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Abstract

Several methods have been developed to estimate the regression model
parameters using the Least Absolute Values method. In this study,
three methods for finding Least Absolute Values Estimates developed
by Charnes et al. (1995), Gonin and Money (1989) and Li (1998), are
compared with respect to Central Process Unit (CPU) time and the
size of the determination coefficients.

Keywords: Least Squares, Least Absolute Values, Linear Programming, Determina-
tion Coefficients, CPU Time.

1. Introduction

The Least Absolute Value (LAV) is used as an alternative to the Least Squares (LS)
method for estimating regression model coefficients. This widely used method depends
basically on estimating the coefficients by minimizing the absolute difference between
observations and estimation values. In this context, the LAV estimation method could
be modelled as a constrained optimization problem. The model will take a very long time
to be solved if the number of independent variables and observations are too large. In
this respect, several models have came into existence in order to reduce the CPU time.
These models were developed and compared with respect to the CPU time, but they were
not compared with respect to the determination coefficients of these models. To this end,
the most popular three methods using the LAV method will be compared considering
both the CPU time and the determination coefficients. Additionally, the estimators of
these LAV methods will be compared with those of the LS method with respect to their
determination coefficients.
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Turkey.
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Let the linear regression model with n observations be identified as shown below;

(1.1) yi = β0 +
m∑

i=1

xijβj + εi, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Let (xi1, xi2, . . . , xim, yi) be the i th observations and let b0, b1, . . . , bm, estimated by
minimizing the overall absolute values of the differences between the values of ŷ and y,
be the estimators of β0, β1, . . . , βm. So the LAV method is given as follows:

(1.2) min

(
n∑

i=1

|yi − ŷi|

)
.

Charnes et. al. [1] pointed out that this equation could be solved using a simplex method.
Considering LAV, several algorithms were developed prior to 1990. Gentle et. al. [6]
developed a LAV algorithm to be solved using the multi-regression method. The most
popular three methods using the LAV method were developed by Charnes et. al. [2],
Gonin and Money [4] and Li [5].

In this paper, the three models developed by Charnes et. al. [2], Gonin and Money [4]
and Li [5] will be compared with respect to the CPU time, the regression parameters and
alternative determination coefficients. Additionally, the estimators of these LAV methods
will be compared with those of the LS method with respect to their determination and
regression coefficients. In this context, in section 2, the three models will be defined and
the determination coefficient to be used will be explained. In section 3, the three models
will be compared under different situations using a MATLAB simulation programme.

2. Modelling Coefficient Estimation under the LAV Method

In this section, the most popular three models used to estimate the regression model
parameters under the LAV method will be defined and a determination coefficient will
be given.

The first model under consideration has been developed by Charnes et. al. [2] and
Ignizo [3]. In this model, the aim is to minimize the overall absolute difference between
observations and estimation values, in other words, minimizing the overall error terms. In
this respect, goal programming is used to develop the linear programming model which
will be used to minimize the overall total positive and negative deviations. That is,
expression (2.1) is fulfilled. Most LAV regression algorithms are defined by the linear
programming model developed by the goal programming techniques (1.2) as follows.

Model 1

min

(
n∑

i=1

(d+

i + d
−

i )

)

Restrict to;(2.1)

yi − (b0 +
m∑

i=1

xijbj + d
+

i − d
−

i ) = 0,

i = 1, 2, . . . , n,

j = 1, 2, . . . ,m.

Here, d+

i , d
−

i ≥ 0 and bj (j = 1, 2, . . . ,m) ∈ F , where F is the feasible set, and d+

i , d
−

i

are respectively the i th related positive and negative deviation variables.

This primary linear regression model is known to be the best model of the LAV
regression algorithms, but two calculation difficulties should be mentioned.
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i) Model 1 with the equality constraint can only be solved by Big-M or 2-phase
methods. Considering linear programming, both methods require more time
than the simplex method.

ii) Model 1 requires many deviation variables (d+

i and d
−

i ). For n observations, 2n
deviation variables must be used. These large data sets lead to high CPU times
(Li [5]).

Gonin and Money [4] suggested an alternative LAV model where the equality of (2.1) is
reformulated. Here, the number of deviation variables used is almost half of that used
by model 1. The model can be identified as shown below.

Model 2

min
n∑

i=1

di.

Restrict to;(2.2)

yi − (b0 +
m∑

i=1

xijbj + d
+

i − d
−

i ) ≥ 0,

i = 1, 2, . . . , n,

j = 1, 2, . . . ,m,

yi − (b0 +
m∑

i=1

xijbj + d
+

i − d
−

i ) ≤ 0,

i = 1, 2, . . . , n,

j = 1, 2, . . . ,m,

bj ∈ F.

It is clearly seen that the number of deviation variables used in Model 1 is twice that
used in Model 2.

Another model to be mentioned in this paper is the one developed by Li [5], which
depends on the modified goal programming technique. Here, when developing this model,
Li considered the fact that some of the observations are greater than zero and the others
are less than zero.

Model 3

min
k∑

i=1

(
yi − b0 −

m∑

j=1

xijbj + 2di

)
+

n∑

i=k+1

(
−yi + b0 +

m∑

j=1

xijbj + 2di

)
,

i = 1, 2, . . . , n,

j = 1, 2, . . . ,m.

Restrict to;(2.3)

b0 +
m∑

i=1

xijbj − di + si) = yi,

i = 1, 2, . . . , k,

− b0 −
m∑

i=1

xijbj − di + si) = −yi,

i = k + 1, k + 2, . . . , n,

di ≥ 0, si ≥ 0, yi ≥ 0, (i = 1, 2, .., k), yi < 0, (k + i = k + 1, 2, .., n).
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Here si denotes the dummy variables used to solve the ≤ inequality by using the simplex
method to transform it into a standard form.

When Model 2 is compared with Model 3, the following results arise.

i) While Model 2 consists of 2n deviation variables, (d+

i , and d−i ), Model 3 has
only n deviation variables (di).

ii) Model 2, which is solved by the Big-M method, takes a longer time than Model
3, which is solved by the simplex algorithm (Li, [5]).

While the advantage of Model 1 is its number of constraints and the advantage of Model
2 is its deviation variables, the advantages of Model 3 developed by Li are both the
number of constraints and the deviation variables. Thus, less CPU time is used. But an
evaluation of the models according to their CPU times is not enough to determine which
of them is the best. It is important to measure how the dependent variables explain the
determination variables. This is measured using the statistical determination coefficient.
The Determination coefficient which is used in the LS method is

(2.4) R
2 =

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ŷ)2

, i = 1, 2, . . . , n.

However, due to the assumptions of the LS method, R2 cannot be used in the LAV
method. That is, R2 cannot be used for the above mentioned models. Basically, the
determination coefficient is the square of the correlation between the variables ŷ and y,
and thus, instead of the equality (2.4),

(2.5) R
2 = r(y, ŷ)2

could be used to compare the models in question, where r(y, ŷ) is the correlation between
ŷ and y (Weisberg, [7]). Regarding the LS method, since the equalities (2.4) and (2.5)
are equivalent, either one of them may be used.

To this end, the models mentioned above will be evaluated with respect to both
their CPU times and the determination coefficient between the variables ŷ and y, and
accordingly we will point out the most advantageous model among them.

3. An Empirical Study

In this section, the regression coefficients of the three analyzed LAV regression methods
are estimated. Using those estimations, the determination coefficient and the CPU time
for each model are calculated. Additionally, the regression coefficients of those models
are also estimated using the LS method in order to clearly see the difference.

In the comparison,

a uni-variable (β0 = 3, β1 = 2),

a 5-variable (β0 = 6, β1 = 5, β2 = 4, β3 = 3, β4 = 2, β5 = 1),

and a 10 variable (β0 = 6, β1 = 4, β2 = 3, β3 = 2, β4 = 1, β5 = 1, β6 = 1, β7 = 2,
β8 = 3, β9 = 4, β10 = 5)

regression model with 15, 100, and 1000 observations, respectively, were assigned using
the MATLAB 7.0 simulation programme. The results are given in Tables 1, 2 and 3.
The error distribution used in the three models was the standard normal distribution.

For this simulation study, a PC was used which has a Athlon XP 3200+ CPU, and 1
GB RAM.
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Table 1. LAV and LS estimators, determination coefficient and CPU time
for the uni-variate regression model

Model n=15 n=100 n=1000

CPU time=0.1094 CPU time=0.1094 CPU time=43.2656

b0 = 3.3721 b0 = 2.9317 b0 = 3.0563

Model 1 b1 = 1.8490 b1 = 2.0307 b1 = 1.9682

R2 = 0.7920 R2 = 0.8430 R2 = 0.8024

CPU time=0.1094 CPU time=0.5469 CPU time=86.1719

b0 = 3.3721 b0 = 2.9317 b0 = 3.0563

Model 2 b1 = 1.8490 b1 = 2.0307 b1 = 1.9682

R2 = 0.7920 R2 = 0.8430 R2 = 0.8024

CPU time=0.0938 CPU time=0.1250 CPU time=22.0781

b0 = 2.3451 b0 = 2.2088 b0 = 2.4935

Model 3 b1 = 2.1638 b1 = 1.9904 b1 = 1.9001

R2 = 0.7920 R2 = 0.8430 R2 = 0.8024

b0 = 3.6033 b0 = 2.8029 b0 = 3.0527

LS b1 = 1.7697 b1 = 2.0528 b1 = 1.9600

R2 = 0.7920 R2 = 0.8430 R2 = 0.8024

Table 2. LAV and LS estimators, determination coefficient and CPU time
for the 5-variate regression model

Model n=15 n=100 n=1000

CPU time=0.0313 CPU time=0.1250 CPU time=43.5000

b0 = 2.5210 b0 = 5.3935 b0 = 5.9377

b1 = 2.2223 b1 = 4.8609 b1 = 4.9725

b2 = 3.8976 b2 = 3.9519 b2 = 4.0641

Model 1 b3 = 3.0530 b3 = 3.2549 b3 = 3.0198

b4 = 2.4620 b4 = 1.9515 b4 = 1.9610

b5 = 1.1071 b5 = 1.0578 b5 = 1.0039

R2 = 0.9904 R2 = 0.9758 R2 = 0.9825

CPU time=0.0313 CPU time=0.6250 CPU time=87.2969

b0 = 2.5210 b0 = 5.3935 b0 = 5.9377

b1 = 2.2223 b1 = 4.8609 b1 = 4.9725

b2 = 3.8976 b2 = 3.9519 b2 = 4.0641

Model 2 b3 = 3.0530 b3 = 3.2549 b3 = 3.0198

b4 = 2.4620 b4 = 1.9515 b4 = 1.9610

b5 = 1.1071 b5 = 1.0578 b5 = 1.0039

R2 = 0.9904 R2 = 0.9758 R2 = 0.9825

CPU time=0.0310 CPU time=0.1875 CPU time=22.2500

b0 = 2.2881 b0 = 4.9002 b0 = 5.4950

b1 = 5.2168 b1 = 4.9405 b1 = 4.9769

b2 = 3.8800 b2 = 4.0426 b2 = 4.0246

Model 3 b3 = 3.2198 b3 = 3.2886 b3 = 3.0260

b4 = 2.4439 b4 = 1.9253 b4 = 1.9479

b5 = 0.9809 b5 = 0.9688 b5 = 0.9856

R2 = 0.9891 R2 = 0.9756 R2 = 0.9824
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Table 2 (Continued). LAV and LS estimators, determination coefficient and
CPU time for the 5-variate regression model

Model n=15 n=100 n=1000

b0 = 2.8157 b0 = 5.4497 b0 = 6.0304

b1 = 4.9243 b1 = 4.8832 b1 = 4.9742

b2 = 4.0292 b2 = 4.0819 b2 = 4.0595

LS b3 = 3.0114 b3 = 3.1320 b3 = 2.9959

b4 = 2.5520 b4 = 2.0432 b4 = 1.9626

b5 = 1.0443 b5 = 0.9823 b5 = 1.0077

R2 = 0.9915 R2 = 0.9768 R2 = 0.9825

Table 3. LAV and LS estimators, determination coefficient and CPU time
for the 10-variate regression model

Model n=15 n=100 n=1000

CPU time=0.0469 CPU time=0.1406 CPU time=45.1094

b0 = 16.2696 b0 = 7.9841 b0 = 6.7123

b1 = 5.0268 b1 = 5.0952 b1 = 5.0179

b2 = 3.6677 b2 = 4.2496 b2 = 3.9400

b3 = 2.4910 b3 = 2.9671 b3 = 3.0423

b4 = 1.8198 b4 = 2.0000 b4 = 1.9597

Model 1 b5 = 1.0825 b5 = 1.1824 b5 = 1.0056

b6 = 05749 b6 = 1.0097 b6 = 0.9392

b7 = 1.8223 b7 = 1.9107 b7 = 2.0124

b8 = 2.6156 b8 = 2.9122 b8 = 3.0289

b9 = 3.9030 b9 = 3.9603 b9 = 3.9703

b10 = 5.1235 b10 = 4.8153 b10 = 4.9809

R2 = 0.9966 R2 = 0.9894 R2 = 0.9913

CPU time=0.0469 CPU time=0.6875 CPU time=96.1563

b0 = 16.2696 b0 = 7.9841 b0 = 6.7123

b1 = 5.0268 b1 = 5.0952 b1 = 5.0179

b2 = 3.6677 b2 = 4.2496 b2 = 3.9400

b3 = 2.4910 b3 = 2.9671 b3 = 3.0423

b4 = 1.8198 b4 = 2.0000 b4 = 1.9597

Model 2 b5 = 1.0825 b5 = 1.1824 b5 = 1.0056

b6 = 05749 b6 = 1.0097 b6 = 0.9392

b7 = 1.8223 b7 = 1.9107 b7 = 2.0124

b8 = 2.6156 b8 = 2.9122 b8 = 3.0289

b9 = 3.9030 b9 = 3.9603 b9 = 3.9703

b10 = 5.1235 b10 = 4.8153 b10 = 4.9809

R2 = 0.9966 R2 = 0.9894 R2 = 0.9913
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Table 3 (continued) LAV and LS estimators, determination coefficient and
CPU time for the 10-variate regression model

Model n=15 n=100 n=1000

CPU time=0.0313 CPU time=0.2031 CPU time=23.8438

b0 = 11.6454 b0 = 5.4786 b0 = 5.7983

b1 = 4.8151 b1 = 5.1820 b1 = 5.0459

b2 = 3.3773 b2 = 4.3264 b2 = 3.9378

b3 = 2.5964 b3 = 2.9316 b3 = 3.0599

b4 = 1.2866 b4 = 1.9764 b4 = 2.0064

Model 3 b5 = 0.9002 b5 = 1.0665 b5 = 1.0011

b6 = 0.1587 b6 = 1.1130 b6 = 0.9727

b7 = 2.7779 b7 = 1.9770 b7 = 1.9611

b8 = 3.0930 b8 = 2.8811 b8 = 3.0030

b9 = 4.2475 b9 = 4.0914 b9 = 4.0029

b10 = 4.7634 b10 = 4.8310 b10 = 4.9804

R2 = 0.9952 R2 = 0.9890 R2 = 0.9913

b0 = 8.8074 b0 = 6.5142 b0 = 6.6044

b1 = 4.9754 b1 = 5.1098 b1 = 5.0026

b2 = 3.7256 b2 = 4.0950 b2 = 3.9651

b3 = 2.6240 b3 = 2.9785 b3 = 3.0121

b4 = 1.7534 b4 = 2.0897 b4 = 1.9987

LS b5 = 1.0578 b5 = 1.1140 b5 = 1.0074

b6 = 0.8435 b6 = 1.0442 b6 = 0.9784

b7 = 2.1436 b7 = 1.9151 b7 = 1.9948

b8 = 2.9398 b8 = 2.9441 b8 = 3.0089

b9 = 3.9590 b9 = 4.0555 b9 = 3.9781

b10 = 5.0658 b10 = 4.8485 b10 = 4.9777

R2 = 9980 R2 = 0.9898 R2 = 0.9913

As shown in Tables 1, 2 and 3, the CPU times are not affected by the number of variables.
Furthermore, the differences between the CPU times of Model 2 and Model 3 are about
0.02, and there is no difference between Model 2 and Model 1 when n=15. Differences
between the CPU times of Model 2 and Model 3, and between Model 2 and Model 1 are
about 0.52 and 0.48 second, respectively, when n=100. The CPU time of Model 2 is 2 and
4 times that of Models 1 and 2, respectively, when n=1000. On the other hand, differences
between the CPU times of Model 2 and Model 3, and between Model 2 and Model 1 are
about 73 and 41 seconds, respectively. This difference becomes clearly evident when the
number of observations gets larger. Thus, for a larger number of observations, Model 3
is the fastest of these models. Additionally, all three models are giving close, but smaller
values of the determination coefficients than the LS method.

In Table 1, the determination coefficients of all models are the same because the
regression model is a univariate regression model. When comparing the three models
with respect to their determination coefficients, it is clearly seen that the values given
by Models 1 and 2 are much higher that that of Model 3. This is highly significant when
the number of observations is small enough. And, when the number of observations gets
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larger, this difference diminishes. As a result, it is better to use Model 1 or Model 2
when the number of observations is small enough, and Model 3 when the number of
observations is large enough to solve the LAV model.
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