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1. Introduction

The notion of intuitionistic fuzzy set was introduced by K.T. Atanassov [2], and a
considerable amount of work has been done in this direction, particularly in the area of
applications. An intuitionistic fuzzy subset of a crisp set X is a generalization of Zadeh’s
notion of fuzzy subset of X [23], but it has been noted recently that intuitionistic sets can
be represented as L–sets for a suitable Hutton algebra L. This was first stated explicitly
by G.-J. Wang and Y.Y. He [22], and in the same issue of Fuzzy Sets and Systems, L.M.
Brown and M. Diker announced that intuitionistic sets, a specialization of the notion of
intuitionistic fuzzy sets introduced by D. Çoker in [12], may be represented as 3-sets. The
proof of this result, given in [7], was indirect and we express this relation more directly
in the present paper.

In the meantime J.G. Garcia and S. E. Rodabaugh [16] have investigated in some
detail the order-theoretic and categoric relations between intuitionistic fuzzy sets and
topologies on the one hand and L-sets and topologies on the other. They point out that
the term “intuitionistic” is a misnomer in this context, and in parallel with their use of
the term double-fuzzy set we have adopted the term “double-set” for the intuitonistic set
of Doğan Çoker, and will therefore speak of double topology, double-set texture and so
on throughout the remainder of this paper.

The layout of the paper is as follows. In Section 2 we recall double-set textures, and
go on to investigate difunctions between such textures. The concrete nature and relative
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simplicity of double-set textures enables us to give a very specific representation of difunc-
tions between them, and we look in detail at images and co-images, inverse (co)images
and complementation. We show in particular that the complemented difunctions are
of a very special type, a result which has important categorical implications. We also
characterize injectivity and surjectivity of difunctions.

Section 3 gives the explicit isomorphism between double-sets and 3-sets mentioned
above, and discusses various subcategories of known categories of textures involved in the
study of double-set textures. Finally, Section 4 is devoted to constructs of ditopological
double-set textures, and their relationship with the constructs 3-Top, Top and Bitop.

We note that our general reference for concepts from category theory is [1], while the
reader is referred to [17] for notions from lattice theory not defined here. Basic definitions
and background from the theory of ditopological texture spaces may be found in [3–11,
20]. Papers on intuitionistic (fuzzy) sets and topologies include [2, 12–16] and [18].

2. Double-Set Textures

Given a base set X, a double-subset of X (intuitionistic subset of X in the sense of
Çoker [12]) may be represented by an ordered pair (A,B) of subsets A,B of X satisfying
A ∩ B = ∅. We denote by DX the set of all double-subsets of X ordered by (A,B) ⊆
(C,D) ⇐⇒ A ⊆ C and D ⊆ B. It is known that DX is a Hutton algebra, that is a
complete, completely distributive lattice with order reversing involution ′ : DX → DX
defined by (A,B)′ = (B,A).

In [5] it was shown that we may associate a complemented simple texture with DX .
With a slight change of notation this is the complemented texture (DX ,DX , δX), where

DX = (X × {1}) ∪ (X × { 1
2
}) = X × {1, 1

2
},

DX = {(A× {1}) ∪ ((X \B)× { 1
2
}) | (A,B) ∈ DX} and

δX((A× {1}) ∪ ((X \B)× { 1
2
})) = (B × {1}) ∪ ((X \A)× { 1

2
}).

Here the mapping (A,B) 7→ (A × {1}) ∪ ((X \ B) × { 1
2
}) from DX to DX , which we

will denote by βX , or just by β if there is no chance of confusion, is a Hutton algebra
isomorphism.

A general method of associating a complemented simple texture with a Hutton algebra
was given in [7]. Precisely, if L is a Hutton algebra and M the set of molecules of L,
then the associated complemented simple texture is (M,M, µ), where M = {α̂ | α ∈ L},
α̂ = {m ∈ M | m ≤ α} and µ(α̂) = α̂′, ′ being the order reversing involution on L. We
have:

2.1. Proposition. The complemented texture associated with the Hutton algebra DX as
in [7] is isomorphic to (DX ,DX , δX).

Proof. The reader may easily verify that the molecules of DX are of two kinds, namely

({x}, X \ {x}), x ∈ X, and (∅, X \ {x}), x ∈ X.

Clearly the first kind of molecule corresponds to an intuitinistic point in the sense of
Çoker [12] (see also Çoker and Demirci [15]), while the second kind corresponds to a
vanishing intuitonistic point. On the other hand, for (A,B) ∈ DX we have

(̂A,B) = {({x}, X \ {x}) | x ∈ A} ∪ {(∅, X \ {x}) | x ∈ X \B}.

It is now clear that the mapping

({x}, X \ {x}) 7→ (x, 1), x ∈ X,

(∅, X \ {x}) 7→ (x, 1
2
), x ∈ X,
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sets up a complemented textural isomorphism between the complemented texture asso-
ciated with DX as in [7], and the complemented texture (DX ,DX , δX). ¤

It is clear that under this isomorphism (̂A,B) corresponds to βX(A,B), so the two
representations of DX are the same up to isomorphism. We refer to such textures as
double-set textures.

For the remainder of this section we consider double-set textures in their own right,
only returning to their relation with double subsets of X in the next section. It will
therefore be convenient to rewrite DX and δX in the equivalent forms

DX = {(A× {1}) ∪ (C × { 1
2
}) | A ⊆ C ⊆ X}, and

δX((A× {1}) ∪ (C × { 1
2
})) = ((X \ C)× {1}) ∪ ((X \A)× { 1

2
}).

The following results are now immediate from the definitions.

2.2. Lemma. The p-sets and q-sets for (DX ,DX , δX) are as follows:

P(x, 1
2
) = {x} × { 1

2
},

P(x,1) = {x} × { 1
2
, 1},

Q(x, 1
2
) = (X \ {x})× { 1

2
, 1},

Q(x,1) = (X × { 1
2
}) ∪ ((X \ {x})× {1}).

Also,

δX(P(x, 1
2
)) = Q(x,1) and δX(P(x,1)) = Q(x, 1

2
),

δX(Q(x, 1
2
)) = P(x,1) and δX(Q(x,1)) = P(x, 1

2
).

In particular we note for future reference that for x, x′ ∈ X, k, k′ ∈ { 1
2
, 1} we have

P(x,k) 6⊆ Q(x′,k′) ⇐⇒ x = x′ and k′ ≤ k.

We will be particularly interested in difunctions between double-set textures. It is
known that a difunction (f, F ) between simple textures (S, S) and (T,T) may be rep-
resented by a unique point function ϕ : S → T in the sense that (f, F ) = (fϕ, Fϕ)
where

fϕ =
∨
{P (s,t) | ∃v ∈ S satisfying Ps 6⊆ Qv and Pϕ(v) 6⊆ Qt},

Fϕ =
⋂
{Q(s,t) | ∃v ∈ S satisfying Pv 6⊆ Qs and Pt 6⊆ Qϕ(v)}

and ϕ satisfies the conditions

(a) s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ Pϕ(s) 6⊆ Qϕ(s′).
(b) Pϕ(s) 6⊆ B, B ∈ T =⇒ ∃ s′ ∈ S with Ps 6⊆ Qs′ for which Pϕ(s′) 6⊆ B.

([9], Proposition 3.6). If, in addition, the textures (S, S) and (T,T) are plain then (b) is
automatically satisfied and we have

fϕ =
⋃
{P (s,ϕ(s)) | s ∈ S}, Fϕ =

⋂
{Q(s,ϕ(s)) | s ∈ S}.

Applying the above to a difunction (f, F ) from the plain simple texture (DX ,DX) to the
plain simple texture (DY ,DY ) we have a point function ϕ : DX → DY satisfying (a) for
which (f, F ) = (fϕ, Fϕ).

2.3. Lemma. The point function ϕ : DX → DY satisfies (a) if and only if

(i) ϕ = 〈ϕ1, ϕ2〉, where ϕ1 : X → Y and ϕ2 : DX → { 1
2
, 1}.

(ii) For x ∈ X, k, k′ ∈ { 1
2
, 1} we have k ≤ k′ =⇒ ϕ2(x, k) ≤ ϕ2(x, k

′).
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Proof. First suppose that (a) is satisfied. For x ∈ X we have P(x,1) 6⊆ Q(x, 1
2
), and so

P(ϕ1(x,1),ϕ2(x,1)) 6⊆ Q(ϕ1(x, 1
2
),ϕ2(x, 1

2
)). This gives us ϕ1(x, 1) = ϕ1(x, 1

2
) and ϕ2(x, 1

2
) ≤

ϕ2(x, 1). From the above equality we see that the value of ϕ1 depends only on x, and
so this may be regarded as a point function from X to Y . This proves (i), and (ii) is an
immediate consequence of the above inequality.

Conversely, if ϕ satisfies (i) and (ii) it trivially satisfies (a), as the reader may easily
verify. ¤

The formulae for f = fϕ and F = Fϕ specialise to

fϕ =
⋃
{P ((x,k),(ϕ1(x),ϕ2(x,k))) | x ∈ X, k = 1

2
, 1},

Fϕ =
⋂
{Q((x,k),(ϕ1(x),ϕ2(x,k))) | x ∈ X, k = 1

2
, 1}.

We note that by Lemma 2.3 (ii), for fixed x ∈ X the function ϕ2(x, k) of k can have any
of the following three forms:

1

1
2

η

1

1
2

ι

• •1

1
2

ξ

•

•
1
2

1
• •

1
2

1 1
2

1

This shows that even if X only has one point, for each function ϕ1 from X to Y there is
more than one difunction from (DX ,DX) to (DY ,DY ).

Now let us consider the complement of a difunction (f, F ) from (DX ,DX , δX) to
(DY ,DY , δY ).

2.4. Proposition. Let (f, F ) be a difunction from (DX ,DX , δX) to (DY ,DY , δY ) that
corresponds to the point function ϕ, and let the complement (f, F )′ = (F ′, f ′) correspond
to the point function ϕ′. Then ϕ′1(x) = ϕ1(x) for all x ∈ X and for all fixed x ∈ X the
functions ϕ2(x, k), ϕ

′
2(x, k) of k are related by

ϕ′2(x, k) =





ξ(k), if ϕ2(x, k) = η(k),

ι(k), if ϕ2(x, k) = ι(k),

η(k), if ϕ2(x, k) = ξ(k).

Proof. It will be sufficient to calculate (Fϕ)
′ and compare it with fϕ′ . Now, by ([9],

Definition 2.18),

F ′ =
⋃
{P ((x,k),(y,l)) | ∃u ∈ X, v ∈ Y,m, n ∈ { 1

2
, 1} with P ((u,m),(v,n)) 6⊆ F,

P(u,m) 6⊆ δX(P(x,k)) and δY (Q(y,l)) 6⊆ Q(v,n)},

since the textures here are plain. Now using Lemma 2.2 and the above formula for
F = Fϕ we obtain

(Fϕ)
′ =

⋃
{P ((x,k),(ϕ1(x),l)) | ϕ2(x, k

′) ≤ l′},

where for k, l ∈ { 1
2
, 1} we have k′, l′ ∈ { 1

2
, 1}, k′ 6= k, l′ 6= l. On the other hand

fϕ′ =
⋃
{P ((x,k),(ϕ′1(x),ϕ′2(x,k)) | x ∈ X, k ∈ { 1

2
, 1}},

and we deduce that ϕ′1(x) = ϕ1(x) ∀x ∈ X, and that for each fixed x ∈ X, ϕ′2(x, k) is
the largest value of l satisfying ϕ2(x, k

′) ≤ l′. Let us consider the three possible cases for
the function ϕ2(x, k) of k.
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Case 1. Let ϕ2(x, k) = η(k), k = 1
2
, 1. We may take l = 1 since then l′ = 1

2
and

ϕ2(x, k
′) ≤ 1

2
for each k. Hence ϕ′2(x, k) = 1, that is ϕ′2(x, k) = ξ(k), k = 1

2
, 1.

Case 2. Let ϕ2(x, k) = ι(k), k = 1
2
, 1. For k = 1 we have k′ = 1

2
and ϕ2(x, 1

2
) = 1

2
,

so as above we may take l = 1. Thus ϕ′2(x, 1) = 1. On the other hand for k = 1
2
we have

k′ = 1 and ϕ2(x, 1) = 1, so we must take l = 1
2
. Thus ϕ′2(x, 1

2
) = 1

2
, and we have shown

that ϕ′2(x, k) = ι(k), k = 1
2
, 1.

Case 3. Let ϕ2(x, k) = ξ(k), k = 1
2
, 1. The proof is similar to that for the previous

cases, and is omitted. ¤

2.5. Corollary. The difunction (f, F ) = (fϕ, Fϕ) is complemented if and only if ϕ =
〈ϕ1, ι〉, that is ϕ(x, k) = (ϕ1(x), k) for all x ∈ X, k = 1

2
, 1.

Proof. By Proposition 2.4 the only way in which the functions ϕ, ϕ′ can be equal is for
ϕ2(x, k) to have the value ι(k) for all fixed x ∈ X. Hence (f, F )′ = (f, F ) ⇐⇒ ϕ′ =
ϕ ⇐⇒ ϕ = 〈ϕ1, ι〉. ¤

It follows that to each point function ϕ1 : X → Y corresponds just one comple-
mented difunction from (DX ,DX , δX) to (DY ,DY , δY ). This contrasts strongly with
the situation for complemented difunctions between Hutton textures of I-valued sets [9,
Examples 3.11 (4)].

Now we consider (inverse) images and (inverse) co-images under a difunction from
(DX ,DX) to (DY ,DY ).

2.6. Proposition. Let (f, F ) = (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ) and take (A× {1})∪
(C × { 1

2
}) ∈ DY . Then

f←(A×{1})∪ (C×{ 1
2
}) = F←(A×{1})∪ (C×{ 1

2
}) = (A′×{1})∪ (C ′×{ 1

2
}),

where

A′ = {x ∈ ϕ−1
1 [A] | ϕ2(x, 1) = 1} ∪ {x ∈ ϕ−1

1 [C] | ϕ2(x, 1) = 1
2
},

C′ = {x ∈ ϕ−1
1 [A] | ϕ2(x, 1

2
) = 1} ∪ {x ∈ ϕ−1

1 [C] | ϕ2(x, 1
2
) = 1

2
}.

Proof. From [9, Lemma 3.4 and Lemma 3.9] we have

f←ϕ B = F←ϕ B = ϕ−1[B]

for all B = (A × {1}) ∪ (C × { 1
2
}) ∈ DY . But (x, k) ∈ ϕ−1[B] ⇐⇒ (ϕ1(x), ϕ2(x, k)) ∈

B ⇐⇒ ϕ1(x) ∈ A, ϕ2(x, k) = 1 or ϕ1(x) ∈ C, ϕ2(x, k) = 1
2
. The result now follows by

setting k = 1 for A′ and k = 1
2
for C ′. ¤

2.7. Corollary. For the special cases ϕ = 〈g, η〉, ϕ = 〈g, ι〉 and ϕ = 〈g, ξ〉, where
g : X → Y and η, ι and ξ are defined as above, the inverse image and inverse co-image
of (A× {1}) ∪ (C × { 1

2
}) ∈ DY under (fϕ, Fϕ) are given respectively by g−1[C]× { 1

2
, 1},

(g−1[A]× {1}) ∪ (g−1[C]× { 1
2
}) and g−1[A]× { 1

2
, 1}.

Proof. Clear from Proposition 2.6 and the fact that g−1[A] ⊆ g−1[C] since A ⊆ C. ¤

2.8. Proposition. For (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ) and (A×{1})∪(C×{ 1
2
}) ∈ DX

we have

f→ϕ (A× {1}) ∪ (C × { 1
2
}) = (A′ × {1}) ∪ (ϕ1[C]× { 1

2
}),

where

A′ = {ϕ1(x) | x ∈ A, ϕ2(x, 1) = 1 or x ∈ C, ϕ2(x, 1
2
) = 1}.
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Proof. By ([9], Definition 2.5 (1)), we have for B = (A× {1}) ∪ (C × { 1
2
}) ∈ DX ,

f→ϕ B =
⋂
{Q(y,l) | ∀ (x, k) ∈ X × { 1

2
, 1}, fϕ 6⊆ Q((x,k),(y,l)) =⇒ B ⊆ Q(x,k)}

=
⋂
{Q(y,l) | y = ϕ1(x), l ≤ ϕ2(x, k) =⇒ B ⊆ Q(x,k) ∀ (x, k)}.

Now, since we are dealing with plain textures,

(w, s) ∈ f→ϕ B ⇐⇒ f→ϕ B 6⊆ Q(w,s)

⇐⇒ ∃ (x, k) with w = ϕ1(x), s ≤ ϕ2(x, k) and B 6⊆ Q(x,k).

There are two cases to be considered.

Case 1. s = 1
2
. In this case s ≤ ϕ2(x, k) is automatically satisfied for both values of k,

and B 6⊆ Q(x,k) gives x ∈ A (k = 1) or x ∈ C (k = 1
2
), so in both cases w ∈ ϕ1[C].

Case 2. s = 1. In this case we have the condition ϕ2(x, k) = 1 for x ∈ A, k = 1, and for
x ∈ C, k = 1

2
. This is clearly equivalent to w ∈ A′. ¤

2.9. Corollary. For the special cases ϕ = 〈g, η〉, ϕ = 〈g, ι〉 and ϕ = 〈g, ξ〉, where g :
X → Y and η, ι and ξ are defined as above, the image of (A×{1})∪(C×{ 1

2
}) ∈ DX under

(fϕ, Fϕ) is given respectively by g[C]×{ 1
2
}, (g[A]×{1})∪ (g[C]×{ 1

2
}) and g[C]×{ 1

2
, 1}.

Proof. Clear from Proposition 2.8. ¤

2.10. Proposition. For (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ) and (A×{1})∪ (C ×{ 1
2
}) ∈

DX we have

F→ϕ (A× {1}) ∪ (C × { 1
2
}) = (ϕ1[A]× {1}) ∪ (C ′ × { 1

2
}),

where

C′ = {ϕ1(x) | x ∈ A, ϕ2(x, k) = 1
2
, k = 1

2
, 1 or x ∈ C, ϕ2(x, 1

2
) = 1

2
,

ϕ2(x, 1) = 1 or x ∈ X, ϕ(x, k) = 1, k = 1
2
, 1}.

Proof. For B = (A× {1}) ∪ (C × { 1
2
}) ∈ DX we have

F→ϕ B =
⋃
{P(y,l) | ∀ (x, k) ∈ X × { 1

2
, 1}, P ((x,k),(y,l)) 6⊆ Fϕ =⇒ P(x,k) ⊆ B}

=
⋃
{P(y,l) | y = ϕ1(x), ϕ2(x, k) ≤ l =⇒ (x, k) ∈ B, ∀ k = 1

2
, 1}

by [9, Definition 2.5 (2)] and the fact that we are dealing with plain textures. For l = 1
the given implication can hold for both values of k only if x ∈ A, which gives ϕ1(x) ∈
ϕ1[A]. Likewise, the set C ′ is easily obtained by considering the given implication when
l = 1

2
. ¤

2.11. Corollary. For the special cases ϕ = 〈g, η〉, ϕ = 〈g, ι〉 and ϕ = 〈g, ξ〉, where
g : X → Y and η, ι and ξ are defined as above, the co-image of (A×{1})∪(C×{ 1

2
}) ∈ DX

under (fϕ, Fϕ) is given respectively by g[A] × { 1
2
, 1}, (g[A] × {1}) ∪ (g[C] × { 1

2
}) and

(g[A]× {1}) ∪ (g[X]× { 1
2
}).

Proof. Clear from Proposition 2.10. ¤

We end this section by considering the surjectivity and injectivity of difunctions [9,
Definition 2.30] between double-set textures. First we give the following.

2.12. Lemma. Let (S, S), (T,T) be plain textures and ϕ : S → T satisfy (a). Then
(fϕ, Fϕ) is surjective if and only if ϕ is onto.
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Proof. First let (fϕ, Fϕ) be surjective and take t ∈ T . Since (T,T) is plain we have

Pt 6⊆ Qt and so by surjectivity we have s ∈ S with fϕ 6⊆ Q(s,t) and P (s,t) 6⊆ Fϕ. This

now gives Pϕ(s) 6⊆ Qt and Pt 6⊆ Qϕ(s), whence Pt = Pϕ(s) and so t = ϕ(s). Thus ϕ is
onto.

The converse follows from [4, Lemma 2.7] since the condition (b) is automatically
satisfied for plain textures. ¤

2.13. Proposition. The following are equivalent for (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ).

(1) (fϕ, Fϕ) is surjective.
(2) ϕ = 〈ϕ1, ϕ2〉 : DX → DY is onto.
(3) Given y ∈ Y there exists x ∈ X with y = ϕ1(x), ϕ2(x, k) = ι(k), k = 1

2
, 1, or

there exist x1, x2 ∈ X with y = ϕ1(x1) = ϕ1(x2), ϕ2(x1, k) = η(k), ϕ2(x2, k) =
ξ(k), k = 1

2
, 1.

Proof. Since double-set textures are plain the equivalence of (1) and (2) follows at once
from Lemma 2.12. The equivalence of (2) and (3) is clear. ¤

2.14. Corollary. If (fϕ, Fϕ) is surjective then ϕ1 is onto. The converse is true if
ϕ = 〈ϕ1, ι〉.

Proof. Immediate from Proposition 2.13. ¤

Now we turn our attention to injectivity.

2.15. Lemma. Let (S, S), (T,T) be plain textures, and let ϕ : S → T satisfy (a). Then
the injectivity of (fϕ, Fϕ) implies that ϕ is one-to-one.

Proof. Take s, s′ ∈ X with ϕ(s) = ϕ(s′), and denote this element of T by t. Then since

(T,T) is plain, Pϕ(s) 6⊆ Qt and Pt 6⊆ Qϕ(s′), so fϕ 6⊆ Q(s,t) and P (s′,t) 6⊆ Fϕ. The

injectivity of (fϕ, Fϕ) now gives Ps 6⊆ Qs′ , whence Ps′ ⊆ Ps. Reversing the roles of s, s′

gives Ps ⊆ Ps′ , so Ps = Ps′ and so s = s′ since the texturing S separates the points of S.
This shows that ϕ is one-to-one. ¤

2.16. Proposition. The following are equivalent for (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ).

(1) (fϕ, Fϕ) is injective.
(2) ϕ = 〈ϕ1, ϕ2〉 : DX → DY is one-to-one.
(3) ϕ = 〈ϕ1, ι〉 and ϕ1 : X → Y is one-to-one.

Proof. (1) =⇒ (2) This follows from Lemma 2.15 since double-set textures are plain.

(2) =⇒ (3) For x ∈ X we have ϕ(x, 1
2
) 6= ϕ(x, 1) since ϕ is one-to-one. Hence

ϕ2(x, 1
2
) 6= ϕ2(x, 1) and by Lemma 2.3 (ii) we deduce that ϕ2(x, 1

2
) < ϕ2(x, 1). It now

follows that ϕ2(x, 1
2
) = 1

2
, ϕ2(x, 1) = 1 so ϕ = 〈ϕ1, ι〉. Now let ϕ1(x) = ϕ1(x

′) for
x, x′ ∈ X. Then ϕ(x, 1) = (ϕ1(x), 1) = (ϕ1(x

′), 1) = ϕ(x′, 1), whence x = x′ since ϕ is
one-to-one. Hence ϕ1 is also one-to-one.

(3) =⇒ (1) Suppose that fϕ 6⊆ Q((x,k),(y,l)) and P ((x′,k′),(y,l)) 6⊆ Fϕ. Then using the

formulae for fϕ, Fϕ and the fact that ϕ2 = ι we obtain P ((x,k),(ϕ1(x),k)) 6⊆ Q((x,k),(y,l)) and

P ((x′,k′),(y,l)) 6⊆ Q((x′,k′),(ϕ1(x′),k′)). Hence P(ϕ1(x),k) 6⊆ Q(y,l) and P(y,l) 6⊆ Q(ϕ1(x′),k′),

so P(ϕ1(x),k) 6⊆ Q(ϕ1(x′),k′). By Lemma 2.2 we deduce ϕ1(x) = ϕ1(x
′) and k′ ≤ k.

By hypothesis ϕ1 is one-to-one, so x = x′, and again by Lemma 2.2 we deduce that
P(x,k) 6⊆ Q(x′,k′). This shows that (fϕ, Fϕ) is injective. ¤

2.17. Proposition. The following are equivalent for (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ).

(1) (fϕ, Fϕ) is bijective.
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(2) ϕ = 〈ϕ1, ϕ2〉 : DX → DY is one-to-one and onto.
(3) ϕ = 〈ϕ1, ι〉 and ϕ1 : X → Y is one-to-one and onto.
(4) ϕ is onto and ϕ1 is one-to-one.

Proof. (1) =⇒ (2) Clear from Proposition 2.13 and Proposition 2.16.

(2) =⇒ (3) Clear from Corollary 2.14 and Proposition 2.16.

(3) =⇒ (4) Since ϕ = 〈ϕ1, ι〉 and ϕ1 is onto we see (fϕ, Fϕ) is surjective by Corol-
lary 2.14, so ϕ is onto by Proposition 2.13.

(4) =⇒ (1) Since ϕ is onto it satisfies condition (3) of Proposition 2.13. Take u ∈ X
and let y = ϕ1(u) ∈ Y . Since ϕ1 is assumed to be one-to-one the existence of x1, x2 ∈ X
with y = ϕ1(x1) = ϕ1(x2) and ϕ2(x1, k) = η(k), ϕ2(x2, k) = ξ(k) would lead to x1 = x2

and hence the contradiction η(k) = ξ(k), k = 1
2
, 1. Hence there exists x ∈ X with

y = ϕ1(x) and ϕ2(x, k) = ι(k), k = 1
2
, 1. But in particular ϕ1(u) = ϕ1(x), so x = u

as ϕ1 is one-to-one, and we have established that ϕ = 〈ϕ1, ι). Moreover ϕ1 is onto, so
(fϕ, Fϕ) is surjective by Corollary 2.14, and ϕ1 is one-to-one so (fϕ, Fϕ) is injective by
Proposition 2.16. This shows that (fϕ, Fϕ) is bijective. ¤

In view of Corollary 2.5, the above results lead immediately to the following.

2.18. Proposition. Let (fϕ, Fϕ) : (DX ,DX)→ (DY ,DY ). Then:

(1) If (fϕ, Fϕ) is injective it is complemented.
(2) If (fϕ, Fϕ) is complemented then it is surjective (injective, bijective) if and only

if ϕ1 is onto (respectively, one-to-one, one-to-one and onto).

The reader might find it instructive to compare the above results on the injectivity
and surjective of difunctions between double-set textures with the corresponding results
for difunctions between Hutton textures of classical fuzzy sets as presented in [21].

3. Categories of Double-Set Textures

In this section we consider categories of double-set textures and study their relation
with certain known categories.

It was announced in [5], and proved in [7], that the double-subsets of X correspond to
the L-fuzzy subsets of X for L = 3 = {0, 1

2
, 1}. The proof given in [7] was indirect, and we

now obtain explicit mappings between DX and 3X that demonstrate the isomorphism of
these Hutton algebras. We again work via the texture (DX ,DX , δX), thereby confirming
that up to isomorphism this is the Hutton texture of both DX and 3X .

First let us note that the set of molecules of 3 is clearly { 1
2
, 1}, so the set of molecules

of 3X is X × { 1
2
, 1} = DX . The texturing on this set corresponding to 3X as in [7]

consists of the sets µ̂ = {(x, α) ∈ DX | α ≤ µ(x)}. If we set

Aµ = {x ∈ X | µ(x) = 1} and Bµ = {x ∈ X | µ(x) = 0}

it is easy to see that µ̂ = (Aµ×{1})∪ ((X \Bµ)×{ 1
2
}), and clearly Aµ ∩Bµ = ∅. Hence

(Aµ, Bµ) ∈ DX and µ̂ = βX(Aµ, Bµ), so {µ̂ | µ ∈ 3X} ⊆ DX .

Conversely, take (A,B) ∈ DX . Then for µ ∈ 3X we clearly have A = Aµ, B = Bµ if
and only if µ = µ(A,B), where

µ(A,B)(x) =





1 if x ∈ A,
1
2

if x ∈ X \ (A ∪B),

0 if x ∈ B.
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This confirms that {µ̂ | µ ∈ 3X} = DX . On the other hand if µ′ is the complement of
µ in 3X then µ′(x) = 1 − µ(x), x ∈ X, and so Aµ′ = Bµ, Bµ′ = Aµ. It follows that

µ̂′ = δX(µ̂), and we have proved that the Hutton texture of 3X is precisely (DX ,DX , δX).
The above argument clearly shows that the mapping

µ 7→ (Aµ, Bµ),

which we will denote by ζX , is an isomorphism ζX : 3X → DX , while

(A,B) 7→ µ(A,B)

is the inverse isomorphism ζ−1
X : DX → 3X .

In view of the above, the functor F = F(3,′) : Set→ ctmSTexop given in [10] may be

defined by F(X) = (DX ,DX , δX), F(ψ) = ψ̂−1, and now maps into ctmPSTexop since
(DX ,DX , δX) is plain.

X

ψ

²²

3X ≡ DX DX

Y 3Y ≡ DY

ψ−1

OO

DY

ψ̂−1

OO

Here ψ−1(µ)(x) = µ(ψ(x)), that is ψ−1(µ) = µ◦ψ. In terms of double-sets, if (A,B) ∈ DY
then the result of applying ψ−1 will be (Aµ(A,B)◦ψ, Bµ(A,B)◦ψ). Since

Aµ(A,B)◦ψ = {x ∈ X | µ(A,B)(ψ(x)) = 1}

= {x ∈ X | ψ(x) ∈ A}

= ψ−1[A],

and likewise Bµ(A,B)◦ψ = ψ−1[B], we see that ψ−1(A,B) = (ψ−1[A], ψ−1[B]) which is

precisely the inverse image as defined in [13]. It follows that the mapping ψ̂−1 from DY

to DX , which we will denote by θψ for short, is given explicitly by

(A× {1}) ∪ ((Y \B)× { 1
2
}) 7→ (ψ−1[A]× {1}) ∪ ((X \ ψ−1[B])× { 1

2
}).

Now let us recall from [10] that the category ctmPSTexop is isomorphic to the category
cdfPSTex of plain simple textures and complemented difunctions, which in turn is
isomorphic to the construct cfPSTex of plain simple textures and point functions ϕ
between the base sets satisfying the condition

(a) Ps′ 6⊆ Qs =⇒ Pϕ(s′) 6⊆ Qϕ(s),

and which are complemented in the sense that the corresponding difunction is comple-
mented. Note that the condition (b) mentioned in [9] is automatically satisfied for plain
textures. If we restrict our attention to the subcategories ctmPSTexop

dbl, cdfPSTexdbl

and cfPSTexdbl, respectively, whose objects have the form (DX ,DX , δX), X ∈ ObSet,
the same isomorphisms hold. Finally, these isomorphisms hold also in the more general
case where the morphisms in these categories are not assumed to preserve complemen-
tation, so we will be interested in the following functors:

Set
F // ctmPSTex

op
dbl

Nc // cdfPSTexdbl

Vc // cfPSTexdbl

and

Set
F // tmPSTex

op
dbl

N // dfPSTexdbl
V // fPSTexdbl
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where Nc, N and Vc, V are the isomorphisms mentioned above. Since Nc, N are identities
on objects by [10, Theorem 4.2], we need only determine the image (f θψ , F θψ ) of θψ under
these isomorphisms.

3.1. Lemma. For ψ : X → Y , the image of θψ under Nc or N is the difunction
(fθψ , F θψ ) given by

fθψ =
⋃
{P ((x,k),(ψ(x),k) | x ∈ X, k = 1

2
, 1},

F θψ =
⋂
{Q((x,k),(ψ(x),k)) | x ∈ X, k = 1

2
, 1}.

Proof. We prove the formula for f θψ , leaving the dual proof of the formula for F θψ to
the interested reader.

Since we are dealing with plain textures it follows from [10, Proposition 4.1] that

fθψ =
⋃
{P ((x,k),(y,l)) | P(x,k) ⊆ θg(C) =⇒ P(y,l) ⊆ C ∀C ∈ DY }.

Hence, to obtain the required equality it will be sufficient to show that

(y = ψ(x), l = k) =⇒ ((x, k) ∈ θψ(C) =⇒ (y, l) ∈ C ∀C ∈ DY ) =⇒ (y = ψ(x), l ≤ k).

Suppose first that y = ψ(x), l = k and take any C = (A× {1}) ∪ ((Y \B)× { 1
2
}) ∈ DY .

Then (x, k) ∈ θψ(C) = (ψ−1[A]×{1})∪ ((X \ψ−1[B])×{ 1
2
}) so y = ψ(x) ∈ A, l = k = 1

or y = ψ(x) ∈ Y \B, l = k = 1
2
, which gives (y, l) ∈ C as required.

Conversely, suppose that (x, k) ∈ θψ(C) =⇒ (y, l) ∈ C ∀C ∈ DY . There are two
cases to be considered.

Case 1. Suppose k = 1 and let A = Y \ B = {ψ(x)}. Then C = A × { 1
2
, 1} ∈ DY and

(x, 1) ∈ θψ(C) = ψ−1[A] × { 1
2
, 1} so by hypothesis (y, l) ∈ C = A × { 1

2
, 1}, which gives

y = ψ(x), and trivially we have l ≤ k.

Case 2. Suppose k = 1
2
and let A = ∅, B = Y \ {ψ(x)}, whence C = ((Y \ B)× { 1

2
} =

{ψ(x)} × { 1
2
} ∈ DY . Then (x, k) ∈ θψ(C) = ψ−1[{ψ(x)}], so by hypothesis (y, l) ∈ C

and we obtain y = ψ(x) and l = 1
2
= k.

This completes the proof of the required equality. ¤

Comparing the above expressions for f θψ , F θψ with the formulae for fϕ, Fϕ, where
ϕ = 〈ϕ1, ϕ2〉 : DX → DY , given following Lemma 2.3, we see that (f θψ , F θψ ) = (fϕ, Fϕ)
if and only if ϕ = 〈ψ, ι〉. Hence we have proved:

3.2. Corollary. For ψ : X → Y in Set we have

V ◦N ◦ F(ψ) = 〈ψ, ι〉 = Vc ◦Nc ◦ F(ψ).

We recall from Corollary 2.5 that all the complemented difunctions (fϕ, Fϕ) between
the double-set textures (Dx,DX , δX) and (DY ,DY , δY ) have the form 〈ψ, ι〉 for ψ : X →
Y , whence the functor Vc◦Nc◦F is a bijection on morphisms as well as objects and hence
an isomorphism between Set and cfPSTexdbl. For simplicity we rename this functor
F, that is we redefine F by setting F(X) = (DX ,DX , δX) and F(ψ) = 〈ψ, ι〉. On the
other hand cfPSTexdbl is a full subconstruct of cfPSTex, so we have established the
following:

3.3. Theorem. The functor F is a full embedding of Set in cfPSTex.

On the other hand we know from Lemma 2.3 that there exist (non-complemented) di-
functions between double-set textures which are not of the form 〈ψ, ι〉. Hence F, regarded
as a functor from Set to fPSTexdbl, is not a full embedding. In this case, on analogy
with the functor G considered in [10], we may define a functor G : fPSTexdbl → Set
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by setting G(DX ,DX , δX) = X and G(ϕ) = ϕ1, where ϕ1 is as in Lemma 2.3. It is
straightforward to verify that G is indeed a functor, and we omit the details. Hence we
have:

Set

F

77fPSTexdbl

G

ww

It is easy to show that G is not an adjoint of F, precisely because there are morphisms
in fPSTexdbl that are not of the form 〈ψ, ι〉, and likewise G is not a co-adjoint of F.

4. Constructs of Ditopological Double-Set Textures

In this final section we briefly consider ditopologies on double-set textures and their
relation to topologies on double sets and to topologies in the classical sense.

We call T a double-topology on X if T ⊆ DX is an intuitionistic topology on X in the
sense of [14], that is if it contains (X, ∅), (∅, X) and is closed under finite intersections
and arbitrary unions. We will denote by Dbl-Top the construct whose objects are pairs
(X,T ) where T is a double topology onX, and whose morphisms are continuous functions
between these spaces.

In view of the isomorphism between DX and 3X described above, it follows that double
topologies on X are essentially the same thing as 3-topologies on X. Hence to show that
Dbl-Top is isomorphic to the construct 3 - Top, it will suffice to show that ψ : X → Y is
continuous as a mapping from (X,T ) to (Y, V ), where T, V are double-topologies, if and
only if {g ◦ψ | g ∈ ζ−1

Y [V ]} ⊆ ζ−1
X [T ] (cf. [10, Example 2.8]). But if ψ is T–V continuous

and g ∈ ζ−1
Y [V ] then ζY (g) = (Ag, Bg) ∈ V so ψ−1(Ag, Bg) = (ψ−1[Ag], ψ

−1[Bg]) ∈ T by

the continuity of ψ. On the other hand ψ−1(ζY (g)) = ζX(g ◦ ψ), and so g ◦ ψ ∈ ζ−1
X [T ]

as required. The proof of the converse is similar, and is omitted. Hence we have:

4.1. Theorem. The functor Z : Dbl-Top→ 3-Top defined by Z(DX) = 3X , Z(ψ) = ψ,
is an isomorphism.

From the general discussion in [10] it is known that the 3-topologies on X correspond
in a one-to-one way with complemented ditopologies on the Hutton texture of 3X , and
that this texture is the product of the discrete texture (X,P(X), πX) and the Hutton
texture (N,N, ν) of 3 given by N = { 1

2
, 1}, N = {∅, { 1

2
}, N} and µ(∅) = N , ν({ 1

2
} = { 1

2
},

ν(N) = ∅. In view of the isomorphism between D and 3X this product texture must be
isomorphic with (DX ,DX , δX), and it is easy to check that in fact they are equal.

If on analogy with the construct I-Top given in [10, Example 2.8] we define the con-
struct 3-Ditop to have as objects the textures (DX ,DX , δX) equipped with a comple-
mented ditopology (τX , κX), and as morphisms bicontinuous mappings of the form 〈ψ, ι〉,
we see that 3-Top is isomorphic to 3-Ditop under the functor T taking the 3-topological
space (X,T ) to (DX ,DX , δX , τT , κT ), and the morphism ψ : X → Y to 〈ψ, ι〉. Moreover,
in view of Corollary 2.5, we clearly have 3-Ditop = cfPSDitopdbl, while 3-Ditop is a
non-full subconstruct of fPSDitopdbl.

In the context of double-set textures we will find it convenient to refer to 3-Ditop

as Dbl-CDitop, while Dbl-Ditop will denote the construct of double-set textures
(DX ,DX , δX) equipped with an arbitrary ditopology (τX , κX), and morphisms which
are bicontinuous mappings of the form 〈ψ, ι〉. Hence Dbl-CDitop is a full subconstruct
of Dbl-Ditop, which in turn is a non-full subconstruct of fPSDitopdbl.

We now return to the functors F and G considered earlier.
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Let (τ0, κ0) be a fixed ditopology on (N,N, ν). Then for any bitopology [19] (u, v) on
X the pair (u, vc) is a ditopology on (X,P(X), πX) and so the product (u⊗ τ0, v

c ⊗ κ0)
is a ditopology on (X,P(X), πX) ⊗ (N,N, ν) = (DX ,DX , δX). We denote this ditopol-
ogy by (τ(u,v), κ(u,v)). If ψ : X1 → X2 is (u1, v1)–(u2, v2) bicontinuous (also called
pairwise continuous), that is u1–u2 continuous and v1–v2 continuous, then 〈ψ, ι〉 is
(τ(u1,v1), κ(u1,v1))–(τ(u2,v2), κ(u2,v2)) bicontinuous. Indeed, a subbase for u2 ⊗ τ0 con-

sists of the sets X2 × G, G ∈ τ0 and U ×N , U ∈ u2, while 〈ψ, ι〉−1[X2 × G] = X1 × G,
〈ψ, ι〉−1[U ×N ] = ψ−1[U ]×N ∈ u1⊗ τ0, whence 〈ψ, ι〉 is continuous. Likewise, a similar
argument shows that it is cocontinuous. Hence,

4.2. Theorem. Let (τ0, κ0) be a fixed ditopology on (N,N, ν). Then we may spe-
cialize F to a functor F(τ0,κ0) : Bitop → Dbl-Ditop by setting F(τ0,κ0)(X,u, v) =
(DX ,DX , δX , τ(u,v), κ(u,v)) and F(τ0,κ0)(ψ) = 〈ψ, ι〉 for any bitopology (u, v) on X and
ψ ∈ MorBitop.

In the special case where (τ0, κ0) is complemented and the bitopology (u, v) has
the form (T,T) for some topology T on X it is clear that the corresponding ditopol-
ogy (τ(u,v), κ(u,v)), which we will denote by (τT , κT), is a complemented ditopology on
(DX ,DX , δX). Hence,

4.3. Corollary. Let (τ0, κ0) be a fixed complemented ditopology on (N,N, ν). Then we
may specialize F to a functor F(τ0,κ0) : Top→ Dbl-CDitop by setting F(τ0,κ0)(X,T) =
(DX ,DX , δX , τT , κT) for any topology T on X and ψ ∈ MorBitop.

We note in passing that there are just two complemented ditopologies on (N,N, ν),
namely the discrete, codiscrete ditopology (N,N) and the indiscrete, co-indiscrete di-
topology ({∅, N}, {∅, N}). Hence Corollary 4.3 gives two functors from Top to Dbl-

CDitop. There are also two non-complemented ditopologies on (N,N, ν), namely the
one for which the set { 1

2
} is open but not closed, and the one for which this set is

closed but not open. Hence Theorem 4.2 gives a total of four functors from Bitop to
Dbl-Ditop.

In order to specialize the functor G in a similar way let (τ, κ) be a ditopology on
(DX ,DX , δX) = (X ×N,P(X)⊗N, πX ⊗ ν) and define

τ1 = {G ∈ P(X) | G×N ∈ τ}, τ2 = {G ∈ N | X ×G ∈ τ},

κ1 = {K ∈ P(X) | K ×N ∈ κ}, κ2 = {K ∈ N | X ×K ∈ κ}.

Clearly (τ1, κ1) is a ditopology on (X,P(X), πX) and (τ2, κ2) a ditopology on (N,N, ν)
whose product is clearly coarser than (τ, κ). The following gives necessary and sufficient
conditions for equality.

4.4. Lemma. The following are equivalent:

(1) The product of (τ 1, κ1) and (τ2, κ2) coincides with (τ, κ).
(2) The following conditions hold:

a) Given H ∈ τ , (x, k) ∈ H, there exist G1 ∈ τ1, G2 ∈ τ2 so that (x, k) ∈
(G1 ×N) ∩ (X ×G2) ⊆ H.

b) Given K ∈ κ, (x, k) /∈ K, there exist K1 ∈ κ1, K2 ∈ κ2 so that K ⊆
(K1 ×N) ∪ (X ×K2) and (x, k) /∈ (K1 ×N) ∪ (X ×K2).

Proof. Immediate by the definition of product ditopology and the fact that we are dealing
with a plain texture. ¤

If we note that (τ1, (κ1)c) is a bitopology on X and that the bicontinuity of a
fPSTexdbl morphism ϕ trivially implies the bicontinuity of ϕ1 we may clearly specialize
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G to a functor G : fPSDitopdbl → Bitop. However, since there will again be no chance
of an adjoint situation with any of the functors F(τ0,κ0) we will regard G as a functor

from Dbl-Ditop to Bitop. In case (τ, κ) is a complemented ditopology then (τ 1, κ1),
(τ2, κ2) are also complemented, and in particular we may regard (τ 1, κ1) as representing
the topology τ1 with family of closed sets κ1. Hence, we may also regard G as a functor
from Dbl-CDitop to Top.

Bitop

F(τ0,κ0)

&&
Dbl−Ditop

G

ff Top

F(τ0,κ0)

&&
Dbl−CDitop

G

gg

For the left-hand diagram (τ0, κ0) is arbitrary and for the right-hand diagram it is a
complemented ditopology.

Now we may state:

4.5. Theorem. If (τ0, κ0) is taken to be the indiscrete, co-indiscrete ditopology on
(N,N, ν) then F = F(τ0,κ0) is an adjoint of G.

Proof. We give the proof for F, G as in the left-hand diagram, the complemented case
being essentially a special case of this.

Take (DX ,DX , δX , τ, κ) ∈ Dbl-Ditop and consider (〈ιX , ι〉, (X, τ
1, (κ1)c)), where ιX

denotes the identity function on X. Since for τ0 = {∅, N} we clearly have τ 1⊗ τ0 ⊆ τ we
see that

(DX ,DX , δX , τ, κ)
〈ιX ,ι〉 // (DX ,DX , δX , τ

1 ⊗ τ0, κ
1 ⊗ κ0) = F(X, τ1, (κ1)c)

is continuous, and likewise it is cocontinuous. Hence (〈ιX , ι〉, (X, τ
1, (κ1)c)) is a struc-

tured F arrow with domain (DX ,DX , δX , τ, κ). Since (X, τ1, (κ1)c) = G(DX ,DX , δX , τ, κ)
it remains to show that the structured arrow above has the universal property [1]. To
this end let (〈ψ, ι〉, (Y, u, v)) be any structured F arrow with domain (DX ,DX , δX , τ, κ).
We must prove the existence of a unique Bitop morphism f : (X, τ 1, (κ1)c) → (Y, u, v)
making the following diagram commutative.

(DX ,DX , δX , τ, κ)
〈ιX ,ι〉 //

〈ψ,ι〉

((RRRRRRRRRRRRRRRRRRR
F(X, τ1, (κ1)c)

F(f)

²²Â
Â
Â
Â

F(Y, u, v)

Since F(f) = 〈f, ι〉 we see that the only possible choice for f is ψ, so it remains only to
prove that ψ : (X, τ1, (κ1)c)→ (Y, u, v) is bicontinuous. Take U ∈ u. Then U×N ∈ u⊗τ0,
so 〈ψ, ι〉−1[U × N ] ∈ τ by the continuity of 〈ψ, ι〉. But 〈ψ, ι〉−1[U × N ] = ψ−1[U ] × N
so ψ−1[U ] ∈ τ1 and we see that ψ is τ 1–u continuous. A similar argument shows it is
(κ1)c–v continuous. ¤

The following will be useful when working directly in terms of 3-Top.

4.6. Lemma. Let T be a 3–topology on X, and (τT , κT ) the corresponding complemented
ditopology on (DX ,DX , δX). Then:

(1) τ1
T = {G ⊆ X | χG ∈ T}, τ

2
T =

{
N if 1

2
∈ T,

{∅, N} if 1

2
/∈ T.

(2) The following are equivalent:
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(a) τT = τ1
T ⊗ τ

2
T .

(b) For g ∈ T and x ∈ X with g(x) > 0 there exists Y ⊆ X with x ∈ Y and
χY ∈ T so that χY ≤ g if g(x) = 1, otherwise 1

2
∈ T and χY ∧ 1

2
≤ g.

(c) There exists a subbase B of T so that the above condition holds for all g ∈ B
and x ∈ X with g(x) > 0.

(d) (X,T ) = F(τ2
T
,κ2
T

)(G(X,T )).

Proof. (1) The first equality follows from χ̂G = G×N , and the second is clear.

(2) (a) =⇒ (b). Suppose (a) holds and take g ∈ T , x ∈ X, with g(x) > 0. Then
(x, g(x)) ∈ ĝ ∈ τT , so by Lemma 4.4 there exist Y ∈ τ 1

T and Z ∈ τ2
T with (x, g(x)) ∈

Y × Z ⊆ ĝ. Hence x ∈ Y and χY ∈ T by (1). If g(x) = 1 then 1 ∈ Z so Z = N and
Y × N ⊆ ĝ gives χY ≤ g. Otherwise, g(x) = 1

2
and we deduce from Y × Z ⊆ ĝ that

1 /∈ Z. Since g(x) ∈ Z we have Z 6= ∅ so Z = { 1
2
}. Hence 1

2
∈ T , and Y × Z ⊆ ĝ gives

χY ∧ 1

2
≤ g.

(b) =⇒ (c). Immediate.

(c) =⇒ (a). Assume (c) holds and take (x, k) ∈ H ∈ τT . Then we have h ∈ T

with H = ĥ, and so (x, k) ∈ ĥ. If B is the subbase of T mentioned in (c) we may
choose g1, g2, . . . , gn ∈ B with

∧n

i= gi ≤ h and k ≤
∧n

i=1 gi(x) since 3 is finite. Now
k ∈ N implies gi(x) > 0 for i = 1, 2, . . . , n, so there exist x ∈ Yi ⊆ X with χYi ∈ T
satisfying the conditions given in (b). If we let G1 =

⋂n

i=1 Yi, G2 = N if gi(x) = 1 for
all i = 1, 2, . . . , n and G2 = { 1

2
} otherwise, it is straightforward to verify the condition

(x, k) ∈ G1 ×G2 ⊆ H of Lemma 4.4 (2a).

(a)⇐⇒ (d). Immediate from the definitions. ¤

We will refer to a 3–topology satisfying the equivalent conditions of Lemma 4.6 (2) as
productive. Note that equivalent dual conditions may be written down for the cotopolo-
gies, and we omit the details.

In view of the isomorphism Z : Dbl-Top → 3-Top given in Theorem 4.1, we may
express Lemma 4.6 in terms of a double-set topology T on X as below. The proof is
straightforward, and is omitted.

4.7. Corollary. Let T be a double-set topology on X, and (τT , κT ) the corresponding
complemented ditopology on (DX ,DX , δX). Then:

(1) τ1
T = {G ⊆ X | (G,X \G) ∈ T}, τ2

T =

{
N if (∅, ∅) ∈ T,

{∅, N} if (∅, ∅) /∈ T.

(2) The following are equivalent:
(a) τT = τ1

T ⊗ τ
2
T .

(b) For (A,B) ∈ T and x ∈ X with x /∈ B there exists Y ⊆ X with x ∈ Y ,
B ∩ Y = ∅ and (Y,X \ Y ) ∈ T so that Y ⊆ A if x ∈ A and (∅, ∅) ∈ T if
x /∈ A.

(c) There exists a subbase B of T so that the above condition holds for all
(A,B) ∈ B and x ∈ X with x /∈ B.

(d) (X,T ) = F(τ2
T
,κ2
T

)(G(X,T )).

Again, a double-set topology satisfying the equivalent conditions of Corollary 4.7 (2)
will be called productive.

On analogy with the classical case, the mapping which takes a topology T on X to
the 3-topology on X with subbase {g ∈ 3X | {x | k < g(x)} ∈ T ∀ k ∈ 3} is called the
Lowen mapping ω [20], while the Lowen mapping ι takes a 3-topology T to the topology
on X with subbase {{x | k < g(x)} | k ∈ 3, g ∈ T}. For simplicity of notation we will
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also denote by ω, ι the corresponding functors ω : Top→ 3-Top and ι : 3-Top→ Top.
Naturally, in view of the isomorphism between 3-Top and Dbl-Top, these functors also
give rise to functors between Top and Dbl-Top.

4.8. Theorem. (1) For any topology T on X, the 3-topology ω(T) is productive and
contains all the constant 3-sets.

(2) T ◦ ω coincides with the functor F(N,N) : Top → 3-Ditop corresponding to the
discrete, codiscrete ditopology on (N,N, ν).

Proof. (1). It is clear from the definition that ω(T) contains all the constant 3-sets. A
direct proof of productivity may be obtained by verifying Lemma 4.6 (2c) for the given
subbase B of ω(T). The details are left to the interested reader. Alternatively, since 3

is a chain, the productivity is also a trivial consequence of [20, Theorem 3.3] which says
that {χG | G ∈ T} ∪ {k | k ∈ 3} is also a subbase of ω(T).

(2). Immediate from (1). ¤

4.9. Theorem. The functor G ◦ T : 3-Top → Top assigns to a 3-topology T on X a
(possibly strictly) weaker topology than does the Lowen functor ι. In case T is topological
these topologies coincide.

Proof. The proof of G(T(T )) ⊆ ι(T ) is essentially the same as for the classical case
[10, Theorem 5.15], and we omit the details. Likewise, taking X = {a, b} and letting
T = {0, χ{a}∧ 1

2
,1} as before leads to τT = {∅, {a}×{ 1

2
}, DX}, whence G(T(T )) = τ 1

T =
{∅, X}, whereas ι(T ) = {∅, {a}, X}. Finally, the proof of equality when T is topological
is formally the same as in [10, Theorem 5.15] and we again omit the details. ¤

It is well known [20] that ι is an adjoint of ω, but just as in the classical case the
example given in the proof of Theorem 4.9 may be used to show that G is not an adjoint
of F(N,N).

Finally we note that, exactly as for the classical case:

4.10. Theorem. Let T be a 3-topology on X.

(1) If T is productive it is topological, but not conversely.
(2) T is topological if and only if Gk(T ) is productive.

Proof. (1). The proof that productive implies topological follows the same lines as the
proof of [10, Theorem 5.16], but using Lemma 4.6 (2c) in place of [10, Lemma 5.13 (2ii)].
Likewise, the 3-topology T = {0, χ{a} ∧ 1

2
, χ{a},1} is easily seen to be topological but

not productive.

(2). If Gk(T ) is productive it is topological by (1), hence T is topological also. Con-
versely, if T is topological then Gk(T ) is topological so from the equality ω(ι(Gk(T ))) =
Gk(T ) and the fact that T is an isomorphism we find F(N,N)(G(X,Gk(T ))) = (X,Gk(T )).

However Gk(T ) contains all the constant 3-sets so (τ 2
Gk(T ), κ

2
Gk(T )) = (N,N) and we de-

duce from Lemma 4.6 (2d) that Gk(T ) is productive. ¤

If we call a double-set topology T topological if the corresponding 3-topology is topo-
logical, and denote by Gk(T ) the double set topology generated by T and (∅, ∅), then we
may state:

4.11. Corollary. Let T be a double-set topology on X.

(1) If T is productive it is topological, but not conversely.
(2) T is topological if and only if Gk(T ) is productive.

Clearly, the family of functors F continues to play as important a role in the study of
3-topologies and double-set topologies as it does for classical I-topologies.
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