$\begin{tabular}{l} \label{eq:hardenergy} \mbox{Hacettepe Journal of Mathematics and Statistics} \\ \mbox{Volume 34S (2005), 101-114} \end{tabular}$

Doğan Çoker Memorial Issue

PAIRWISE SEPARATION AXIOMS IN INTUITIONISTIC TOPOLOGICAL SPACES

Sadık Bayhan^{*} and Doğan Çoker[†]

Received 06:04:2005 : Accepted 29:12:2005

Abstract

The concept of intuitionistic topological space was introduced by Çoker. The aim of this paper is to show the existence of natural functors between the category of intuitionistic topological spaces and continuous mappings and the category of bitopological spaces and pairwise continuous mappings. These functors are then used to generalize bitopological notions of separation to intuitionistic topological spaces, and some relations between these and previously defined notions are then obtained.

Keywords: Intuitionistic fuzzy set, Intuitionistic set, Intuitionistic topology, Bitopology, Category, Construct, Adjoint functor, Pairwise separation axioms.

2000 AMS Classification: 54 A 40, 54 E 55.

1. Introduction

After the introduction of fuzzy sets by Zadeh [22], various mathematicians introduced generalizations of the notion of fuzzy set. Among others, Atanassov [2, 3] introduced the notion of intuitionistic fuzzy set. Chang [7] used fuzzy sets to introduce the concept of a fuzzy topology. Later this concept was extended to intuitionistic fuzzy topological spaces by Çoker in [9]. The concept of intuitionistic set, which is a classical version of an intuitionistic fuzzy set, was first given by Çoker in [8]. He studied topology on intuitionistic sets in [10]. In this context, Çoker et. al. [4, 6, 12, 18] studied continuity, connectedness, compactness and separation axioms in intuitionistic fuzzy topological spaces.

^{*}Mathematics Department, Faculty of Science, Hacettepe University, 06532 Beytepe Ankara, Turkey. E-mail: (S. Bayhan) bayhan@hacettepe.edu.tr

[†]Prof. Çoker passed away on January 8, 2003.

In this paper we follow the suggestion of J. G. Garcia and S. E. Rodabaugh [15] that "double fuzzy set" is a more appropriate name than "intuitionistic fuzzy set", and therefore adopt the term "double-set" for the intuitionistic set, and "double-topology" for the intuitionistic topology of Doğan Çoker. As in [13] (this issue) we denote by **Dbl-Top** the construct (concrete texture over **Set**) whose objects are pairs (X, τ) where τ is a double-topology on X, and whose morphisms are continuous mappings between such spaces.

Following a short section on preliminaries, in Section 3 we show that there exist functors \mathfrak{B} : **Dbl-Top** \to **Bitop** and \mathfrak{D} : **Bitop** \to **Dbl-Top**, where as usual **Bitop** denotes the construct of bitopological spaces and pairwise continuous mappings, and establish that these form an adjoint pair. In terms of the representation of double-sets as 3-sets [13, 15], it is pointed out that \mathfrak{D} extends to **Bitop** the Lowen functor $\omega : \mathbf{Top} \to \mathbf{3}^X$.

In Section 4, making use of this relation between bitopological spaces and doubletopological spaces, we generalize several bitopological separation axioms to the case of double-topologies, and also give a notion of pairwise continuity for double-topological spaces. Finally, in Section 5, we briefly discuss the relations between these bitopologically based concepts and some previously defined separation axioms for double-topological spaces.

For concepts, notation and results relating to category theory we follow [1]. If particular, if \mathbf{A} is a category then Ob \mathbf{A} denote the class of objects and Mor \mathbf{A} the class of morphisms of \mathbf{A} .

2. Preliminaries

Throughout the paper by X we denote a non-empty set. In this section we shall present various fundamental definitions and propositions. The following definition is obviously inspired by Atanassov [3].

2.1. Definition. [8] A double-set (DS for short) A is an object having the form

 $A = \langle x, A_1, A_2 \rangle,$

where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \emptyset$. The set A_1 is called the *set* of members of A, while A_2 is called the *set of non-members of* A.

Throughout the remainder of this paper we use the simpler notation $A = (A_1, A_2)$ for a double-set.

2.2. Remark. Every subset A of X is may obviously be regarded as a double-set having the form

 $A' = (A, A^c),$

where $A^c = X \setminus A$ is the complement of A in X.

We recall several relations and operations between DS's as follows:

2.3. Definition. [8] Let the DS's A and B on X be of the form $A = (A_1, A_2)$, $B = (B_1, B_2)$, respectively. Furthermore, let $\{A_j : j \in J\}$ be an arbitrary family of DS's in X, where $A_j = (A_j^{(1)}, A_j^{(2)})$. Then

- (a) $A \subseteq B$ if and only if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$;
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$;
- (c) $\overline{A} = (A_2, A_1)$ denotes the complement of A;
- (d) $\bigcap A_j = (\bigcap A_j^{(1)}, \bigcup A_j^{(2)});$

- (e) $\bigcup A_j = (\bigcup A_j^{(1)}, \bigcap A_j^{(2)});$
- (f) [] $A = (A_1, A_1^c);$
- (g) $\langle \rangle A = (A_2^c, A_2);$
- (h) $\emptyset = (\emptyset, X)$ and $X = (X, \emptyset)$.

In addition we will require the following in this paper:

(i) () $A = (A_1, \emptyset)$ and)($A = (\emptyset, A_2)$.

Now we recall the image and preimage of DS's under a function.

2.4. Definition. [8] Let X and Y be two non-empty sets and $f: X \to Y$ a function. Then:

(a) If $B = (B_1, B_2)$ is an DS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the DS in X defined by

$$f^{-1}(B) = (f^{-1}(B_1), f^{-1}(B_2)).$$

(b) If $A = (A_1, A_2)$ is an DS in X, then the *image of* A under f, denoted by f(A), is the DS in Y defined by

 $f(A) = (f(A_1), f_-(A_2)),$

where
$$f_{-}(A_2) = (f(A_2^c))^c$$
.

The following includes several useful results:

2.5. Proposition. [8, 11] Let $A, A_j, (j \in J)$, be DS's in X, $B, B_k, (k \in K)$, DS's in Y and $f: X \to Y$ a function. Then:

- (a) $A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2);$
- (b) $B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2);$
- (c) $A \subseteq f^{-1}(f(A))$, and if f is injective then $A = f^{-1}(f(A))$;
- (d) $f(f^{-1}(B)) \subseteq B$, and if f is surjective then $f(f^{-1}(B)) = B$;
- (e) $f^{-1}(\bigcup B_k) = \bigcup f^{-1}(B_k);$
- (f) $f^{-1}(\bigcap B_k) = \bigcap f^{-1}(B_k);$
- (g) $f(\bigcup A_j) = \bigcup f(A_j);$
- (h) $f(\bigcap A_j) \subseteq \bigcap f(A_j)$, and if f is injective, then $f(\bigcap A_j) = \bigcap f(A_j)$;
- (i) $f^{-1}(\underline{Y}) = X;$
- (j) $f^{-1}(\emptyset) = \emptyset$;
- (k) If f is surjective, then f(X) = Y;
- (1) $f(\emptyset) = \emptyset;$
- (m) If f is surjective, then $\overline{f(A)} \subseteq f(\overline{A})$. If, furthermore, f is injective, then have $\overline{f(A)} = f(\overline{A})$;
- (n) $f^{-1}(\overline{B}) = (\overline{f^{-1}(B)}).$

2.6. Definition. [8, 11] Let $p \in X$ be a fixed element in X. Then:

- (a) The DS given by $x = (\{x\}, \{x\}^c)$ is called a *double-point* (DP for short) in X;
- (b) The DS $x = (\emptyset, \{x\}^c)$ is called a *vanishing double-point* (VDP for short) in X.

2.7. Definition. [8, 11]

(a) Let \underline{x} be a DP in X and $A = (A_1, A_2)$ an DS in X. Then \underline{x} is said to belong to A ($\underline{x} \in A$ for short) iff $x \in A_1$.

(b) Let $\underset{\approx}{x}$ be a VDP in X and $A = (A_1, A_2)$ an DS in X. Then $\underset{\approx}{x}$ is said to belong to $A (\underset{\approx}{x} \in A \text{ for short})$ iff $x \notin A_2$.

It is clear that $\underline{x} \in A \iff \underline{x} \subseteq A$ and that $\underline{x} \in A \iff \underline{x} \subseteq A$.

2.8. Definition. [10] A double-topology (DT for short) on a set X is a family τ of DS's in X satisfying the following axioms:

T1: \emptyset , $X \in \tau$,

- T2: $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- T3: $\bigcup G_j \in \tau$ for any arbitrary family $\{G_j : j \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called a *double-topological space* (DTS for short), and any DS in τ is known as a *double open set* (DOS for short). The complement \overline{A} of an DOS A in an DTS is called a *double closed set* (DCS for short) in X.

2.9. Definition. [10] Let (X, τ) be an DTS and $A = (A_1, A_2)$ an DS in X. Then the interior and closure of A are defined by:

$$int(A) = \bigcup \{ G : G \text{ is a DOS in } X \text{ and } G \subseteq A \},$$
$$cl(A) = \bigcap \{ H : H \text{ is a DCS in } X \text{ and } A \subseteq H \},$$

respectively.

It is clear that cl(A) is a DCS and int(A) a DOS in X. Moreover, A is a DCS in X iff cl(A) = A, and A is a DOS in X iff int(A) = A.

2.10. Example. [10] Any topological space (X, τ_0) gives rise to a DT in the form $\tau = \{A' : A \in \tau_0\}$ by identifying a subset A in X with its counterpart $A' = (A, A^c)$, as in Remark 2.2.

2.11. Definition. [10] Let (X, τ) and (Y, ϕ) be two DTS's and let $f : X \to Y$ be a function. Then f said to be *continuous* iff the preimage of each DS in ϕ is an DS in τ .

2.12. Definition. [10] Let (X, τ) and (Y, ϕ) be two DTS's, and let $f : X \to Y$ be a function. Then f said to be *open* iff the image of each DS in τ is an DS in ϕ .

2.13. Example. [10] Let (X, τ_0) and (Y, ϕ_0) be two topological spaces. Then

- (a) If $f: X \to Y$ is $\tau_0 \phi_0$ continuous in the usual sense, then f is also $\tau \phi$ continuous for the corresponding DTS in the sense of Definition 2.11.
- (b) Let $f: X \to Y$ is a $\tau_0 \phi_0$ open function in the usual sense. Then f is also $\tau \phi$ open for the corresponding DTS in the sense of Definition 2.12.

3. The Constructs Dbl-Top and Bitop

We begin by recalling the following result which associates a bitopology with a double topology.

3.1. Proposition. [10] Let (X, τ) be a DTS.

- (a) $\tau_1 = \{A_1 : \exists A_2 \subseteq X \text{ with } A = (A_1, A_2) \in \tau\}$ is a topology on X.
- (b) $\tau_2^* = \{A_2 : \exists A_1 \subseteq X \text{ with } A = (A_1, A_2) \in \tau\}$ is the family of closed sets of the topology $\tau_2 = \{A_2^c : \exists A_1 \subseteq X \text{ with } A = (A_1, A_2) \in \tau\}$ on X.
- (c) Using (a) and (b) we may conclude that (X, τ_1, τ_2) is a bitopological space.

Now we note:

3.2. Proposition. Let (X, τ) , (Y, ϕ) be DTS's and $f : X \to Y$ a function. Then if f is $\tau - \phi$ continuous it is $(\tau_1, \tau_2) - (\phi_1, \phi_2)$ pairwise continuous.

Proof. By the definition of pairwise continuity we must show that under the given hypothesis f is $\tau_1 - \phi_1$ continuous and $\tau_2 - \phi_2$ continuous [16].

Take $U \in \phi_1$. Then we have $B \subseteq X$ with $(U, B) \in \tau$, so by the continuity of f, $f^{-1}(U, B) = (f^{-1}(U), f^{-1}(B)) \in \tau$ and hence $f^{-1}(U) \in \tau_1$. This shows that f is $\tau_1 - \phi_1$ continuous.

On the other hand take $V \in \phi_2$. Then for some $A \subseteq X$ we have $(A, V^c) \in \tau$, and as above the continuity of f leads to $(f^{-1}(A), f^{-1}(V^c)) = (f^{-1}(A), (f^{-1}(V))^c) \in \tau$, whence $f^{-1}(V) \in \tau_2$ and we have established that f is $\tau_2 - \phi_2$ continuous.

If we define \mathfrak{B} : **Dbl-Top** \to **Bitop** by $\mathfrak{B}(X,\tau) = (X,\tau_1,\tau_2)$, and $\mathfrak{B}(f) = f$ for $f: X \to Y$, then it is clear from Proposition 3.1 that:

3.3. Lemma. \mathfrak{B} : **Dbl-Top** \rightarrow **Bitop** *is a functor.*

We now wish to obtain a functor in the opposite direction, and to do this we must associate a double topology on X with a given bitopology on X.

3.4. Proposition. Let (X, u, v) be a bitopological space. Then the family

 $\{(U, V^c): U \in u, V \in v, U \subseteq V\}$

is a double topology on X.

Proof. The condition $U \subseteq V$ ensures that $U \cap V^c = \emptyset$, while the given family contains \emptyset because $\emptyset \in u, v$, and it contains X because $X \in u, v$. Finally this family is closed under finite intersections and arbitrary unions by Definition 2.3 (d,e) and the corresponding properties of the topologies u and v.

3.5. Definition. Let (X, u, v) be a bitopological space. Then we set

 $\tau_{uv} = \{ (U, V^c) : U \in u, V \in v, U \subseteq V \}$

and call this the double topology on X associated with (X, u, v).

3.6. Proposition. If (X, u, v) is a bitopological space and τ_{uv} the corresponding DT on X, then

 $(\tau_{uv})_1 = u \text{ and } (\tau_{uv})_2 = v.$

Proof. $U \in u$ implies $(U, \emptyset) \in \tau_{uv}$ since $U \subseteq X \in v$, so $u \subseteq (\tau_{uv})_1$. Conversely, take $U \in (\tau_{uv})_1$. Then $(U, B) \in \tau_{uv}$ for some $B \subseteq X$, and now $U \in u$ by Definition 3.5. Hence $(\tau_{uv})_1 \subseteq u$, and the first equality is proved.

The proof of the second equality may be obtained in a similar way, and we omit the details. $\hfill \square$

3.7. Proposition. Let (X, u, v), (Y, s, t) be a bitopological spaces and τ_{uv} , τ_{st} the corresponding DT's. Then if $f: X \to Y$ is (u, v) - (s, t) pairwise continuous it is $\tau_{uv} - \tau_{st}$ continuous in the sense of Definition 2.11.

Proof. For $S \in s, T \in t$ with $S \subseteq T$ we have $(S, T^c) \in \tau_{st} \implies f^{-1}(S, T^c) = (f^{-1}(S), f^{-1}(T^c)) = (f^{-1}(S), (f^{-1}(T))^c)$ by Definition 2.4 (a). Certainly $f^{-1}(S) \subseteq f^{-1}(T)$, while $f^{-1}(S) \in u, f^{-1}(T) \in v$, so $f^{-1}(S, T^c) \in \tau_{uv}$. Hence, f is $\tau_{uv} - \tau_{st}$ continuous.

If we now define \mathfrak{D} : **Bitop** \to **Dbl-Top** by $\mathfrak{D}(X, u, v) = (X, \tau_{uv})$ and $\mathfrak{D}(f) = f$ for $f: X \to Y$, then it is clear from Proposition 3.7 that:

3.8. Lemma. \mathfrak{D} : Bitop \rightarrow Dbl-Top *is a functor.*

We see from Proposition 3.6 that $\mathfrak{B} \circ \mathfrak{D} = id_{\mathbf{Bitop}}$. If it were also the case that $\mathfrak{D} \circ \mathfrak{B} = id_{\mathbf{Dbl-Top}}$, then \mathfrak{B} and \mathfrak{D} would be isomorphisms. That this is not the case is shown by the following example.

3.9. Example. Let $X = \{a, b\}$ and $\tau = \{(X, \emptyset), (\{a\}, \{b\}), (\emptyset, X)\}$. Then (X, τ) is a DT, $\tau_1 = \tau_2 = \{X, \{a\}, \emptyset\}$, and

$$\tau_{\tau_1\tau_2} = \{ (X, \emptyset), (\{a\}, \emptyset), (\{a\}, \{b\}), (\emptyset, \{b\}), (\emptyset, X) \} \neq \tau.$$

Hence, $(\mathfrak{D} \circ \mathfrak{B})(X, \tau) \neq (X, \tau)$ so $\mathfrak{D} \circ \mathfrak{B} \neq id_{\mathbf{Dbl-Top}}$

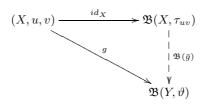
Even though \mathfrak{B} and \mathfrak{D} are not isomorphisms, we do have the following important result.

3.10. Theorem. The functor \mathfrak{B} : **Dbl-Top** \rightarrow **Bitop** is an adjoint of the functor \mathfrak{D} : **Bitop** \rightarrow **Dbl-Top**.

Proof. To prove that \mathfrak{B} is an adjoint we must show that for any $(X, u, v) \in Ob\mathbf{Bitop}$ there exists a \mathfrak{B} -universal arrow with domain (X, u, v) [1, Definition 18.1]. We claim that $(id_X, (X, \tau_{uv}))$ is such an arrow, so by [1, Definition 8.30] we must show that this is a \mathfrak{B} -structured arrow with domain (X, u, v) which is \mathfrak{B} -universal for **Bitop**. Certainly $(X, \tau_{uv}) \in Ob\mathbf{Dbl-Top}$, and by Proposition 3.6 we have $\mathfrak{B}(X, \tau_{uv}) = (X, u, v)$, so

$$id_X: (X, u, v) \to \mathfrak{B}(X, \tau_{uv})$$

is bicontinuous and hence a **Bitop** morphism. Hence $(id_X, (X, \tau_{uv}))$ is indeed a \mathfrak{B} -structured arrow with domain (X, u, v). To prove it is \mathfrak{B} -universal for **Bitop**, let $(g, (Y, \vartheta))$ be any \mathfrak{B} -structured arrow with domain (X, u, v). We must prove the existence of a unique **Dbl-Top** morphism $\overline{g} : (X, \tau_{uv}) \to (Y, \vartheta)$ that makes the following diagram commutative:



It is clear that the only possible choice for \bar{g} is g, so we must show that

$$\mathfrak{B}(g):\mathfrak{B}(X,\tau_{uv})\to\mathfrak{B}(Y,\vartheta)=g:(X,u,v)\to(Y,\vartheta_1,\vartheta_2)$$

is pairwise continuous. However this is immediate since g is given to be a **Bitop** morphism. This completes the proof that \mathfrak{B} is an adjoint, and since $(X, \tau_{uv}) = \mathfrak{D}(X, u, v)$ we see that \mathfrak{D} is the corresponding co-adjoint functor (see [1], Section 19).

In view of the identification of double topologies with **3**-topologies $(\mathbf{3} = \{0, \frac{1}{2}, 1\})$ [13, 15], it is interesting to compare the above functors with the Lowen functors ω and ι . Naturally, these functors effectively map between **Top** and **Dbl-Top**, rather than between **Bitop** and **Dbl-Top**, but certainly \mathfrak{D} may be restricted to bitopologies of the form (X, u, u), that is to topologies, and hence compared with the functor ω .

3.11. Theorem. If $\zeta : \mathbf{3}^X \to \mathbb{D}_X$ is the isomorphism between the Hutton algebra of **3**-sets of X and the Hutton algebra of double-sets of X described in [13], and $\omega : \mathbf{Top} \to \mathbf{3}\text{-}\mathbf{Top}$ the Lowen functor, then $\zeta \circ \omega(X, u) = \mathfrak{D}(X, u, u)$.

Proof. Since **3** is a chain, $\{\chi_U \mid U \in u\} \cup \{\mathbf{k} \mid k \in \mathbf{3}\}$ is a subbase of $\omega(X, u)$ by [20, Theorem 3.3]. Applying $\zeta(\mu) = (A_\mu, B_\mu)$, $A_\mu = \{x \in X \mid \mu(x) = 1\}$, $B_\mu = \{x \in X \mid \mu(x) = 0\}$ shows that $S = \{(U, U^c) \mid U \in u\} \cup \{(X, \emptyset), (\emptyset, \emptyset), (\emptyset, X)\}$ is a subbase for $\zeta \circ \omega(X, u)$. On the other hand we clearly have $S \subseteq \tau_{uu}$, while if $U_1, U_2 \in u$, $U_1 \subseteq U_2$, then

$$(U_1, U_2^c) = (U_1, U_1^c) \cup ((\emptyset, \emptyset) \cap (U_2, U_2^c)),$$

so S is a subbase for τ_{uu} also. This completes the proof of the stated equality.

We see from this theorem that \mathfrak{D} extends the Lowen functor ω to **Bitop** in such a way that there exists an adjoint $\mathfrak{B} : \mathbf{Dbl}\mathbf{-Top} \to \mathbf{Bitop}$. It would seem that this situation is of sufficient interest to warrant further study in a wider context.

4. Pairwise Separation Axioms in Double Topological Spaces

In this section we use the link between bitopological spaces and double topological spaces established above to generalize several bitopological separation properties to the case of double topological spaces. We limit ourselves to the strong forms of the pairwise T_0 , T_1 and T_2 properties, and will refer to these as pairwise T_i , i = 0, 1, 2 throughout this paper. We will also consider the pairwise R_0 and pairwise R_1 axioms, which are related to the pairwise T_i axioms by having pairwise T_1 = pairwise T_0 + pairwise R_0 and pairwise T_2 = pairwise T_0 + pairwise R_1 .

The (strong) T_0 and T_1 axioms are due to Fletcher, Hoyle and Patty [14]:

4.1. Definition. Let (X, u, v) be a bitopological space. Then (X, u, v) is called

- (1) pairwise T_0 , if given $x \neq y$ in X there exists $U \in u$ such that $x \in U, y \notin U$ or there exists $V \in v$ with $y \in V, x \notin V$.
- (2) pairwise T_1 , if given $x \neq y$ in X there exists $U \in u$ such that $x \in U, y \notin U$ and there exists $V \in v$ with $y \in V, x \notin V$.

4.2. Proposition. If (X, u, v) is pairwise T_0 then (X, τ_{uv}) satisfies the following condition:

Given $x \neq y$ in X there exists $G \in \tau_{uv}$ with $x \in G$, $y \notin G$, or there exists $H \in \tau_{uv}$ with $y \in H$ and H

 $\underbrace{y}_{\simeq} \in H, \ \underbrace{x}_{\approx} \notin H.$

Proof. Let (X, u, v) be pairwise T_0 and $x \neq y$. Then there exists $U \in u$ such that $x \in U, y \notin U$, or there exists $V \in v$ such that $y \in V, x \notin V$. In the first case we may take $G = (U, \emptyset) \in \tau_{uv}$. Then $x \in U$ means that $\underset{\sim}{x} \in G$, and $y \notin U$ means that $\underset{\approx}{y} \notin G$. In the second case we may take $H = (\emptyset, V^c) \in \tau_{uv}$, and now $y \in V$ means that $\underset{\approx}{y} \notin H$ and $\underset{\approx}{x} \notin V$ means that $\underset{\approx}{x} \notin H$. This establishes the required condition.

This suggests the following definition for general double topologies.

4.3. Definition. The DTS (X, τ) is called *pairwise* T_0 if given $x \neq y$ in X there exists $G \in \tau$ with $\underline{x} \in G$, $\underline{y} \notin G$, or there exists $H \in \tau$ with $\underline{y} \in H$, $\underline{x} \notin H$.

4.4. Proposition. If (X, τ) is pairwise T_0 then (X, τ_1, τ_2) is pairwise T_0 .

Proof. Take $x \neq y$ in X. Then there exists $G = (A, B) \in \tau$ with $x \in G$, $y \notin G$, or there exists $H = (C, D) \in \tau$ with $y \in H$, $x \notin H$. In the first case $x \in A \in \tau_1$, $y \notin A$, and in the second $y \in D^c \in \tau_2$, $x \notin D^c$, so (X, τ_1, τ_2) is pairwise T_0 .

4.5. Corollary. (X, u, v) is pairwise T_0 iff (X, τ_{uv}) is pairwise T_0 .

Proof. Necessity follows from Proposition 4.2, and sufficiency from Proposition 4.4 and Proposition 3.6. $\hfill \square$

4.6. Corollary. The functors \mathfrak{B} and \mathfrak{D} preserve the pairwise T_0 property.

Now we turn our attention to the pairwise T_1 property.

4.7. Proposition. If (X, u, v) is pairwise T_1 then (X, τ_{uv}) satisfies the following condition:

Given $x \neq y$ in X there exists $G \in \tau_{uv}$ with $x \in G$, $y \notin G$, and there exists $H \in \tau_{uv}$ with $y \in H$, $x \notin H$.

Proof. As for the proof of Proposition 4.2 with "or" replaced by "and".

This suggests the following definition for general double topologies.

4.8. Definition. The DTS (X, τ) is called *pairwise* T_1 if given $x \neq y$ in X there exists $G \in \tau$ with $x \in G$, $y \notin G$, and there exists $H \in \tau$ with $y \in H$, $x \notin H$.

4.9. Proposition. If (X, τ) is pairwise T_1 then (X, τ_1, τ_2) is pairwise T_1 .

Proof. As for the proof of Proposition 4.4 with "or" replaced by "and". \Box

4.10. Corollary. (X, u, v) is pairwise T_1 iff (X, τ_{uv}) is pairwise T_1 .

Proof. Necessity follows from Proposition 4.7, and sufficiency from Proposition 4.9 and Proposition 3.6. $\hfill \Box$

4.11. Corollary. The functors \mathfrak{B} and \mathfrak{D} preserve the pairwise T_1 property.

The pairwise R_0 axiom for bitopological spaces was introduced by Murdeshwar and Naimpally [17]:

4.12. Definition. (X, u, v) is called *pairwise* R_0 if $x \in U \in u$ implies $cl_v(\{x\}) \subseteq U$ and $x \in V \in v$ implies $cl_u(\{x\}) \subseteq V$.

4.13. Proposition. If (X, u, v) is pairwise R_0 then (X, τ_{uv}) satisfies the conditions:

 $x \in G \in \tau_{uv}$ implies there exists $H \in \tau_{uv}$ with $x \notin H$ and $\overline{H} \subseteq () G$, and

 $x \in G \in \tau_{uv}$ implies there exists $H \in \tau_{uv}$ with $x \notin H$ and $(\overline{H} \subseteq G)$.

Proof. Suppose that (X, u, v) is pairwise R_0 . Then

 $x \in G \in \tau_{uv} \implies G = (U, V^c)$ with, in particular, $x \in U \in u \implies cl_v(\{x\}) \subseteq U$.

If we define $H = (\emptyset, cl_v(\{x\}))$ then clearly $H \in \tau_{uv}, \underset{\approx}{x} \notin H$ and $\overline{H} = (cl_v(\{x\}), \emptyset) \subseteq (A, \emptyset) = () G$ (see Definition 2.3 (h)). On the other hand,

 $\underset{\approx}{x} \in G \in \tau_{uv} \implies G = (U, V^c) \text{ with, in particular, } x \in V \in v \implies \mathrm{cl}_u(\{x\}) \subseteq V.$

If now we define $H = ((cl_u({x}))^c, \emptyset)$, then clearly $H \in \tau_{uv}, x \notin H$ and

 $\overline{H} = (\emptyset, (\operatorname{cl}_u(\{x\}))^c) =)(\overline{H} \subseteq G,$

see Definition 2.3(h).

This leads to the following definition for double topological spaces:

108

4.14. Definition. The DTS (X, τ) is called *pairwise* R_0 if it satisfies the conditions:

 $x \in G \in \tau$ implies there exists $H \in \tau$ with $x \notin H$ and $\overline{H} \subseteq () G$, and

 $x \in G \in \tau$ implies there exists $H \in \tau$ with $x \notin H$ and $(\overline{H} \subseteq G)$.

4.15. Proposition. If (X, τ) is pairwise R_0 , then (X, τ_1, τ_2) is pairwise R_0 .

Proof. Let (X, τ) be pairwise R_0 and take $x \in U \in \tau_1$. Then for some $B \subseteq X$ we have $G = (U, B) \in \tau$, and since $\underline{x} \in G$ there exists $H = (C, D) \in \tau$ with $\underline{x} \notin H$ and $\overline{H} = (D, C) \subseteq () G = (U, \emptyset)$. Now $x \in D \subseteq U$, and D is τ_2 -closed, so $cl_{\tau_2}(\{x\}) \subseteq U$.

On the other hand, $x \in V \in \tau_2$ leads to $cl_{\tau_1}(\{x\}) \subseteq V$ by a similar argument, so (X, τ_1, τ_2) is pairwise R_0 .

4.16. Corollary. (X, u, v) is pairwise R_0 iff (X, τ_{uv}) is pairwise R_0 .

Proof. Necessity follows from Proposition 4.13, and sufficiency from Proposition 4.15 and Proposition 3.6. $\hfill \square$

4.17. Corollary. The functors \mathfrak{B} and \mathfrak{D} preserve the pairwise R_0 property.

The following theorem shows that the same relations hold between the pairwise T_0 , T_1 and R_0 axioms for double topological spaces as hold for bitopological spaces.

4.18. Theorem. The DTS (X, τ) is pairwise T_1 iff (X, τ) is pairwise T_0 and pairwise R_0 .

Proof. Suppose first that (X, τ) is pairwise T_1 . Then:

- (X, τ) is pairwise T_0 . This is clear from the definitions.
- (X, τ) is pairwise R_0 . Suppose not. Then either
 - (a) There exists $x \in G \in \tau$ so that for all $H \in \tau$, $x \in H$ or $\overline{H} \notin () G$, or

(b) There exists $x \in G \in \tau$ so that for all $H \in \tau$, $x \in H$ or $(\overline{H} \nsubseteq G)$.

Case (a). $x \in G = (A, B)$ gives $x \in A$. Let $H_0 = \bigcup \{H \in \tau \mid x \notin H\}$. Then $x \notin H_0 = (C_0, D_0) \in \tau$, so $\overline{H_0} = (D_0, C_0) \notin () G = (A, \emptyset)$, whence $D_0 \notin A$. Take $y \in D_0$ with $y \notin A$. Then $y \neq x$ since $x \in A$, so by the pairwise T_1 axiom we have $H_1 = (C_1, D_1) \in \tau$ with $x \notin H_1$, $y \in H_1$. By the definition of H_0 we have $H_1 \subseteq H_0$, so $y \in D_0 \subseteq D_1$ which contradicts $y \in H_1$.

Case (b). A contradiction may be obtained by an argument dual to that given for Case (a), and we omit the details. This completes the proof that (X, τ) is pairwise R_0 .

Now suppose that (X, τ) is pairwise T_0 and pairwise R_0 . Take $x \neq y$ in X. Applying the pairwise T_0 axiom we have two cases.

Case (i). There exists $G \in \tau$ with $\underline{x} \in G$, $\underline{y} \notin G$. By the pairwise R_0 axiom we have $H \in \tau$ with $\underline{x} \notin H$ and $\overline{H} \subseteq ()G$. Letting G = (A, B), H = (C, D) we have $(D, C) \subseteq ()(A, B) = (A, \emptyset)$, so $D \subseteq A$. Now $\underline{y} \notin G \implies y \notin A \implies y \notin D$, so $\underline{y} \in H$.

S. Bayhan, D. Çoker

Case (ii). There exists $H \in \tau$ with $\underset{\approx}{y} \in H$ and $\underset{\approx}{x} \notin H$. By the pairwise R_0 axiom there exists $G \in \tau$ with $\underset{\approx}{y} \notin G$ and $(\overline{G} \subseteq H$. Letting G = (A, B), H = (C, D) we have $(\overline{G} = (\emptyset, A) \subseteq (C, D)$, so $D \subseteq A$. Now $\underset{\approx}{x} \notin H \implies x \in D \implies x \in A$, so $\underset{\approx}{x} \in G$.

This verifies that (X, τ) is pairwise T_1 .

We now turn to the pairwise T_2 property. Weston [21] defined this property in its strong form before the term "bitopology" was introduced by Kelly [16], and he used the name "consistent". The term "pairwise T_2 " was first used by Kelly in [16]. It is defined as follows:

4.19. Definition. The bitopological space (X, u, v) is called *pairwise* T_2 , if given $x \neq y$ in X there exists $U \in u$, $V \in v$ satisfying $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

4.20. Proposition. If (X, u, v) is pairwise T_2 then (X, τ_{uv}) has the property:

Given $x \neq y$ in X, there exists G, $H \in \tau_{uv}$ with $x \in G$, $y \in H$ and $G \subseteq () \overline{H}$.

Proof. Take $x \neq y$ in X. Then we have $U \in u, V \in v$ satisfying $x \in U, y \in V$ and $U \cap V = \emptyset$, that is $U \subseteq V^c$. Now defining $G = (U, \emptyset), H = (\emptyset, V^c)$ gives $G, H \in \tau_{uv}, x \in G, y \in H$ and $G \subseteq () \overline{H}$.

This gives the following definition for double topologies:

4.21. Definition. The DTS (X, τ) is called *pairwise* T_2 if given $x \neq y$ in X there exists $G, H \in \tau$ satisfying $x \in G, y \in H$ and $G \subseteq () \overline{H}$.

4.22. Proposition. If (X, τ) is pairwise T_2 then (X, τ_1, τ_2) is pairwise T_2 .

Proof. Take $x \neq y$ in X. Then we have G = (A, B), $H = (C, D) \in \tau$ with $\underset{\approx}{x} \in G$, $\underset{\approx}{y} \in H$ and $G \subseteq () \overline{H}$. Clearly $x \in A \in \tau_1$, $y \in D^c \in \tau_2$, while $(A, B) = G \subseteq () \overline{H} = () (D, C) = (D, \emptyset)$, so $A \subseteq D$, that is $A \cap D^c = \emptyset$. Hence (X, τ_1, τ_2) is pairwise T_2 .

4.23. Corollary. The bitopological space (X, u, v) is pairwise T_2 iff (X, τ_{uv}) is pairwise T_2 .

Proof. Necessity follows from Proposition 4.20, and sufficiency from Proposition 4.22 and Proposition 3.6. $\hfill \Box$

4.24. Corollary. The functors \mathfrak{B} and \mathfrak{D} preserve the pairwise T_2 property.

Finally, we consider the pairwise R_1 property, first defined by Reilly [19] and known in the literature under various different names.

4.25. Definition. The bitopological space (X, u, v) is called *pairwise* R_1 if $x \notin cl_u(\{y\})$ $(y \notin cl_v(\{x\}))$ implies there exists $U \in u, v \in V$ with $U \cap V = \emptyset$ and $x \in U, y \in V$.

4.26. Proposition. If (X, u, v) is pairwise R_1 then (X, τ_{uv}) satisfies the condition:

Given $x, y \in X$, if there exists $M \in \tau_{uv}$ with $\underset{\sim}{x} \in M$, $\underset{\sim}{y} \notin M$ ($\underset{\approx}{y} \in M$, $\underset{\approx}{x} \notin M$) then there exist G, $H \in \tau_{uv}$ with $\underset{\sim}{x} \in G$, $y \in H$ and $G \subseteq ()$ \overline{H} .

Proof. If we have $M \in \tau_{uv}$ with $\underset{\sim}{x} \in M$, $\underset{\sim}{y} \notin M$ then M = (A, B), $x \in A \in u$, $y \notin A$, so $x \notin \operatorname{cl}_u(\{y\})$. Likewise, $\underset{\approx}{y} \in M$, $\underset{\approx}{x} \notin M$ gives $y \notin \operatorname{cl}_v(\{x\})$, so in either case we have $U \in u, V \in v$ satisfying $x \in U, y \in V$ and $U \cap V = \emptyset$. Defining $G = (U, \emptyset), H = (\emptyset, V^c)$ as in the proof of Proposition 4.20 now completes the proof. \Box

This leads to the following definition for double topological spaces.

4.27. Definition. The DTS (X, τ) is called *pairwise* R_1 if it satisfies the condition:

Given $x, y \in X$, if there exists $M \in \tau$ with $\underset{\sim}{x} \in M$, $\underset{\sim}{y} \notin M$ ($\underset{\approx}{y} \in M$, $\underset{\approx}{x} \notin M$) then there exist $G, H \in \tau$ with $\underset{\sim}{x} \in G, y \in H$ and $G \subseteq ()\overline{H}$.

4.28. Proposition. If (X, τ) is pairwise R_1 then (X, τ_1, τ_2) is pairwise R_1 .

Proof. First take $x, y \in X$ with $x \notin \operatorname{cl}_{\tau_1}(\{y\})$. Now we have $x \in P \in \tau_1$ with $y \notin P$, so for some $Q \subseteq X$ we have $(P,Q) \in \tau$. Setting M = (P,Q) gives $\underset{\sim}{x} \in M, \underset{\sim}{y} \notin M$, so we have $G, H \in \tau$ satisfying $\underset{\approx}{x} \in G, \underset{\approx}{y} \in H$ and $G \subseteq ()\overline{H}$. By a similar argument G, H

satisfying the same conditions may also be obtained if $y \notin cl_{\tau_2}(\{x\})$. The existence of τ_1, τ_2 open sets separating x and y now follows as in the proof of Proposition 4.22. \Box

4.29. Corollary. The bitopological space (X, u, v) is pairwise R_1 iff (X, τ_{uv}) is pairwise R_1 .

Proof. Necessity follows from Proposition 4.26, and sufficiency from Proposition 4.28 and Proposition 3.6. $\hfill \Box$

4.30. Corollary. The functors \mathfrak{B} and \mathfrak{D} preserve the pairwise R_1 property.

Again, the relations between these various axioms remain the same as for bitopological spaces.

4.31. Theorem. For a DTS (X, τ) the following statements are valid:

- (i) pairwise $R_1 \implies pairwise R_0$.
- (ii) (X, τ) is pairwise T_2 iff (X, τ) is pairwise T_0 and pairwise R_1 .

Proof. (i). Suppose that (X, τ) is pairwise R_1 , but that (X, τ) is not pairwise R_0 . Then, exactly as in the proof of Theorem 4.18, we have two cases (a) and (b).

Considering Case (a), then for G = (A, B) and $H_0 = (C_0, D_0)$ as defined in the proof of Theorem 4.18, we again choose $y \in D_0$, $y \notin A$. Then $\underset{\sim}{x} \in G$, $\underset{\sim}{y} \notin G$ so by pairwise R_1 there exists $U = (U_1, V_1), V = (V_1, V_2) \in \tau$ satisfying $\underset{\approx}{x} \in U$, $\underset{\approx}{y} \in V$ and $U \subseteq () \overline{V}$, i.e. $U_1 \subseteq V_2$. Then

 $x \in U_1 \implies x \in V_2 \implies \underset{\approx}{x} \notin V \implies V \subseteq H_0 \implies D_0 \subseteq V_2 \implies y \in V_2,$

which contradicts $\underset{\approx}{y \in V}$. In just the same way Case (b) also leads to a contradiction, and we deduce that (X, τ) is pairwise R_0 .

(ii). Let (X, τ) be pairwise T_2 . Then

S. Bayhan, D. Çoker

• (X, τ) is pairwise T_0 . To see this take $x \neq y$ in X. Then we have $G = (A, B), H = (C, D) \in \tau$ with $x \in G, y \in H$ and $G \subseteq ()\overline{H}$, i.e. $A \subseteq D$. Hence,

$$\underset{\approx}{y \in H} \implies y \notin D \implies y \notin A \implies \underset{\approx}{y \notin G},$$

as required.

- (X, τ) is pairwise R_1 . Take $x, y \in X, M \in \tau$. Then
 - $\underset{\sim}{x}\in M, \ \underset{\sim}{y}\notin M \implies x\neq y \implies \exists \, G, H\in \tau \text{ with } \underset{\sim}{x}\in G, \underset{\sim}{y}\in H, G\subseteq () \, H$

since (X, τ) is pairwise T_2 , and we reach the same conclusion if $y \in M$, $x \notin M$.

This verifies that (X, τ) is pairwise R_1 .

Conversely, let (X, τ) be pairwise T_0 and pairwise R_1 , and take $x \neq y$ in X. Then using pairwise T_0 we have $G \in \tau$ with $\underset{K}{x} \in G$, $\underset{K}{y} \notin G$, or we have $H \in \tau$ with $\underset{K}{y} \in H$, $\underset{K}{x} \notin H$. In both cases the pairwise R_1 axiom gives the existence of $U, V \in \tau$ satisfying $\underset{K}{x} \in U$, $\underset{K}{y} \in V$

and $U \subseteq ()\overline{V}$, which is just pairwise T_2 .

4.32. Corollary. pairwise $T_2 \implies$ pairwise T_1 .

Proof. Clear from Theorems 4.18 and 4.31. It can also be easily proved directly by suitably augmenting the proof of pairwise T_2 implies pairwise T_0 given above.

5. Comparisons with Other Separation Properties

In this final section we mention some relationships between the pairwise separation properties defined above and the separation properties given in [5].

- **5.1. Definition.** Let (X, τ) be DTS. Then (X, τ) is said to be:
 - (a) $T_0(i) \iff \forall x, y \in X \ (x \neq y) \ \exists U \in \tau \text{ such that}$ $(x \in U, y \notin U) \text{ or } (y \in U, x \notin U);$
 - (b) $T_0(ii) \iff \forall x, y \in X \ (x \neq y) \ \exists U \in \tau \text{ such that}$ $(\underset{\infty}{x} \in U, \ \underset{\infty}{y} \notin U) \text{ or } (\underset{\infty}{y} \in U, \ \underset{\infty}{x} \notin U);$
 - (c) $T_0(iii) \iff \forall x, y \in X \ (x \neq y) \ \exists U \in \tau \text{ such that } \underline{x} \in U \subseteq \overline{y} \text{ or } y \in U \subseteq \overline{x};$
 - (d) $T_0(iv) \iff \forall x, y \in X \ (x \neq y) \ \exists U \in \tau \text{ such that } \underset{\approx}{x} \in U \subseteq \overline{y} \text{ or } \underset{\approx}{y} \in U \subseteq \overline{x}.$

5.2. Definition. Let (X, τ) be DTS. Then (X, τ) is said to be:

- (a) $T_1(i) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that} \\ (x \in U, y \notin U) \text{ and } (y \in V, x \notin V);$
- (b) $T_1(ii) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that}$ $(x \in U, y \notin U) \text{ and } (y \in V, x \notin V);$
- (c) $T_1(iii) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that } \underline{x} \in U \subseteq \overline{y} \text{ and } y \in V \subseteq \overline{x};$
- (d) $T_1(iv) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that } \underbrace{x}_{\infty} \in U \subseteq \overline{y} \text{ and } y \in V \subseteq \overline{x}.$

5.3. Definition. Let (X, τ) be a DTS. Then (X, τ) is said to be:

(a) $T_2(i) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that } x \in U, \ y \in V \text{ and } U \cap V = \emptyset;$

- (b) $T_2(ii) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that } \underset{\approx}{x} \in U, \ \underset{\approx}{y} \in V \text{ and} U \cap V = \emptyset;$
- (c) $T_2(iii) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that } x \in U, \ y \in V \text{ and } U \subseteq \overline{V};$
- (d) $T_2(iv) \iff \forall x, y \in X \ (x \neq y) \ \exists U, V \in \tau \text{ such that } \underbrace{x}_{i \in \mathbb{C}} \in U, \ y \in V \text{ and } U \subseteq \overline{V}.$

It is clear that there is considerable similarity with the pairwise separation axioms in general, but that there are small but important difference which prevent equivalences between them. We note however the following relations, and the interested reader may well discover others.

5.4. Proposition. For a DTS (X, τ) we have:

- (1) Pairwise $T_0 \implies T_0(iv)$.
- (2) Pairwise $T_1 \implies T_1(iv)$.
- (3) $T_2(iii) \implies pairwise T_2$.

Proof. (1). Let (X, τ) be pairwise T_0 , and take $x \neq y$ in X. Suppose we have $U = (U_1, U_2) \in \tau$ with $x \in U$, $y \notin U$. Now $x \in U_1$ and $U_1 \cap U_2 = \emptyset$, so $x \notin U_2$ and hence $x \in U$. On the other hand $y \notin U_1$ so $U_1 \subseteq \{y\}^c$ and hence $U = (U_1, U_2) \subseteq (\{y\}^c, \emptyset) = \overline{y}$. On the other hand, suppose we have $U = (U_1, U_2) \in \tau$ with $y \in U$, $x \notin U$. Then $x \in U_2$, whence $x \notin U_1$ and just as above we obtain $U \subseteq \overline{x}$. Since one of these cases must hold, (X, τ) satisfies T_0 (iv).

(2). Just as for the proof of (1).

(3). Suppose now that (X, τ) satisfies $T_2(iii)$, and take $x \neq y$ in X. Then we have $U, V \in \tau$ with $\underline{x} \in U$, $\underline{y} \in V$ and $U \subseteq \overline{V}$. Now, as noted above, $\underline{y} \in V$, and clearly $U \subseteq \overline{V} \implies U \subseteq () \overline{V}$, so (X, τ) is pairwise T_2 .

Acknowledgement The first author would like to thank the referee for several very helpful suggestions.

References

- Adámek, J., Herrlich, H. and Strecker, G. E. Abstract and Concrete Categories (John Wiley & Sons, Inc., 1990).
- [2] Atanassov, K. Intuitionistic fuzzy sets, VII ITKR's Session (Sofia, June 1983 Central Sci. and Tech. Library) (V. Sgurev, ed.), (Blug. Academy of Sciences, Sofia, 1984).
- [3] Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1), 87–96, 1986.
- Bayhan, S. and Çoker, D. On fuzzy separation axioms in intuitionistic fuzzy topological spaces, BUSEFAL 67, 77–87, 1996.
- [5] Bayhan, S. and Çoker, D. On separation axioms in intuitionistic topological spaces, Int. J. of Math. and Math. Sci. 27 (10), 621–630, 2001.
- Bayhan, S. and Çoker, D. On T₁ and T₂ separation axioms in intuitionistic fuzzy topological spaces, J. Fuzzy Mathematics 11 (3), 581–592, 2003.
- [7] Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182–190, 1968.
- [8] Çoker, D. A note on intuitionistic sets and intuitionistic points, Turkish J. Math. 20 (3), 343–351, 1996.
- [9] Çoker, D. An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1), 81–89, 1997.
- [10] Çoker, D. An introduction to intuitionistic topological spaces, BUSEFAL 81, 51–56, 2000.
- [11] Çoker, D. and Demirci, M. On intuitionistic fuzzy points, Notes IFS 1 (2), 79–84, 1995.

S. Bayhan, D. Çoker

- [12] Çoker, D. and Eş, A. H. On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Mathematics 3 (4), 899–909, 1995.
- [13] Dost, Ş. and Brown, L. M. Intuitionistic textures revisited, Hacettepe J. Math, Stat. 34 S (Doğan Çoker Memorial Issue), 115–130, 2005.
- [14] P. Fletcher, H. B. Hoyle and C. W. Patty, The comparison of topologies, Duke Math. J. 36, 325–331, 1965.
- [15] Garcia, J. G. and Rodabaugh, S. E. Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued "intuitionistic" sets, "intuitionistic" fuzzy sets and topologies', Fuzzy Sets ans Systems 156 (3), 445–484, 2005.
- [16] Kelly, J. C. Bitopological spaces, Proc. London Math. Soc. 13, 71–89, 1963.
- [17] Murdeshwar, M. G. and Naimpally, S. A. Quasi-uniform topological spaces (Groningen, Noordhoff, 1966).
- [18] Özçağ, S. and Çoker, D. On connectedness in intuitionistic fuzzy special topological spaces, Int. J. Math. Math. Sci. 21 (1), 33–40, 1998.
- [19] Reilly, I. L. On essentially pairwise Hausdorff spaces, Rendiconti del Circulo Mathematico di Palermo Series II 25, 47–52, 1976.
- [20] Rodabaugh, S.E. Lowen, Para-Lowen, and α-level functors and fuzzy topologies on the crisp real line, J. Math. Anal. Appl. 131, 157–169, 1988.
- [21] Weston, J. D. On the comparison of topologies, J. London Math. Soc. 32, 342-354, 1957.
- [22] Zadeh, L. A. Fuzzy sets, Inform. and Control 8, 338–353, 1965.