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Composite quantile regression for linear
errors-in-variables models

Rong Jiang ∗

Abstract
Composite quantile regression can be more efficient and sometimes arbi-
trarily more efficient than least squares for non-normal random errors,
and almost as efficient for normal random errors. Therefore, we ex-
tend composite quantile regression method to linear errors-in-variables
models, and prove the asymptotic normality of the proposed estima-
tors. Simulation results and a real dataset are also given to illustrate
our the proposed methods.

2000 AMS Classification: primary 60G08, 62G10; secondary 62G20.

Keywords: Errors-in-variables; composite quantile regression.

Received 25/05/2014 : Accepted 17/07/2014 Doi : 10.15672/HJMS.2014237474

1. Introduction
Consider a linear errors-in-variables model as follows:{

Y = xTβ0 + ε,
X = x+ u,

(1.1)

where x is a p-dimensional vector of unobserved latent covariates which is measured in
an error-prone way, X is the observed surrogate of x, β0 is a p-dimensional unknown
parameter vector, Y are responses vector, (ε, uT )T is a p+1-dimensional spherical error
vector, and they are independent with a common error distribution that is spherically
symmetric. Spherically symmetric implies that ε and each component u have the same
distribution, which ensures model identifiability. We restrict ourselves to structural mod-
els where x are independently and identically distributed random variables. If x stem
from non-stochastic designs, the model is said to have a functional relationship, see Fuller
(1987) for details. Model (1.1) belongs to a kind of model called the errors-in-variables
model or measurement error model which was proposed by Deaton (1985) to correct for
the effects of sampling error and is somewhat more practical than the ordinary regression
model. Fuller (1987) gave a systematic survey on this research topic and present many
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applications of measurement error data. Other references can see Cui (1997a), He and
Liang (2000), Huang and Wang (2001), Ma and Tsiatis (2006), Schennach (2007), Liang
and Li (2009), Wei and Carroll (2009), Hu and Cui (2009), Jiang et al. (2012a) and so
on.

The composite quantile regression (CQR) was first proposed by Zou and Yuan (2008)
for estimating the regression coefficients in the classical linear regression model. Zou
and Yuan (2008) showed that the relative efficiency of the CQR estimator compared
with the least squares estimator is greater than 70% regardless of the error distribution.
Furthermore, the CQR estimator could be more efficient and sometimes arbitrarily more
efficient than the least squares estimator. Other references about CQR method can
see Kai, Li and Zou (2010), Kai, Li and Zou (2011), Tang et al. (2012a), Tang et al.
(2012b), Guo et al. (2012) and Jiang et al. (2012b, 2012c, 2013, 2014a, 2014b). These
nice theoretical properties of CQR in linear regression motivate us to consider linear
errors-in-variables models based on CQR method so as to make the method of CQR
more effective and convenient.

This paper is organized as follows. The main results are given in Section 2. Some sim-
ulations and a real data application are conducted in Section 3 to illustrate our method-
ology. Final remarks are given in Section 4. All the conditions and technical proofs are
collected in the Appendix.

2. Methodology and main results
If the true covariates x are observed, the parameters β in model (1.1) can be estimated

through (Zou and Yuan, 2008)

(b̃1, ..., b̃K , β̃) = argminb1,...,bK ,β

K∑
k=1

n∑
i=1

ρτk

(
Yi − bk − xTi β

)
,

where ρτk (r) = τkr − rI(r < 0), k = 1, 2, . . . ,K, be K check loss functions with 0 <

τ1 < τ2 < · · · τK < 1. Typically, we use the equally spaced quantiles: τk = k
K+1

for
k = 1, 2, . . . ,K. b̃k is estimator of bτk , where P (ε ≤ bτk |xi) = τk, bτk is the τk quantile
of ε.

Taking into account the measurement error in X, we consider estimating β as follows

(â1, ..., âK , β̂) = argmina1,...,aK ,β

K∑
k=1

n∑
i=1

ρτk

(
Yi − ak −XT

i β√
1 + ‖β‖2

)
, (2.1)

where âk is the estimator of bτk
√

1 + ‖β0‖2, k = 1, . . . ,K. The measurement error
correction factor 1√

1+‖β‖2
is widely used in linear models with additive errors (see Ma

and Yin, 2011) . The main intuition is the following. In the usual regression, one
minimizes the vertical standardized distance d{(Y − ak − XTβ)/s.d.(Y − ak − XTβ)}
where d stands for a suitable distance measure and s.d. is the standard deviation, because
only the vertical Y direction has errors. However, in the measurement error situation,
errors also occur along the horizontal X direction, hence a distance containing both
vertical and horizontal components should be favored. In fact, the minimization of the
same standardized distance with X replaced by x automatically corrects for this. If we
denote the variance of ε as Σε and the variance-covariance matrix of u as Σu, we have

(Y − ak −XTβ)

s.d.(Y − ak −XTβ)
=

(Y − ak −XTβ)√
Σε + βTΣuβ
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which is proportional to (Y − ak − XTβ)/
√

1 + ‖β‖2 under the spherical symmetry
assumption. The following theorem gives the the asymptotic normality for the composite
quantile regression estimator β̂.
Theorem 1 Assuming Conditions A1-A2 in the Appendix are satisfied, then

√
n(β̂ − β0)

L−→ N

0,

(
K∑
k=1

f(bτk )

)−2

(1 + ‖β0‖2)Σ−1
x SΣ−1

x

 ,

where L−→ stands for convergence in distribution, Σx = E(xxT ) and S =
∑K
k,k′=1 min(τk, τk′)(1−max(τk, τk′))Σx+

Cov

[∑K
k=1 ψτk

(
ε−uT β0√
1+‖β0‖2

− bτk
)(

u+ (ε−uT β0)β0
1+‖β0‖2

)]
.

Remark 1: In practice, there is constant term in model (1.1), then model (1.1) can be
write as {

Y = α0 + xTβ0 + ε,
X = x+ u.

The parameter α0 and β0 can be estimated as follows (Cui, 1997b)

(â∗1, ..., â
∗
K , β̂

∗) = argmina1,...,aK ,β

K∑
k=1

n∑
i=1

ρτk

(
Yi − Ȳ − ak − (Xi − X̄)Tβ√

1 + ‖β‖2

)
,

α̂ = Ȳ − X̄T β̂∗,

where Ȳ = 1
n

∑n
i=1 Yi and X̄ = 1

n

∑n
i=1 Xi.

3. Numerical studies
In this section, we conduct simulation studies to assess the finite sample performance

of the proposed procedures and illustrate the proposed methodology on AIDS clinical
trials. Furthermore, we compare CQR method with least square (LS) method proposed
by Fuller (1987), t-type (TT) method proposed by Hu and Cui (2009) and quantile
regression method with τ = 0.5 (QR0.5) proposed by He and Liang (2000).

3.1. Simulation example. We conduct a small simulation study with n = 100 and
the data are generated from model (1.1), where the random error variables are taken
to be 0.5*N(0,1), 0.2*t(3) and 0.05*C(0,1) distribution. The covariate vector x =
(x1, x2, . . . , xp) are generated from standard normal distribution N(0,1) and p=1,2,5 are
considered. We focus on K = 5, K = 9 and K = 19 for composite quantile regression,
respectively. The mean squared errors (MSE) and their standard deviations (STD) over
1000 simulations are summarized in Table 1, where MSE=‖β̂−β0‖2. It can be seen from
Table 1 that the CQR estimators have better performance than LS for heavy-tailed error
distributions ( t(3) and C(0,1)), but is less efficient when the error is normal distribution
N(0,1). Moreover, the results show that our method is more efficient than TT and QR0.5

in most cases. The three CQR estimators perform very similarly. Further, one can see
that the three CQR estimators are close to the true value.

3.2. Real data example. In this section, we present an analysis of an AIDS clinical
trial group (ACTG 315) study. One of the purposes of this study is to investigate the
relationship between virologic and immunologic responses in AIDS clinical trials. In
general, it is believed that the virologic response RNA (measured by viral load) and
immunologic response (measured by CD4+ cell counts) are negatively correlated during
treatment. Our preliminary investigations suggested that viral load depends linearly on
CD4+ cell count. We therefore model the relationship between viral load and CD4+
cell counts by model (1.1). Let Yi be the viral load and let xi be the CD4+ cell count
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Table 1 Simulation results for simulation example.
N(0,1) t(3) C(0,1)

p Method MSE STD MSE STD MSE STD
p=1 LS 0.0056 0.0077 0.0037 0.0063 1.8657 8.2551

TT 0.0072 0.0082 0.0025 0.0035 0.0214 0.1407
QR0.5 0.0086 0.0095 0.0030 0.0039 0.0209 0.1422
CQR5 0.0064 0.0081 0.0022 0.0033 0.0219 0.1399
CQR9 0.0064 0.0084 0.0023 0.0034 0.0217 0.1407
CQR19 0.0063 0.0083 0.0022 0.0033 0.0315 0.1686

p=2 LS 0.0192 0.0204 0.0198 0.1749 3.2342 10.1476
TT 0.0257 0.0284 0.0065 0.0074 0.6477 5.7348
QR0.5 0.0295 0.0330 0.0072 0.0083 0.6295 5.6614
CQR5 0.0216 0.0225 0.0061 0.0064 0.1525 0.5327
CQR9 0.0209 0.0216 0.0062 0.0066 0.1512 0.5065
CQR19 0.0206 0.0216 0.0061 0.0066 0.1586 0.5313

p=5 LS 0.1081 0.0724 0.0796 0.1203 4.7832 8.6034
TT 0.1498 0.1010 0.0426 0.0309 0.8189 1.9204
QR0.5 0.1613 0.1100 0.0446 0.0326 0.7865 1.9108
CQR5 0.1203 0.0775 0.0397 0.0286 0.6306 0.9306
CQR9 0.1170 0.0765 0.0390 0.0283 0.6560 0.9254
CQR19 0.1156 0.0772 0.0396 0.0286 0.7147 0.9592

for subject i. To reduce the marked skewness of CD4+ cell counts, and make treatment
times equal space, we take log-transformations of both variables. The xi are measured
with error (Liang et al., 2003). The model we used is

Y = xTβ0 + ε, X = x+ u,

where X is the observed CD4+ cell counts. The performances of CQR method with
different K are very similar (see Table 1), and considering computing time, K=5 is a good
choice in practice. Therefore, K=5 for CQR method is considered in this example. The
parameter estimator by using our proposed method is -0.0717. Moreover, the standard
deviation of the parameter is 0.0078 and the 90% confidence interval is [-0.0824,-0.0576]
by using the random weighting method (see Jiang et al., 2012a).

4. Conclusion
In this work, we have focused on the CQR method for linear errors-in-variables mod-

els and proven its nice theoretical properties. Moreover, the proposed approaches are
demonstrated by simulation examples and a real data application.

Appendix
To prove main results in this paper, the following technical conditions are imposed.

A1. Assume (ε, uT ) is spherically symmetric with finite first moment, and the distribu-
tion functions F of ε are absolutely continuous, with continuous densities f uniformly
bounded away from 0 and ∞ at the points bτk , k = 1, . . . ,K and Eε2 <∞.
A2. E(x) = 0 and Σx = E(xxT ) is positive definite.
Remark 2: Conditions A1-A2 are standard conditions, see He and Liang (2000).
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Now we proceed to prove the theorems.
Proof of Theorem 1. Denote

f1ik(bk, β) =ρτk

(
εi − uTi β√
1 + ‖β‖2

− bτk −
xTi (β − β0)√

1 + ‖β‖2
− (bk − bτk )

)
− ρτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)

− ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)(
εi − uTi β√
1 + ‖β‖2

− εi − uTi β0√
1 + ‖β0‖2

− xTi (β − β0)√
1 + ‖β‖2

− (bk − bτk )

)
,

f2ik(bk, β) =ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)(
εi − uTi β√
1 + ‖β‖2

− εi − uTi β0√
1 + ‖β0‖2

− xTi (β − β0)√
1 + ‖β‖2

− (bk − bτk )

)
.

(â1, ..., âK , β̂) is the minimizer of the following criterion:

K∑
k=1

n∑
i=1

[
ρτk

(
Yi − ak −XT

i β√
1 + ‖β‖2

)
− ρτk

(
Yi − aτk −X

T
i β0√

1 + ‖β0‖2

)]

=

K∑
k=1

n∑
i=1

f1ik(bk, β) +

K∑
k=1

n∑
i=1

f2ik(bk, β)

≡Qn(b1, ..., bK , β)

Therefore, by applying the identity in Knight (1998)

ρτ (x− y)− ρτ (x) = −yψτ (x) +

∫ y

0

{I(x ≤ z)− I(x ≤ 0)}dz.

We have

EQn(b1, ..., bK , β) =

K∑
k=1

n∑
i=1

E

[
ρτk

(
Yi − ak −XT

i β√
1 + ‖β‖2

)
− ρτk

(
Yi − aτk −X

T
i β0√

1 + ‖β0‖2

)]

=

K∑
k=1

n∑
i=1

E

[
ρτk

(
εi − bτk −

xTi (β − β0)√
1 + ‖β‖2

− (bk − bτk )

)
− ρτk (εi − bτk )

]

=

K∑
k=1

n∑
i=1

E

∫ xTi (β−β0)√
1+‖β‖2

+(bk−bτk )

0

{F (εi ≤ bτk + z|xi)− F (εi ≤ z|xi)}

 dz
→1

2

K∑
k=1

f(bτk )(
√
n(bk − bτk ),

√
n(β − β0))

[
1 0
0 Σx

1+‖β0‖2

]
(
√
n(bk − bτk ),

√
n(β − β0)T )T .

Next, we study f2ik(bk, β),

f2ik(bk, β) =− ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
1√

1 + ‖β0‖2

(
xi + ui +

(εi − uTi β0)β0

1 + ‖β0‖2

)T
(β − β0)

− ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
(bk − bτk ) +R.

Similar to the proof of Theorem 3 in Cui (1997a), we can obtain
n∑
i=1

[f1ik(bk, β)− Ef1ik(bk, β)] = op
(∥∥(√n(bk − bτk ),

√
n(β − β0)

)∥∥)
n∑
i=1

[R− ER] = op
(∥∥(√n(bk − bτk ),

√
n(β − β0)

)∥∥) .
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Thus it follows that
Qn(b1, ..., bK , β)→ Q0(b1, ..., bK , β)

=− 1√
n

K∑
k=1

n∑
i=1

ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
1√

1 + ‖β0‖2

(
xi + ui +

(εi − uTi β0)β0

1 + ‖β0‖2

)T √
n(β − β0)

− 1√
n

K∑
k=1

n∑
i=1

ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
√
n(bk − bτk )

+
1

2

K∑
k=1

f(bτk )(
√
n(bk − bτk ),

√
n(β − β0))

[
1 0
0 Σx

1+‖β0‖2

]
(
√
n(bk − bτk ),

√
n(β − β0)T )T .

The convexity of the limiting objective function, Q0(b1, ..., bK , β), assures the uniqueness
of the minimizer and, consequently, that

√
n(β̂−β0) =

Σ−1
x

√
1 + ‖β0‖2

√
n
∑K
k=1 f(bτk )

K∑
k=1

n∑
i=1

ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)(
xi + ui +

(εi − uTi β0)β0

1 + ‖β0‖2

)
+op(1).

The proof is completed.
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