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Abstract

The concept of intuitionistic topological space was introduced by Çoker.
The aim of this paper is to show the existence of natural functors be-
tween the category of intuitionistic topological spaces and continuous
mappings and the category of bitopological spaces and pairwise con-
tinuous mappings. These functors are then used to generalize bitopo-
logical notions of separation to intuitionistic topological spaces, and
some relations between these and previously defined notions are then
obtained.
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1. Introduction

After the introduction of fuzzy sets by Zadeh [22], various mathematicians introduced
generalizations of the notion of fuzzy set. Among others, Atanassov [2, 3] introduced
the notion of intuitionistic fuzzy set. Chang [7] used fuzzy sets to introduce the concept
of a fuzzy topology. Later this concept was extended to intuitionistic fuzzy topological
spaces by Çoker in [9]. The concept of intuitionistic set, which is a classical version
of an intuitionistic fuzzy set, was first given by Çoker in [8]. He studied topology on
intuitionistic sets in [10]. In this context, Çoker et. al. [4, 6, 12, 18] studied continuity,
connectedness, compactness and separation axioms in intuitionistic fuzzy topological
spaces.
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In this paper we follow the suggestion of J.G. Garcia and S. E. Rodabaugh [15] that
“double fuzzy set” is a more appropriate name than “intuitionistic fuzzy set”, and there-
fore adopt the term “double-set” for the intuitionistic set, and “double-topology” for the
intuitionistic topology of Doğan Çoker. As in [13] (this issue) we denote by Dbl-Top
the construct (concrete texture over Set) whose objects are pairs (X, τ) where τ is a
double-topology on X, and whose morphisms are continuous mappings between such
spaces.

Following a short section on preliminaries, in Section 3 we show that there exist
functors B : Dbl-Top → Bitop and D : Bitop → Dbl-Top, where as usual Bitop
denotes the construct of bitopological spaces and pairwise continuous mappings, and
establish that these form an adjoint pair. In terms of the representation of double-
sets as 3-sets [13, 15], it is pointed out that D extends to Bitop the Lowen functor
ω : Top→ 3X .

In Section 4, making use of this relation between bitopological spaces and double-
topological spaces, we generalize several bitopological separation axioms to the case of
double-topologies, and also give a notion of pairwise continuity for double-topological
spaces. Finally, in Section 5, we briefly discuss the relations between these bitopologically
based concepts and some previously defined separation axioms for double-topological
spaces.

For concepts, notation and results relating to category theory we follow [1]. If par-
ticular, if A is a category then ObA denote the class of objects and MorA the class of
morphisms of A.

2. Preliminaries

Throughout the paper by X we denote a non-empty set. In this section we shall
present various fundamental definitions and propositions. The following definition is
obviously inspired by Atanassov [3].

2.1. Definition. [8] A double-set (DS for short) A is an object having the form

A = 〈x,A1, A2〉,

where A1 and A2 are subsets of X satisfying A1 ∩ A2 = ∅. The set A1 is called the set
of members of A, while A2 is called the set of non-members of A.

Throughout the remainder of this paper we use the simpler notation A = (A1, A2) for
a double-set.

2.2. Remark. Every subset A of X is may obviously be regarded as a double-set having
the form

A′ = (A,Ac),

where Ac = X \A is the complement of A in X.

We recall several relations and operations between DS’s as follows:

2.3. Definition. [8] Let the DS’s A and B on X be of the form A = (A1, A2), B =
(B1, B2), respectively. Furthermore, let {Aj : j ∈ J} be an arbitrary family of DS’s in

X, where Aj = (A
(1)
j , A

(2)
j ). Then

(a) A ⊆ B if and only if A1 ⊆ B1 and A2 ⊇ B2;

(b) A = B if and only if A ⊆ B and B ⊆ A;

(c) A = (A2, A1) denotes the complement of A;

(d)
⋂

Aj = (
⋂

A
(1)
j ,

⋃

A
(2)
j );
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(e)
⋃

Aj = (
⋃

A
(1)
j ,

⋂

A
(2)
j );

(f) [ ]A = (A1, A
c
1);

(g) 〈 〉A = (Ac
2, A2);

(h) ∅
∼

= (∅, X) and X
∼

= (X, ∅).

In addition we will require the following in this paper:

(i) ()A = (A1, ∅) and )(A = (∅, A2).

Now we recall the image and preimage of DS’s under a function.

2.4. Definition. [8] Let X and Y be two non-empty sets and f : X → Y a function.
Then:

(a) If B = (B1, B2) is an DS in Y , then the preimage of B under f , denoted by
f−1(B), is the DS in X defined by

f−1(B) = (f−1(B1), f
−1(B2)).

(b) If A = (A1, A2) is an DS in X, then the image of A under f , denoted by f(A),
is the DS in Y defined by

f(A) = (f(A1), f−(A2)),

where f−(A2) = (f(Ac
2))

c.

The following includes several useful results:

2.5. Proposition. [8, 11] Let A,Aj , (j ∈ J), be DS’s in X, B,Bk, (k ∈ K), DS’s in Y
and f : X → Y a function. Then:

(a) A1 ⊆ A2 =⇒ f(A1) ⊆ f(A2);

(b) B1 ⊆ B2 =⇒ f−1(B1) ⊆ f−1(B2);

(c) A ⊆ f−1(f(A)), and if f is injective then A = f−1(f(A));

(d) f(f−1(B)) ⊆ B, and if f is surjective then f(f−1(B)) = B;

(e) f−1(
⋃

Bk) =
⋃

f−1(Bk);

(f) f−1(
⋂

Bk) =
⋂

f−1(Bk);

(g) f(
⋃

Aj) =
⋃

f(Aj);

(h) f(
⋂

Aj) ⊆
⋂

f(Aj), and if f is injective, then f(
⋂

Aj) =
⋂

f(Aj);

(i) f−1(Y
∼
) = X

∼
;

(j) f−1(∅
∼
) = ∅

∼
;

(k) If f is surjective, then f(X
∼
) = Y

∼
;

(l) f(∅
∼
) = ∅

∼
;

(m) If f is surjective, then f(A) ⊆ f(A). If, furthermore, f is injective, then have

f(A) = f(A);

(n) f−1(B) = (f−1(B)).

2.6. Definition. [8, 11] Let p ∈ X be a fixed element in X. Then:

(a) The DS given by x
∼

= ({x}, {x}c) is called a double-point (DP for short) in X;

(b) The DS x
≈

= (∅, {x}c) is called a vanishing double-point (VDP for short) in X.

2.7. Definition. [8, 11]

(a) Let x
∼

be a DP in X and A = (A1, A2) an DS in X. Then x
∼

is said to belong to

A (x
∼
∈ A for short) iff x ∈ A1.
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(b) Let x
≈

be a VDP in X and A = (A1, A2) an DS in X. Then x
≈

is said to belong

to A (x
≈
∈ A for short) iff x /∈ A2.

It is clear that x
∼
∈ A ⇐⇒ x

∼
⊆ A and that x

≈
∈ A ⇐⇒ x

≈
⊆ A.

2.8. Definition. [10] A double-topology (DT for short) on a set X is a family τ of DS’s
in X satisfying the following axioms:

T1: ∅
∼
, X
∼
∈ τ ,

T2: G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ,
T3:

⋃

Gj ∈ τ for any arbitrary family {Gj : j ∈ J} ⊆ τ .

In this case the pair (X, τ) is called a double-topological space (DTS for short), and

any DS in τ is known as a double open set (DOS for short). The complement A of an
DOS A in an DTS is called a double closed set (DCS for short) in X.

2.9. Definition. [10] Let (X, τ) be an DTS and A = (A1, A2) an DS in X. Then the
interior and closure of A are defined by:

int(A) =
⋃

{G : G is a DOS in X and G ⊆ A},

cl(A) =
⋂

{H : H is a DCS in X and A ⊆ H},

respectively.

It is clear that cl(A) is a DCS and int(A) a DOS in X. Moreover, A is a DCS in X
iff cl(A) = A, and A is a DOS in X iff int(A) = A.

2.10. Example. [10] Any topological space (X, τ0) gives rise to a DT in the form
τ = {A′ : A ∈ τ0)} by identifying a subset A in X with its counterpart A′ = (A,Ac), as
in Remark 2.2.

2.11. Definition. [10] Let (X, τ) and (Y, φ) be two DTS’s and let f : X → Y be a
function. Then f said to be continuous iff the preimage of each DS in φ is an DS in τ .

2.12. Definition. [10] Let (X, τ) and (Y, φ) be two DTS’s, and let f : X → Y be a
function. Then f said to be open iff the image of each DS in τ is an DS in φ.

2.13. Example. [10] Let (X, τ0) and (Y, φ0) be two topological spaces. Then

(a) If f : X → Y is τ0–φ0 continuous in the usual sense, then f is also τ–φ continuous
for the corresponding DTS in the sense of Definition 2.11.

(b) Let f : X → Y is a τ0–φ0 open function in the usual sense. Then f is also τ–φ
open for the corresponding DTS in the sense of Definition 2.12.

3. The Constructs Dbl-Top and Bitop

We begin by recalling the following result which associates a bitopology with a double
topology.

3.1. Proposition. [10] Let (X, τ) be a DTS.

(a) τ1 = {A1 : ∃A2 ⊆ X with A = (A1, A2) ∈ τ} is a topology on X.

(b) τ∗2 = {A2 : ∃A1 ⊆ X with A = (A1, A2) ∈ τ} is the family of closed sets of the

topology τ2 = {Ac
2 : ∃A1 ⊆ X with A = (A1, A2) ∈ τ} on X.

(c) Using (a) and (b) we may conclude that (X, τ1, τ2) is a bitopological space.

Now we note:
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3.2. Proposition. Let (X, τ), (Y, φ) be DTS’s and f : X → Y a function. Then if f is

τ–φ continuous it is (τ1, τ2)–(φ1, φ2) pairwise continuous.

Proof. By the definition of pairwise continuity we must show that under the given hy-
pothesis f is τ1–φ1 continuous and τ2–φ2 continuous [16].

Take U ∈ φ1. Then we have B ⊆ X with (U,B) ∈ τ , so by the continuity of f ,
f−1(U,B) = (f−1(U), f−1(B)) ∈ τ and hence f−1(U) ∈ τ1. This shows that f is τ1–φ1
continuous.

On the other hand take V ∈ φ2. Then for some A ⊆ X we have (A, V c) ∈ τ , and as
above the continuity of f leads to (f−1(A), f−1(V c)) = (f−1(A), (f−1(V ))c) ∈ τ , whence
f−1(V ) ∈ τ2 and we have established that f is τ2–φ2 continuous. ¤

If we define B : Dbl-Top → Bitop by B(X, τ) = (X, τ1, τ2), and B(f) = f for
f : X → Y , then it is clear from Proposition 3.1 that:

3.3. Lemma. B : Dbl-Top→ Bitop is a functor.

We now wish to obtain a functor in the opposite direction, and to do this we must
associate a double topology on X with a given bitopology on X.

3.4. Proposition. Let (X,u, v) be a bitopological space. Then the family

{(U, V c) : U ∈ u, V ∈ v, U ⊆ V }

is a double topology on X.

Proof. The condition U ⊆ V ensures that U ∩ V c = ∅, while the given family contains ∅
∼

because ∅ ∈ u, v, and it contains X
∼

because X ∈ u, v. Finally this family is closed under
finite intersections and arbitrary unions by Definition 2.3 (d,e) and the corresponding
properties of the topologies u and v. ¤

3.5. Definition. Let (X,u, v) be a bitopological space. Then we set

τuv = {(U, V c) : U ∈ u, V ∈ v, U ⊆ V }

and call this the double topology on X associated with (X,u, v).

3.6. Proposition. If (X,u, v) is a bitopological space and τuv the corresponding DT on

X, then

(τuv)1 = u and (τuv)2 = v.

Proof. U ∈ u implies (U, ∅) ∈ τuv since U ⊆ X ∈ v, so u ⊆ (τuv)1. Conversely, take
U ∈ (τuv)1. Then (U,B) ∈ τuv for some B ⊆ X, and now U ∈ u by Definition 3.5. Hence
(τuv)1 ⊆ u, and the first equality is proved.

The proof of the second equality may be obtained in a similar way, and we omit the
details. ¤

3.7. Proposition. Let (X,u, v), (Y, s, t) be a bitopological spaces and τuv, τst the cor-

responding DT’s. Then if f : X → Y is (u, v)–(s, t) pairwise continuous it is τuv–τst
continuous in the sense of Definition 2.11.

Proof. For S ∈ s, T ∈ t with S ⊆ T we have (S, T c) ∈ τst =⇒ f−1(S, T c) =
(f−1(S), f−1(T c)) = (f−1(S), (f−1(T ))c) by Definition 2.4 (a). Certainly f−1(S) ⊆
f−1(T ), while f−1(S) ∈ u, f−1(T ) ∈ v, so f−1(S, T c) ∈ τuv. Hence, f is τuv–τst
continuous. ¤

If we now define D : Bitop → Dbl-Top by D(X,u, v) = (X, τuv) and D(f) = f for
f : X → Y , then it is clear from Proposition 3.7 that:
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3.8. Lemma. D : Bitop→ Dbl-Top is a functor.

We see from Proposition 3.6 that B ◦ D = idBitop. If it were also the case that
D ◦B = idDbl-Top, then B and D would be isomorphisms. That this is not the case is
shown by the following example.

3.9. Example. Let X = {a, b} and τ = {(X, ∅), ({a}, {b}), (∅, X)}. Then (X, τ) is a
DT, τ1 = τ2 = {X, {a}, ∅}, and

ττ1τ2 = {(X, ∅), ({a}, ∅), ({a}, {b}), (∅, {b}), (∅, X)} 6= τ.

Hence, (D ◦B)(X, τ) 6= (X, τ) so D ◦B 6= idDbl-Top

Even though B and D are not isomorphisms, we do have the following important
result.

3.10. Theorem. The functor B : Dbl-Top → Bitop is an adjoint of the functor

D : Bitop→ Dbl-Top.

Proof. To prove that B is an adjoint we must show that for any (X,u, v) ∈ ObBitop
there exists a B-universal arrow with domain (X,u, v) [1, Definition 18.1]. We claim
that (idX , (X, τuv)) is such an arrow, so by [1, Definition 8.30] we must show that this is
a B-structured arrow with domain (X,u, v) which is B-universal for Bitop. Certainly
(X, τuv) ∈ ObDbl-Top, and by Proposition 3.6 we have B(X, τuv) = (X,u, v), so

idX : (X,u, v)→ B(X, τuv)

is bicontinuous and hence a Bitop morphism. Hence (idX , (X, τuv)) is indeed a B-
structured arrow with domain (X,u, v). To prove it is B-universal for Bitop, let
(g, (Y, ϑ)) be any B-structured arrow with domain (X,u, v). We must prove the ex-
istence of a unique Dbl-Top morphism ḡ : (X, τuv) → (Y, ϑ) that makes the following
diagram commutative:

(X,u, v)
idX

//

g

&&NNNNNNNNNNNNNNNNNN
B(X, τuv)

B(ḡ)

²²
Â
Â
Â
Â
Â

B(Y, ϑ)

It is clear that the only possible choice for ḡ is g, so we must show that

B(g) : B(X, τuv)→ B(Y, ϑ) = g : (X,u, v)→ (Y, ϑ1, ϑ2)

is pairwise continuous. However this is immediate since g is given to be a Bitop mor-
phism. This completes the proof that B is an adjoint, and since (X, τuv) = D(X,u, v)
we see that D is the corresponding co-adjoint functor (see [1], Section 19). ¤

In view of the identification of double topologies with 3-topologies (3 = {0, 1
2
, 1})

[13, 15], it is interesting to compare the above functors with the Lowen functors ω and
ι. Naturally, these functors effectively map between Top and Dbl-Top, rather than
between Bitop and Dbl-Top, but certainly D may be restricted to bitopologies of the
form (X,u, u), that is to topologies, and hence compared with the functor ω.

3.11. Theorem. If ζ : 3X → DX is the isomorphism between the Hutton algebra of 3-sets
of X and the Hutton algebra of double-sets of X described in [13], and ω : Top→ 3-Top
the Lowen functor, then ζ ◦ ω(X,u) = D(X,u, u).
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Proof. Since 3 is a chain, {χU | U ∈ u} ∪ {k | k ∈ 3} is a subbase of ω(X,u) by [20,
Theorem 3.3]. Applying ζ(µ) = (Aµ, Bµ), Aµ = {x ∈ X | µ(x) = 1}, Bµ = {x ∈ X |
µ(x) = 0} shows that S = {(U,U c) | U ∈ u} ∪ {(X, ∅), (∅, ∅), (∅, X)} is a subbase for
ζ ◦ ω(X,u). On the other hand we clearly have S ⊆ τuu, while if U1, U2 ∈ u, U1 ⊆ U2,
then

(U1, U
c
2 ) = (U1, U

c
1 ) ∪ ((∅, ∅) ∩ (U2, U

c
2 )),

so S is a subbase for τuu also. This completes the proof of the stated equality. ¤

We see from this theorem that D extends the Lowen functor ω to Bitop in such a way
that there exists an adjoint B : Dbl-Top→ Bitop. It would seem that this situation is
of sufficient interest to warrant further study in a wider context.

4. Pairwise Separation Axioms in Double Topological Spaces

In this section we use the link between bitopological spaces and double topological
spaces established above to generalize several bitopological separation properties to the
case of double topological spaces. We limit ourselves to the strong forms of the pairwise
T0, T1 and T2 properties, and will refer to these as pairwise Ti, i = 0, 1, 2 throughout
this paper. We will also consider the pairwise R0 and pairwise R1 axioms, which are
related to the pairwise Ti axioms by having pairwise T1 = pairwise T0 + pairwise R0 and
pairwise T2 = pairwise T0 + pairwise R1.

The (strong) T0 and T1 axioms are due to Fletcher, Hoyle and Patty [14]:

4.1. Definition. Let (X,u, v) be a bitopological space. Then (X,u, v) is called

(1) pairwise T0, if given x 6= y in X there exists U ∈ u such that x ∈ U, y /∈ U or
there exists V ∈ v with y ∈ V, x /∈ V .

(2) pairwise T1, if given x 6= y in X there exists U ∈ u such that x ∈ U, y /∈ U and
there exists V ∈ v with y ∈ V, x /∈ V .

4.2. Proposition. If (X,u, v) is pairwise T0 then (X, τuv) satisfies the following condi-
tion:

Given x 6= y in X there exists G ∈ τuv with x
∼
∈ G, y

∼
/∈ G, or there exists H ∈ τuv with

y
≈

∈ H, x
≈
/∈ H.

Proof. Let (X,u, v) be pairwise T0 and x 6= y. Then there exists U ∈ u such that
x ∈ U, y /∈ U , or there exists V ∈ v such that y ∈ V, x /∈ V . In the first case we may
take G = (U, ∅) ∈ τuv. Then x ∈ U means that x

∼
∈ G, and y /∈ U means that y

∼
/∈ G. In

the second case we may take H = (∅, V c) ∈ τuv, and now y ∈ V means that y
≈

∈ H and

x /∈ V means that x
≈
/∈ H. This establishes the required condition. ¤

This suggests the following definition for general double topologies.

4.3. Definition. The DTS (X, τ) is called pairwise T0 if given x 6= y in X there exists
G ∈ τ with x

∼
∈ G, y

∼
/∈ G, or there exists H ∈ τ with y

≈

∈ H, x
≈
/∈ H.

4.4. Proposition. If (X, τ) is pairwise T0 then (X, τ1, τ2) is pairwise T0.

Proof. Take x 6= y in X. Then there exists G = (A,B) ∈ τ with x
∼
∈ G, y

∼
/∈ G, or there

exists H = (C,D) ∈ τ with y
≈

∈ H, x
≈
/∈ H. In the first case x ∈ A ∈ τ1, y /∈ A, and in

the second y ∈ Dc ∈ τ2, x /∈ Dc, so (X, τ1, τ2) is pairwise T0. ¤
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4.5. Corollary. (X,u, v) is pairwise T0 iff (X, τuv) is pairwise T0.

Proof. Necessity follows from Proposition 4.2, and sufficiency from Proposition 4.4 and
Proposition 3.6. ¤

4.6. Corollary. The functors B and D preserve the pairwise T0 property.

Now we turn our attention to the pairwise T1 property.

4.7. Proposition. If (X,u, v) is pairwise T1 then (X, τuv) satisfies the following condi-
tion:

Given x 6= y in X there exists G ∈ τuv with x
∼
∈ G, y

∼
/∈ G, and there exists H ∈ τuv with

y
≈

∈ H, x
≈
/∈ H.

Proof. As for the proof of Proposition 4.2 with “or” replaced by “and”. ¤

This suggests the following definition for general double topologies.

4.8. Definition. The DTS (X, τ) is called pairwise T1 if given x 6= y in X there exists
G ∈ τ with x

∼
∈ G, y

∼
/∈ G, and there exists H ∈ τ with y

≈

∈ H, x
≈
/∈ H.

4.9. Proposition. If (X, τ) is pairwise T1 then (X, τ1, τ2) is pairwise T1.

Proof. As for the proof of Proposition 4.4 with “or” replaced by “and”. ¤

4.10. Corollary. (X,u, v) is pairwise T1 iff (X, τuv) is pairwise T1.

Proof. Necessity follows from Proposition 4.7, and sufficiency from Proposition 4.9 and
Proposition 3.6. ¤

4.11. Corollary. The functors B and D preserve the pairwise T1 property.

The pairwise R0 axiom for bitopological spaces was introduced by Murdeshwar and
Naimpally [17]:

4.12. Definition. (X,u, v) is called pairwise R0 if x ∈ U ∈ u implies clv({x}) ⊆ U and
x ∈ V ∈ v implies clu({x}) ⊆ V .

4.13. Proposition. If (X,u, v) is pairwise R0 then (X, τuv) satisfies the conditions:

x
∼
∈ G ∈ τuv implies there exists H ∈ τuv with x

≈
/∈ H and H ⊆ ()G, and

x
≈
∈ G ∈ τuv implies there exists H ∈ τuv with x

∼
/∈ H and )(H ⊆ G.

Proof. Suppose that (X,u, v) is pairwise R0. Then

x
∼
∈ G ∈ τuv =⇒ G = (U, V c) with, in particular, x ∈ U ∈ u =⇒ clv({x}) ⊆ U.

If we define H = (∅, clv({x})) then clearly H ∈ τuv, x
≈
/∈ H and H = (clv({x}), ∅) ⊆

(A, ∅) = ()G (see Definition 2.3 (h)). On the other hand,

x
≈
∈ G ∈ τuv =⇒ G = (U, V c) with, in particular, x ∈ V ∈ v =⇒ clu({x}) ⊆ V.

If now we define H =
((

clu({x})
)c
, ∅

)

, then clearly H ∈ τuv, x
∼
/∈ H and

H = (∅,
(

clu({x})
)c
) = )(H ⊆ G,

see Definition 2.3 (h). ¤

This leads to the following definition for double topological spaces:
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4.14. Definition. The DTS (X, τ) is called pairwise R0 if it satisfies the conditions:

x
∼
∈ G ∈ τ implies there exists H ∈ τ with x

≈
/∈ H and H ⊆ ()G, and

x
≈
∈ G ∈ τ implies there exists H ∈ τ with x

∼
/∈ H and )(H ⊆ G.

4.15. Proposition. If (X, τ) is pairwise R0, then (X, τ1, τ2) is pairwise R0.

Proof. Let (X, τ) be pairwise R0 and take x ∈ U ∈ τ1. Then for some B ⊆ X we
have G = (U,B) ∈ τ , and since x

∼
∈ G there exists H = (C,D) ∈ τ with x

≈
/∈ H and

H = (D,C) ⊆ ()G = (U, ∅). Now x ∈ D ⊆ U , and D is τ2–closed, so clτ2({x}) ⊆ U .

On the other hand, x ∈ V ∈ τ2 leads to clτ1({x}) ⊆ V by a similar argument, so
(X, τ1, τ2) is pairwise R0. ¤

4.16. Corollary. (X,u, v) is pairwise R0 iff (X, τuv) is pairwise R0.

Proof. Necessity follows from Proposition 4.13, and sufficiency from Proposition 4.15 and
Proposition 3.6. ¤

4.17. Corollary. The functors B and D preserve the pairwise R0 property.

The following theorem shows that the same relations hold between the pairwise T0,
T1 and R0 axioms for double topological spaces as hold for bitopological spaces.

4.18. Theorem. The DTS (X, τ) is pairwise T1 iff (X, τ) is pairwise T0 and pairwise

R0.

Proof. Suppose first that (X, τ) is pairwise T1. Then:

• (X, τ) is pairwise T0. This is clear from the definitions.

• (X, τ) is pairwise R0. Suppose not. Then either

(a) There exists x
∼
∈ G ∈ τ so that for all H ∈ τ , x

≈
∈ H or H * ()G, or

(b) There exists x
≈
∈ G ∈ τ so that for all H ∈ τ , x

∼
∈ H or )(H * G.

Case (a). x
∼
∈ G = (A,B) gives x ∈ A. Let H0 =

⋃

{H ∈ τ | x
≈
/∈ H}. Then

x
≈
/∈ H0 = (C0, D0) ∈ τ , so H0 = (D0, C0) * ()G = (A, ∅), whence D0 * A.

Take y ∈ D0 with y /∈ A. Then y 6= x since x ∈ A, so by the pairwise T1 axiom
we have H1 = (C1, D1) ∈ τ with x

≈
/∈ H1, y

≈

∈ H1. By the definition of H0 we

have H1 ⊆ H0, so y ∈ D0 ⊆ D1 which contradicts y
≈

∈ H1.

Case (b). A contradiction may be obtained by an argument dual to that given
for Case (a), and we omit the details. This completes the proof that (X, τ) is
pairwise R0.

Now suppose that (X, τ) is pairwise T0 and pairwise R0. Take x 6= y in X. Applying the
pairwise T0 axiom we have two cases.

Case (i). There exists G ∈ τ with x
∼
∈ G, y

∼
/∈ G. By the pairwise R0 axiom we

have H ∈ τ with x
≈
/∈ H and H ⊆ ()G. Letting G = (A,B), H = (C,D) we have

(D,C) ⊆ ()(A,B) = (A, ∅), so D ⊆ A. Now y
∼
/∈ G =⇒ y /∈ A =⇒ y /∈ D, so y

≈

∈ H.
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Case (ii). There exists H ∈ τ with y
≈

∈ H and x
≈
/∈ H. By the pairwise R0 axiom

there exists G ∈ τ with y
∼
/∈ G and )(G ⊆ H. Letting G = (A,B), H = (C,D) we have

)(G = (∅, A) ⊆ (C,D), so D ⊆ A. Now x
≈
/∈ H =⇒ x ∈ D =⇒ x ∈ A, so x

∼
∈ G.

This verifies that (X, τ) is pairwise T1. ¤

We now turn to the pairwise T2 property. Weston [21] defined this property in its
strong form before the term “bitopology” was introduced by Kelly [16], and he used the
name “consistent”. The term “pairwise T2” was first used by Kelly in [16]. It is defined
as follows:

4.19. Definition. The bitopological space (X,u, v) is called pairwise T2, if given x 6= y
in X there exists U ∈ u, V ∈ v satisfying x ∈ U , y ∈ V and U ∩ V = ∅.

4.20. Proposition. If (X,u, v) is pairwise T2 then (X, τuv) has the property:

Given x 6= y in X, there exists G, H ∈ τuv with x
∼
∈ G, y

≈

∈ H and G ⊆ ()H.

Proof. Take x 6= y in X. Then we have U ∈ u, V ∈ v satisfying x ∈ U , y ∈ V and
U ∩ V = ∅, that is U ⊆ V c. Now defining G = (U, ∅), H = (∅, V c) gives G, H ∈ τuv,

x
∼
∈ G, y

≈

∈ H and G ⊆ ()H. ¤

This gives the following definition for double topologies:

4.21. Definition. The DTS (X, τ) is called pairwise T2 if given x 6= y in X there exists

G, H ∈ τ satisfying x
∼
∈ G, y

≈

∈ H and G ⊆ ()H.

4.22. Proposition. If (X, τ) is pairwise T2 then (X, τ1, τ2) is pairwise T2.

Proof. Take x 6= y in X. Then we have G = (A,B), H = (C,D) ∈ τ with x
∼
∈ G, y

≈

∈ H

and G ⊆ ()H. Clearly x ∈ A ∈ τ1, y ∈ D
c ∈ τ2, while (A,B) = G ⊆ ()H = () (D,C) =

(D, ∅), so A ⊆ D, that is A ∩Dc = ∅. Hence (X, τ1, τ2) is pairwise T2. ¤

4.23. Corollary. The bitopological space (X,u, v) is pairwise T2 iff (X, τuv) is pairwise
T2.

Proof. Necessity follows from Proposition 4.20, and sufficiency from Proposition 4.22 and
Proposition 3.6. ¤

4.24. Corollary. The functors B and D preserve the pairwise T2 property.

Finally, we consider the pairwise R1 property, first defined by Reilly [19] and known
in the literature under various different names.

4.25. Definition. The bitopological space (X,u, v) is called pairwise R1 if x /∈ clu({y})
(y /∈ clv({x})) implies there exists U ∈ u, v ∈ V with U ∩ V = ∅ and x ∈ U , y ∈ V .

4.26. Proposition. If (X,u, v) is pairwise R1 then (X, τuv) satisfies the condition:

Given x, y ∈ X, if there exists M ∈ τuv with x
∼
∈M , y

∼
/∈M (y

≈

∈M , x
≈
/∈M) then there

exist G, H ∈ τuv with x
∼
∈ G, y

≈

∈ H and G ⊆ ()H.
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Proof. If we have M ∈ τuv with x
∼
∈ M , y

∼
/∈ M then M = (A,B), x ∈ A ∈ u, y /∈ A,

so x /∈ clu({y}). Likewise, y
≈

∈ M , x
≈
/∈ M gives y /∈ clv({x}), so in either case we have

U ∈ u, V ∈ v satisfying x ∈ U , y ∈ V and U ∩ V = ∅. Defining G = (U, ∅), H = (∅, V c)
as in the proof of Proposition 4.20 now completes the proof. ¤

This leads to the following definition for double topological spaces.

4.27. Definition. The DTS (X, τ) is called pairwise R1 if it satisfies the condition:

Given x, y ∈ X, if there exists M ∈ τ with x
∼
∈ M , y

∼
/∈ M (y

≈

∈ M , x
≈
/∈ M) then there

exist G, H ∈ τ with x
∼
∈ G, y

≈

∈ H and G ⊆ ()H.

4.28. Proposition. If (X, τ) is pairwise R1 then (X, τ1, τ2) is pairwise R1.

Proof. First take x, y ∈ X with x /∈ clτ1({y}). Now we have x ∈ P ∈ τ1 with y /∈ P ,
so for some Q ⊆ X we have (P,Q) ∈ τ . Setting M = (P,Q) gives x

∼
∈ M , y

∼
/∈ M , so

we have G,H ∈ τ satisfying x
∼
∈ G, y

≈

∈ H and G ⊆ ()H. By a similar argument G,H

satisfying the same conditions may also be obtained if y /∈ clτ2({x}). The existence of
τ1, τ2 open sets separating x and y now follows as in the proof of Proposition 4.22. ¤

4.29. Corollary. The bitopological space (X,u, v) is pairwise R1 iff (X, τuv) is pairwise
R1.

Proof. Necessity follows from Proposition 4.26, and sufficiency from Proposition 4.28 and
Proposition 3.6. ¤

4.30. Corollary. The functors B and D preserve the pairwise R1 property.

Again, the relations between these various axioms remain the same as for bitopological
spaces.

4.31. Theorem. For a DTS (X, τ) the following statements are valid:

(i) pairwise R1 =⇒ pairwise R0.

(ii) (X, τ) is pairwise T2 iff (X, τ) is pairwise T0 and pairwise R1.

Proof. (i). Suppose that (X, τ) is pairwise R1, but that (X, τ) is not pairwise R0. Then,
exactly as in the proof of Theorem 4.18, we have two cases (a) and (b).

Considering Case (a), then for G = (A,B) and H0 = (C0, D0) as defined in the proof
of Theorem 4.18, we again choose y ∈ D0, y /∈ A. Then x

∼
∈ G, y

∼
/∈ G so by pairwise R1

there exists U = (U1, V1), V = (V1, V2) ∈ τ satisfying x
∼
∈ U , y

≈

∈ V and U ⊆ ()V , i.e.

U1 ⊆ V2. Then

x ∈ U1 =⇒ x ∈ V2 =⇒ x
≈
/∈ V =⇒ V ⊆ H0 =⇒ D0 ⊆ V2 =⇒ y ∈ V2,

which contradicts y
≈

∈ V . In just the same way Case (b) also leads to a contradiction,

and we deduce that (X, τ) is pairwise R0.

(ii). Let (X, τ) be pairwise T2. Then
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• (X, τ) is pairwise T0. To see this take x 6= y inX. Then we haveG = (A,B), H =

(C,D) ∈ τ with x
∼
∈ G, y

≈

∈ H and G ⊆ ()H, i.e. A ⊆ D. Hence,

y
≈

∈ H =⇒ y /∈ D =⇒ y /∈ A =⇒ y
∼
/∈ G,

as required.

• (X, τ) is pairwise R1. Take x, y ∈ X, M ∈ τ . Then

x
∼
∈M, y

∼
/∈M =⇒ x 6= y =⇒ ∃G,H ∈ τ with x

∼
∈ G, y

≈

∈ H,G ⊆ ()H

since (X, τ) is pairwise T2, and we reach the same conclusion if y
≈

∈M , x
≈
/∈M .

This verifies that (X, τ) is pairwise R1.

Conversely, let (X, τ) be pairwise T0 and pairwise R1, and take x 6= y in X. Then using
pairwise T0 we have G ∈ τ with x

∼
∈ G, y

∼
/∈ G, or we have H ∈ τ with y

≈

∈ H, x
≈
/∈ H. In

both cases the pairwise R1 axiom gives the existence of U, V ∈ τ satisfying x
∼
∈ U , y

≈

∈ V

and U ⊆ ()V , which is just pairwise T2. ¤

4.32. Corollary. pairwise T2 =⇒ pairwise T1.

Proof. Clear from Theorems 4.18 and 4.31. It can also be easily proved directly by
suitably augmenting the proof of pairwise T2 implies pairwise T0 given above. ¤

5. Comparisons with Other Separation Properties

In this final section we mention some relationships between the pairwise separation
properties defined above and the separation properties given in [5].

5.1. Definition. Let (X, τ) be DTS. Then (X, τ) is said to be:

(a) T0(i) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U ∈ τ such that

(x
∼
∈ U, y

∼
/∈ U) or (y

∼
∈ U, x

∼
/∈ U);

(b) T0(ii) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U ∈ τ such that

(x
≈
∈ U, y

≈

/∈ U) or (y
≈

∈ U, x
≈
/∈ U);

(c) T0(iii) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U ∈ τ such that x
∼
∈ U ⊆ y

∼
or y
∼
∈ U ⊆ x

∼
;

(d) T0(iv) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U ∈ τ such that x
≈
∈ U ⊆ y

≈

or y
≈

∈ U ⊆ x
≈
.

5.2. Definition. Let (X, τ) be DTS. Then (X, τ) is said to be:

(a) T1(i) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that

(x
∼
∈ U, y

∼
/∈ U) and (y

∼
∈ V, x

∼
/∈ V );

(b) T1(ii) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that

(x
≈
∈ U, y

≈

/∈ U) and (y
≈

∈ V, x
≈
/∈ V );

(c) T1(iii) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that x
∼
∈ U ⊆ y

∼
and y

∼
∈ V ⊆ x

∼
;

(d) T1(iv) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that x
≈
∈ U ⊆ y

≈

and y
≈

∈ V ⊆ x
≈
.

5.3. Definition. Let (X, τ) be a DTS. Then (X, τ) is said to be:

(a) T2(i) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that x
∼
∈ U, y

∼
∈ V and U∩V = ∅

∼
;
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(b) T2(ii) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that x
≈
∈ U, y

≈

∈ V and

U ∩ V = ∅
∼
;

(c) T2(iii) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that x
∼
∈ U, y

∼
∈ V and U ⊆ V ;

(d) T2(iv) ⇐⇒ ∀x, y ∈ X (x 6= y) ∃U, V ∈ τ such that x
≈
∈ U, y

≈

∈ V and U ⊆ V .

It is clear that there is considerable similarity with the pairwise separation axioms
in general, but that there are small but important difference which prevent equivalences
between them. We note however the following relations, and the interested reader may
well discover others.

5.4. Proposition. For a DTS (X, τ) we have:

(1) Pairwise T0 =⇒ T0 (iv).
(2) Pairwise T1 =⇒ T1 (iv).
(3) T2 (iii) =⇒ pairwise T2.

Proof. (1). Let (X, τ) be pairwise T0, and take x 6= y in X. Suppose we have U =
(U1, U2) ∈ τ with x

∼
∈ U , y

∼
/∈ U . Now x ∈ U1 and U1 ∩ U2 = ∅, so x /∈ U2 and hence

x
≈
∈ U . On the other hand y /∈ U1 so U1 ⊆ {y}

c and hence U = (U1, U2) ⊆ ({y}c, ∅) = y
≈

.

On the other hand, suppose we have U = (U1, U2) ∈ τ with y
≈

∈ U , x
≈
/∈ U . Then x ∈ U2,

whence x /∈ U1 and just as above we obtain U ⊆ x
≈
. Since one of these cases must hold,

(X, τ) satisfies T0 (iv).

(2). Just as for the proof of (1).

(3). Suppose now that (X, τ) satisfies T2 (iii), and take x 6= y in X. Then we have

U, V ∈ τ with x
∼
∈ U , y

∼
∈ V and U ⊆ V . Now, as noted above, y

≈

∈ V , and clearly

U ⊆ V =⇒ U ⊆ ()V , so (X, τ) is pairwise T2. ¤
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[12] Çoker, D. and Eş, A.H. On fuzzy compactness in intuitionistic fuzzy topological spaces, J.
Fuzzy Mathematics 3 (4), 899–909, 1995.
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