (¥ ® j'G). Let
[:R[G] = R, D(fua) = fovhs
be the isomorphism from Proposition 4.6 in [5]. We will show that the diagram

QG ®c.s MIG} —2 =R

jlcwi J{Fl

Q.[G] @ri6) M[G] —> R.[G]

commutes. Take 0, € G, ¢ € Q and a € 4,
(Togo (j7'G®9))(wa(g) @ pa(m))
= (I o) (geptc @ mpa)
=T(ge(=)(m)poa)
— g (=)(m) ok
and
V' (we (@) ®cs pa(m))(=) = goa(=)(m).
For v(ya)-1(¢) € C(yq)-1, We compute that
(@:(=) () 031 ) oy () =4 (121 © Vo -1)(©) ()
=Goa (’Y(m)—l (c))(m)
=V (Wo(g) ®cs pa(m))(Ygay-1(c))-
Thus we have o (j !G®Y) =T"1or. O
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5. Applications

In this section, we will give the application of our theory to G-entwining structure.
Given a G-entwining structure (A, C)g—y, then we have a G-A-coring {A ® Ca }aca
arising from (A, C)g—y. First observe that

Ro =aHOM(A® C,-1,A) 2 HOM(C,-1, A)
as spaces. This graded ring structure on R induces a graded ring structure on @, ., HOM(C,-1, A),
and this graded ring is denoted by #(C, A). The product is given by the formula

(fatga)(€) = Falcpany)u, 1 95(cus-1) “)
for all fo € HOM(C,-1, A), gs € HOM(Cg-1, A) and ¢ € C(,5)-1-

Fix a grouplike family = {2 }aca of C, then we have that A € U%(w) with right

C-coaction pZ(a) = ay, @ a'°.

Generally, let A be a right C-comodule. Suppose that A is an object of U%(w) with
the structure maps ma and p* = {p2}. Then we have pJ(ab) = ajo,a)bypa ® af1,a/"*-
Specially, the coaction can be written as pﬁ(b) = 14[0,a)bypa ® 1A[1,af"“. The ring of
coinvariants is

B ={a € Allap,a)0yp, ® 1A[1,a]w“ = alafo,a] ® Lap,q), Vo € G}.
Q@ and S can be described as follows:
Q={q=(ga)acc € [] #(Ca-1,A)
acG

qa(C(Z,a_l))’wﬁ—l ® 0(1,,8—1)%_1 = qap(c)1ap,p-1] ® Lap,p-17,¢ € Clapy-1}
and

S = {b :(ba)aEG S H A|

acG
]'A[O,ﬁfl]bﬂ'll’ﬁ—l ® ].A[O’Bfl]wﬁil = 1A[0’5*1]baf3 ® 1A[1,5*1]}'

Then we have the twisted group ring G * S = @, . oS with the multiplication given
by Habhuse = hap(b’c), where b7 = (bsa)aec-

From Theorem 4.6, we have the following result.

5.1. Theorem. With the notation as above, we have a graded Morita context GM =
(G *S,4(C, A), A{G}, QG,w’, V") with connecting map ' and V' given by the formulas

W A{G} R(c,A) QG — G %8S,

oB)—1
W' (pa(a) ®yc,a) wo(g)) = MQU(]‘A[O,(JB)*I]a’w(Gﬁ)—l qtfﬁ(lA[l,(oB)*l]( L)

V' QG ®cxs A{G} = #(C, A),
V' (o (q) @G5 pa(@))(€) = goa(c)a, Ve € Crpay-1.

)

As was stated above, if we fix a grouplike family = {za}ace of C, then we have
that A € u%(w) with right G-C-coaction pZ(a) = ay, ® zo¥>. In particular, it follows
that p2(14) = 14 ® . Then B, S and Q have the following forms:

B=1{a€ Alay, ® 2.’ =a® xa,Va € G},
Q={q=(ga)acc € [] #(Ca-1,A)a
aceG

qa(C(z,afl))wﬁ_l ® C(l,ﬂfl)wﬁ_l = qap(c) ® Tg-1,C€ C(aﬁ)*l}
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and
S = {b :(ba)aEG € H A|ba¢,ﬁ_1 ®1‘B71w5*1 = botﬁ ®x571}.
aeG
From Theorem 5.1, we have a graded Morita context GM = (G x S,4#(C, A), A{G},
QG, W', V") with connecting map w’ and v’ given by the formulas

w/ : A{(;} ®ﬁ(C’,A) (;)G — G * S,
[ed 1
P ))

W' (pa(a) @y, a) wo(q)) = trao (p 1 Gop(T(op)-1 ;
V' QG ®axs A{G} — #(C, A),

V' (wo(g) ®cxs pala))(c) = goalc)a, Ve € Clga)-1.
Furthermore, if G is a trivial group, then B = S and the graded Morita context GM =
(GxS,4(C, A), A{G}, QG,w', V") recovers to the Morita context in the sense of |7, Section
4].

In order to proceed the further discussion, we need the following result [10].

5.2. Proposition. Let A and E be rings, and C' a G-A-coring, and M both a C-comodule
and a (E, A)-bimodule such that the comodule maps po are left E-linear. Then we have
a pair of adjoint functors (F,U):

F:Mp — M%C, F(N) = {tia(N @5 M)}acc.

The coaction maps are
Pa,8 : pasg(N ®p M) = pa(N ®@r M) ®a Cg,
Pa.p(Hap(n ®p m)) = pia(n @r mio,6)) @A M1,
For X ¢ M%€, define U as follows:
U:MPE 5 Mg, Us(X) = HOMT (o (M), X).

Next, we apply Proposition 5.2 to the particular G-A-coring {A ® Ca}acc arising
from (A,C)c—y. Under the assumption that A is an object of US (1) with the structure
maps ma and p® = {p2}, we have a special pair of adjoint functors (F,U):

F:Mp = UTE(Y), FN) = {pa(N ®5 A)}aca-
The coaction maps are
Pap t pap(N @8 A) = pia(N ®@p A) ®4 Cp,
P (s (n @5 0)) = pa(n @5 Lajo,p10v5) @4 Lapno”-
For X € Uf’g(d}L define U as follows:
U UGE W) = Mp, U(X) = HOM(a(4), X).
For M € uj'g, we define

M = {m = (ma)acc € || Malmio,a) ® mpu g =m - Lajo,s © Lap,s}-
aeG

Then we have
5.3. Lemma. There exists an isomorphism
HOMS (j1a (A), M) = M

as right B-modules.
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Proof. For any f € HOM%(MQ (A), M), since f is a right C-comodule, then we have

Pay(Fop (105 (1)) = fa(a(Lap,5)) @ Lapg-

Set m = (Ma)aeca, where ma = fa(pa(la)). Straightforward calculation can show that
m € M. Thus we define a map

 : HOM (o (A), M) = M, B(f) = (fa(pia(14)))eecr
Take m € M“°, we define a map
s M — HOM (o (4), M), T (m)a(pe(a) = ma - a.
It follow easily that ® and U are both B-linear and mutually inverses. O

NF{om Lemma 5.3 and what was discussed above, we have a pair of adjoint functors
(F,U0):
F:Mp = UGC@), FIN) = {ua(N @5 A)}aca.

U:UGC@W) = Mg, U(X) = X

By the discussion as above, and [7, Theorem 9.2], we can achieve the main goal in this
section.

5.4. Theorem. Let (A,C) be a G-entwined structure. Suppose that A € "L[%(z/)). Con-
sider the map

can : (A®p A)(G) -+ A®C, cana(a ®p b) = alsj,aqby, ® 1A[17a]¢3.

Then the following statements are equivalent:

(1) can is an isomorphism of group corings, and A is faithfully flat as a left B-
module,

(2) "can is an isomorphism of graded rings and A is a left B-progenerator,

(3) The graded Morita context GM = (G * S, 4(C, A), A{G}, QG, ', V') is strict,

(4) (F,U) is an equivalence of categories.

As the end of this paper, we discuss the (H, A)-Hopf module for an H-comodule
algebra A over a Hopf G-coalgebra H.

Let H = ({Ha,ma,la,A,e}) be a Hopf G-coalgebra in the sense of [16] and A an
algebra. We recall from [16] that a right H-comodule algebra is a right H-comodule
(A, p* = {p2}), such that the following conditions are satisfied:

° pﬁ(ab) = a[0,a]0[0,0] ® a[1,0)0[1,] for all a,b € A and a € G,
° p(‘;‘(lA) =14 ® 1, for all a € G.

Given an H-comodule algebra A, we have a G-entwined structure ¢, : Ho ® A —
A® He, Ya(h®a) = ap,q) ® hap,q). We call a special (A, C)y-module a (right-right)
(H, A)-Hopf module and denote the category of (H, A)-Hopf modules by u%. It is easy
to see that A € u% Let us take the grouplike family {1 }acc. Then we have a graded

Morita context GM = (G * S, #§(H, A), A{G}, QG,w’,v') with connecting map w’ and v/
given by the formulas
W' A{G} ®p(H,A) QG — G xS,
w'(,ua(a) Q(H,A) wa(g)) = NQU(a[O,(aﬁ)*l]qO'B(a[l,(JB)*l])L
V' QG ®cxs A{G} — H#(H, A),

V' (wo(q) ®ans pa(a))(c) = goa(c)a, Ve € Cloay-1,
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where

and

5.5.

Q I{Q = (qa)acc € H f(Hq-1, A)al

aeG
Ga(h(2,a-1))10,6-1] ® h1,5-1)qa(h(2,0-1))1,6-1) = Gap(h) ® 1g-1,h € Higg-1}

S = {b=(ba)acc € H A|ba[0,g71] ® ba[l’ﬁfl] =bag ® 1B’1}'
aceG

Remark. If 7 is a trivial group, then S = A and

Q ={q € §(H, A)lg(h(2))10) ® hyq(h)n) = ¢(h) ® 1u, h € H}.

Hence, the graded Morita context GM = (G x S,#(H, A), A{G}, QG,w’, V") is just the
Morita context of Doi in [12].
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