
Hacettepe Journal of Mathematics and Statistics
Volume 44 (3) (2015), 735 – 746

An improved estimator of the distortion risk
measure for heavy-tailed claims
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Abstract
The main aim of this paper is to propose an alternative estimate of
the distortion risk measure for heavy-tailed claims. Our approach is
based on the result of Balkema and de Haan (1974) [3], and Pickands
(1975) [22] for approximating the tail of the distribution by a gener-
alized Pareto distribution. The asymptotic normality of the new esti-
mator is established, and its performance illustrated by some results
of simulation who shows the advantages of the new estimator over the
estimator based on the classical extreme-value theory.
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1. Introduction
A number of risks measures found in finance and insurance literature are special cases

of the distortion risk measure, defined by

(1.1) H [F, g] =

∫ +∞

0

g
(
F (x)

)
dx.

where X ≥ 0 is a loss random variable with cumulative distribution function (cdf) F
and the de-cumulative distribution function (ddf) F = 1 − F , which is also known as
survival function. The distortion function g : [0, 1]→ [0, 1] is assumed to be an increasing
function such that g(0) = 0 and g(1) = 1.
Dhaene et al. (2012) [9] show that, when the distortion function g is right continuous on
[0, 1), the formula (1.1) may be rewritten as follows

(1.2) H [F, g] =

∫ 1

0

Q(1− s)dg (s) ,
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where Q is the quantile function corresponding the cdf F , that is

Q(t) = inf {x : F (x) ≥ t} = F−1(t), for t ∈ ]0, 1[ .

The risk measureH [F, g], which can also be viewed as a premium calculation principle,
has manifested in the econometric literature, particularly in Yaari’s (1987) [31] dual
theory of choice under risk, and has been introduced into actuarial literature by Wang
(1996) [28]. A number of risk measures of this form have been discussed by Wirch and
Hardy (1999) [30].
In Artzner (1999) [1] and Artzner et al. (1999) [2] a risk measure satisfying the four
axioms of subadditivity, monotonicity, positive homogeneity and translation invariance
is called Coherent, and also demonstrated that the risk measure H [F, g] is coherent when
g is concave. Note that the class of concave distortion risk measures is only a subset of
the class of coherent risk measures.
Many special cases that have arisen in the finance and insurance literature are such:

• VaR: g(x) = 1[1−q,1] for some q ∈ ]0, 1[
• Tail-VaR: g(x) = min{ x

1−q , 1} for some q ∈ (0, 1)

• Proportional Hazard Transform: g(x) = x1/ρ for some ρ > 1
• Dual-Power Transform: g(x) = 1− (1− x)ρ for some ρ > 1
• Gini principle: g(x) = (1 + ρ)x− ρx2, with 0 < ρ ≤ 1.
• Lookback distortion: g(x) = xρ(1− ρ ln(x)), with 0 < ρ ≤ 1.

Detailed studies of distortion risk measures, also known as Wang’s risk measures, can
be found in, for example, Wang (1996) [28], Wang and Young (1998) [29], Hürlimann
(1998) [12], and Hua and Joe, (2012) [13].

A number of authors have tackled the distortion risk measure from the statistical
inferential point of view. A short survey and classification of papers in the area follows:

• Light-tailed distributions
– Classical-type asymptotic results
– Asymptotic results aimed at variance reduction

• Heavy-tailed distributions
– Fisher-Tippett-Gnedenko type extreme-value methods
– Pickands-Balkema-de Haan type Peack Over Threshold methods

Jones and Zitikis (2003) [16] noticed that the empirical counterpart of H [F, g] is a
linear combination of order statistics, commonly known as L-statistic. This opens up
a fruitful venue for developing statistical inferential results, which have been actively
investigated by a number of researchers. Speciffically, let X1, ..., Xn be independent
copies of X; and let X1,n, ..., Xn,n be the corresponding ascending order statistics. The
empirical estimator of the risk premium H [F, g] is obtained by substituting the quantile
Q on the right-hand side of equation (1.2) by its empirical counterpart

Qn(s) := inf {x : Fn (x) ≥ s} := F−1
n (s) ,

on the real line, defined by

Fn (x) =
1

n

n∑
i=1

1{Xi≤x},

with 1{.} being the indicator function. After straightforward computation, we obtain the
formula

Ĥn [Fn, g] =

∫ 1

0

Q̂n(1− s)dg (s) ,
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where Q̂n(1− s) is an empirical estimator of the quantile function, given by the formula

Q̂n(1− s) := Xn−k+1,n, where
k − 1

n
< s ≤ k

n
,

Then, the empirical estimator of H [F, g] is given by the formula

Ĥn [F, g] =

n∑
i=1

(
g

(
i

n

)
− g

(
i− 1

n

))
Xn−i+1,n.

For recent literature on statistical inference for distortion premiums, we refer to Jones
and Zitikis (2003) [16], Jones and Zitikis (2007) [17], Centeno and Andrade (2005) [8],
Furman and Zitikis (2008) [10], Brazauskas et al. (2008) [6], Greselin et al. (2009) [11],
Necir et al. (2010) [20], Joseph H. T. Kim. (2010) [18], Peng et al. (2012) [21] and the
references therein.
The asymptotic normality of the estimator Ĥn [F, g] is established by Jones and Zitikis
(2003) [16] as follows

√
n
(
Ĥn [Fn, g]−H [F, g]

)
D−→ N

(
0, σ2) ,

in particular, if g is differentiable, we have

σ2 :=

∫ 1

0

∫ 1

0

(min {F (t), F (s)} − F (t)F (s)) g (1− F (t)) g (1− F (s)) dtds,

by provided that the second moment are finite, that is E(X2) < ∞. This is a very
restrictive condition in the context of heavy-tailed distributions as the following consid-
erations show. Assume that the rv X1 follows the Fréchet law with index γ > 0, that
is, 1 − F (x) = exp

{
−x−1/γ

}
for x > 1. When γ ∈ (0.5, 1], the mean exist, but the

second moment E
(
X2 ) is infinite. Hence, the range is not covered by the CLT and

thus, another approach to handle this situation is needed. Making use of the results of
Balkema and de Haan (1974) [3], and Pickands (1975) [22] to approximate the tail of the
distribution by the Generalized Pareto Distribution (GPD), this result is know by the
Peack Over Threshold method (POT) to propose a alternative estimator for the distor-
tion risk premiums. Moreover, under suitable assumptions we established its asymptotic
normality, and we presente some results of simulation to illustrate the performance of
our estimator applying to the proportional hazard premium PHP. Empirical studies have
shown that Financial and actuarial data exhibit heavy tails or Pareto like distributions.
The class of regularly varying cdf’s is a major subclass of heavy-tailed distributions, it
includes distributions such as Pareto, Burr, Student, Lévy-stable, and loggamma, which
are known to be appropriate models for fitting large insurance claims, large fluctuations
of prices, log-returns, etc. (see, e.g., Beirlant et al., 2001 [4]; Reiss and Thomas, 2007
[23] and Rolski et al., 1999 [25]).

Note that throughout this paper, the standard notations P→, D−→ and d
= respectively

stand for convergence in probability, convergence in distribution and equality in dis-
tribution, N(a, b2) denotes the normal distribution with mean a and variance b2, and
N2 (µ,Σ) denote the bivariate normal distribution with mean vector µ and matrix of
variance-covariance Σ.

The paper is organized as follows. In section 2, we introduice the differents notions
and definitions of the used tools and the mains assumptions. In sections 3 we introduice
the new estimator of Hg,n, and presente the main result about the limiting behavior of
the proposed estimator. Some results of simulation and illustration are given in section
4. The Proofs of the mains results are postponed until section 5.
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2. Main assumptions, notations, and the POT method
Distortion functions. We assume that the distortion function g is regularly varying at
infinity, with index of regular variation r ∈ [0, 1], that is,

(2.1) g(x) = xr`(x),

where ` is a slowly varying function, that is, `(tx)/`(x)→ 1 when x→∞ for any t > 0.
For further properties of these functions, we refer to, for example, Resnick (1987) [24],
Seneta (1976) [26]. Examples of such distortion functions are:

• VaR: r = 0 and `(x) = 1[1−q,1](x)
• Tail-VaR: r = 1 and `(x) = 1/(1− q)
• Proportional Hazard Transform: r = 1/ρ and `(x) = 1

• Dual-Power Transform: r = 1 and `(x) = ρ− ρ(ρ−1)
2

x+ o (x)
• Gini Principle: r = 1 and `(x) = 1 + ρ− ρx.
• Lookback distortion: r = ρ and `(x) = (1− ρ ln(x)).

Distribution functions. We deal only with losses X that are heavy tailed. More
specifically, we work within the class of of regularly varying cdf’s. Namely, the survival
function or the tail of cdf F is said to be with regulary varying at infinity, that is

(2.2) F (x) = cx−1/ξ
(

1 + x−δL(x)
)

when x→∞,

for ξ ∈ (0, 1), δ > 0 and some real constant c, where L a slowly varying function.

The POT method. Let X1, ..., Xn be independent and identically distributed random
variables, each with the same cdf F , and let un be some a large number, ‘high level,’
which we later let tend to infinity when n→∞. With the notation

Fun(y) = P[X1 − un > y | X1 > un],

we have that

Fun(y) =
F (un + y)

F (un)
,

and thus

(2.3) Fun(y) =

(
1 +

y

un

)−1/ξ [
1 + (un + y)−δL (un + y)

1 + u−δn L (un)

]
.

Upon recalling the definition of the generalised Pareto distribution, we have that, for all
parameter values β > 0 and ξ > 0,

(2.4) Gξ,β(y) = 1−
(

1 + ξ
y

β

)−1/ξ

, 0 ≤ y <∞.

We see that, the right-hand side of equation (2.3) is a perturbed version of Gξ,βn(y),
with the notation βn = unξ. Balkema and de Haan (1974) [3], and Pickands (1975) [22]
have shown that Fun is approximated by a generalized Pareto distribution GPD function
Gξ,βn with shape parameter ξ ∈ R and scale parameter β = β (un), in the following
sense:

(2.5) sup
y>0
|Fun(y)−Gξ,β(y)| = O(u−δn L(un)),

where, for any δ > 0, we have u−δn L(un)→ 0 when un →∞.
Approximation (2.5) suggests to define an estimator of Fun(y) as follows:

(2.6) F̂un(y) = Gξ̂n,β̂n(y),
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for appropriate estimates ξ̂n and β̂n of ξ and β, respectively. Note that β will be estimated
separately, i.e. β = ξun will not be used. The reason for this is to achieve greater
flexibility in the parameter fitting, compensating for the underlying distribution not being
an exact GPD. Theorem 3.2 in Smith (1987) [27] gives us the asymptotic distribution of
the tail parameters

(
ξ̂n, β̂n

)
as follows

(2.7)
√
npn

(
β̂n/β − 1

ξ̂n − ξ

)
D−→ N2

(
0,Σ−1) when n→∞,

provided that √npnu−δn L(un) → 0 when n → ∞ and the function x 7→ x−δL(x) is
non-increasing for all sufficiently large x, where

(2.8) Σ−1 = (1 + ξ)

(
2 −1
−1 1 + ξ

)
.

We note that when √npnu−δn L(un) 9 0, then the limiting distribution in (2.7) is biased.
Next we define an estimator of F (un). For this, let N ≡ Nn(un) be defined by

N = # {Xi : Xi > un : 1 ≤ i ≤ n } ,
which is the number of those Xi’s that exceed un. Since N follows the binomial distri-
bution B(pn, n) with the parameter pn = P[X1 > un], which is equal to F (un), we have
a natural estimator of F (un) defined by

p̂n =
N

n
.

From the definition of Fun(y) we have F (un+y) = F (un)Fun(y). Hence, with the above
defined estimators for Fun(y) and F (un), we have the following estimator of F (un + y):

F̂ (un + y) = F̂ (un)F̂un(y)

= p̂nGξ̂n,β̂n(y).(2.9)

We shall use F̂ (un + y) to construct an estimator for the distortion risk measure H [F, g]
and then show in a simulation study that in this way constructed empirical distortion risk
measure outperforms the one constructed using Fisher-Tippett-Gnedenko type extreme-
value methods.

3. The new estimator and the main result
We start constructing a POT-based estimator of H [F, g] using the following lemma.

3.1. Lemma. Assume that F and g satisfying (2.2) and (2.1) respectively, and un be
some large level. Then, when n→∞, we have that

(3.1) Hn[F, g] =

∫ un

0

g
(
F (x)

)
dx+ (pn)r

β

r − ξ + rn

with the remainder term

rn = O
(
u1−r/ξ−δ
n

)
,

which converges to 0 when n→∞ because 1− r/ξ − δ < 0.

The proof of the lemma 3.1 is relegated to Section 5. With pn, β and ξ on the
right-hand side of equation (3.1) replaced by their estimators, we obtain an estimator of
H [F, g] , defined as follows:

(3.2) Ĥn [F, g] =

∫ un

0

g
(
Fn(x)

)
dx+ (p̂n)r

β̂n

r − ξ̂n
.
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The asymptotic normality of Ĥn [F, g] is established in the following theorem.

3.2. Theorem. Let F be a distribution function fulfilling (2.2) with ξ ∈ (0.5, 1) and
the distortion function g is differentiable and regularly varying at infinity with index
0 ≤ r ≤ 1. Suppose that L is locally bounded in [x0,+∞) for x0 ≥ 0 and x → x−δL (x)
is non-increasing near infinity, for some δ > 0. For any un = O(nαξ) with α ∈ (0, 1), we
have √

n

γnσn

(
Ĥn [F, g]−H [F, g]

)
D−→ N (0, 1) , as n→∞,

where

σ2
n := 1 +

θ21
γ2
n

pn (1− pn) +
2 (1 + ξ) θ22

pnγ2
n

+
(1 + ξ)2 θ23
pnγ2

n

− (1 + ξ) θ2θ3
pnγ2

n

.

and

γ2
n = Var

[ ∫ un

0

g′
(
F (x)

)
1 (X ≤ x) dx

]
,

with

θ1 =
βg′ (pn)

r − ξ , θ2 =
βg (pn)

r − ξ , θ3 =
βg (pn)

(r − ξ)2
,

and β = unξ.

4. Simulation Study
To illustrate the result of the Theorem 3.2 , we carry out a simulation study (by

means of the statistical software R, see Ihaka and Gentleman, 1996) [14], in this study
we are interesting by a popular risks measure named Proportional Hazard Premium
(PHP) where the distortion function is given by g(x) = x1/ρ with ρ > 1, to illustrate
the performance of our estimation and its comparison with the parametric estimator,
through its application to sets of samples taken from two distinct Pareto distributions
F (x) = x−1/ξ, x ≥ 1 (with tail index ξ = 2/3 and ξ = 3/4), we are interesting by the PHP
risk measure, that is, the distortion function is given by g (x) = x1/ρ with the distortion
paramater ρ > 1, in this case the esimator of the PHP is given by

Ĥρ,n =

∫ un

0

(
1

n

n∑
j=1

1(Xj≥x)

)1/ρ

dx+ (p̂n)1/ρ
ρβ̂n

1− ρξ̂n
.

In the first part, we evaluate the root mean squared error (rmse), the accuracy of the
confidence intervals via and their lengths (length) and the coverage probabilities (cprob),
the confidence level 1 − ζ is fixed at 0.95, we generate 200 independent replicates of
sizes 500, 1000 and 2000 from the selected parent distribution for ξ = 2/3. For each
simulated sample, we obtain an estimate of the estimators premium Hρ for two distinct
aversion index values ρ = 1.1 and ρ = 1.2. In each case we compute, by averaging
over all samples, the confidence bounds and the coverage probability and length of the
corresponding confidence interval. Note that lcb and ucb stand respectively for lower
confidence bound and upper confidence bound.
To this end. We summarize the results in Table 1 for ξ = 2/3, ρ = 1.1, and Table 2 for
ξ = 2/3,ρ = 1.2.

In this second part, we generate 200 independent replicate of size 1000 from the
selected parent distribution F (x) = x−1/ξ, x ≥ 1 (with tail index ξ = 2/3 and ξ = 3/4)
and estimate the PHP for two distinct aversion index values ρ = 1.1 and ρ = 1.2. We
interesting by the comparison of our estimator Ĥρ,n with the old estimator constructed
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Table 1. Point estimates and 95%-confidence intervals for H,based
on200 samples of Pareto-distributed rv’s with tail index ξ = 2/3 and
ρ = 1.1.

ρ = 1.1 H = 3.75

n Ĥρ,n rmse lcb ucb cprob length
500 3.312 0.561 2.23 4.39 0.54 2.168
1000 4.037 0.286 3.139 4.934 0.71 1.793
2000 3.765 0.050 3.189 4.342 0.82 1.153

Table 2. Point estimates and 95%-confidence intervals for H,based
on 200 samples of Pareto-distributed rv’s with tail index ξ = 2/3 and
ρ = 1.2.

ρ = 1.2 H = 5

n Ĥρ,n rmse lcb ucb cprob length
500 5.194 0.835 2.852 7.537 0.640 4.683
1000 5.069 0.355 3.444 6.696 0.815 3.252
2000 5.028 0.311 3.617 6.439 0.890 2.822

by the extreme values methods by (Necir and Meraghni 2009 [19]) and noted H̃ρ,n, this
comparaison is in terms the bias and the mean squared error (MSE). We summarize
the results in Table (3)

Table 3. Analog between the new estimator and the old estimator
of the premium hazard proportional for two tail index and two risk
aversions index

ξ 2/3 3/4
ρ 1.1 1.2 1.1 1.2
Hρ 3.75 5 5.714 10

Ĥρ,n
bias
MSE

3.752
0.002
0.0998

5.071
0.071
0.256

5.815
0.101
0.340

10.036
0.037
1.796

H̃ρ,n
bias
MSE

4.042
0.292
0.116

5.280
0.280
0.299

6.050
0.336
0.457

8.718
-1.283
2.048

From these results, we observe that the new estimator has smaller bias and mean
squared error than the old estimator in most cases, the new estimator performs worse,
which may be explained by the Theorem 3.2.

5. Proofs
The following propositions are instrumental for the proof of Theorem 3.2.

5.1. Proposition. Let F be a distribution function fulfilling (2.2) with ξ ∈ (0, 1), δ >
0, r ∈ [0, 1] and some real c. Suppose that L is locally bounded in [x0,+∞) for x0 ≥ 0.
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Then for n large enough, for any un = O
(
nαξ
)
, α ∈ (0, 1), we have that

pn = cn−α(1 + o(1)),(5.1)

γ2
n = O

(
n2α(ξ−r+1)

)
,(5.2)

and

(5.3)
√
npnu

−δ
n L (un) = O

(
n−α/2−αξδ+1/2

)
.

Proof of the proposition 5.1. We will now prove the result (5.1), let F (x) = cx−1/ξ
(
1 + x−δL (x)

)
.

Then for n large enough, we have

pn = P (X > un) = F (un)

= cu−1/ξ
n

(
1 + u−δn L (un)

)
,

with un = O
(
nαξ
)
, then we obtain the statement (5.1). The result (5.3) are straightfor-

ward from the result (5.1). We shall next prove statement (5.2). Note that the quantity
γ2
n defined the formulation of the theorem is equal to Var[Z], where

Z =

∫ un

0

g′
(
F (x)

)
1 (X ≤ x) dx.

Since F (x) = x−1/ξO(1), g(x) = xrO(1) and un = nαξO(1), we have that

E [Z] =

∫ un

0

g′
(
F (x)

)
F (x)dx

=

∫ un

0

g′
(
F (x)

)
dx−

∫ un

0

g′
(
F (x)

)
F (x)dx

= nα(1+ξ−r)O(1).

Furthermore,

E
[
Z2] =

∫ un

0

∫ un

0

g′
(
F (x)

)
g′
(
F (y)

)
min (F (x), F (y)) dxdy

=

∫ un

0

g′
(
F (x)

)(∫ x

0

g′
(
F (y)

)
F (y) dy

)
dx

+

∫ un

0

g′
(
F (x)

)(∫ un

x

g′
(
F (y)

)
F (y) dy

)
dx

= 2n2α(ξ−r+1)O(1).

Consequently, statement (5.2) holds. �

Proof of Lemma 3.1. We start with the elementary equation

Hg,n =

∫ un

0

g
(
F (x)

)
dx+

∫ ∞
un

g
(
F (x)

)
dx.

Hence, the remainder term rn noted in the formulation of the Lemma 3.1 is

rn =

∫ ∞
un

g
(
F (x)

)
dx− (pn)r

β

r − ξ .

Next we express the integral in the definition of rn as follows:∫ ∞
un

g
(
F (x)

)
dx =

∫ ∞
0

g
(
F (s+ un)

)
ds

=

∫ ∞
0

g
(
pnFun(s)

)
ds.
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Since Fun(s) = F (un + s) /F (un), we have that

Fun(s) =

(
1 +

ξ

β
s

)−1/ξ
1 + (un + s)−δL (un + s)

1 + u−δn L (un)
.

Consequently,∫ ∞
un

g
(
F (x)

)
dx = (pn)r

β

r − ξ

(
1 + (un + s)−δL (un + s)

1 + u−δn L (un)

)r
.

Since function L is locally bounded in [x0,∞) for x0 ≥ 0 and x−δL(x) is non-increasing
near infinity, then for all large n, we have that

ur/ξn

∫ ∞
un

x−r/ξ−δL(x)dx = O(u−δn ).

Consequently, for all large n,∫ ∞
un

g
(
F (x)

)
dx =

β

ξ

∫ ∞
1

g
(
pn (z)−1/ξ

)
dz
(

1− u−δn L (un) +O(u−δn L (un)
)
.

This implies that rn = O(u
1−r/ξ−δ
n ) and concludes the proof of Lemma 3.1. �

Proof of Theorem 3.2. We write
√
n
(
Ĥg,n −Hg

)
= An +Bn,

where

An =
√
n

∫ un

0

(
g
(
Fn (x)

)
− g

(
F (x)

) )
dx

and

Bn =
√
n

(
(p̂n)r

β̂n

r − ξ̂n
−
∫ ∞
un

g
(
F (x)

)
dx

)
.

Using Lemma 3.1 and the fact that
√
n u

1−r/ξ−δ
n → 0, as n→∞, we have that

Bn =
√
n

(
(p̂n)r

β̂n

r − ξ̂n
−
∫ ∞
un

g
(
F (x)

)
dx

)
=
√
n
(
Bn,1 +O

(
u1−r/ξ−δ
n

))
=
√
nBn,1 + o(1),

where

Bn,1 = (p̂n)r
β̂n

r − ξ̂n
− (pn)r

β

r − ξ

=
β̂n

r − ξ̂n
(p̂rn − prn) +

(pn)r β

(r − ξ̂n)
(β̂n/β − 1) +

(pn)r

(r − ξ̂n)(r − ξ)
(ξ̂n − ξ).

By Smith (1987) [27], we have that

(5.4) β̂n/β − 1 = OP

(
u−δn L (un)

)
and

(5.5) ξ̂n − ξ = OP

(
u−δn L (un)

)
.

Furthermore, by the CLT, we have that

(5.6) p̂n − pn = OP(
√
pn/n).
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Consequently, we have that

Bn,1 = θ1 (1 + oP(1))
√
n(p̂n − pn) + θ2 (1 + oP(1))

√
n(β̂n/β − 1)

+ θ3 (1 + oP(1))
√
n(ξ̂n − ξ),

where

θ1 =
β̂n

r − ξ̂n
, θ2 =

(pn)r β

(r − ξ̂n)
, θ3 =

(pn)r

(r − ξ)2
.

We now examine An, and start with the equations

An =

√
n

γn

∫ un

0

(
g
(
Fn(x)

)
− g

(
F (x)

))
dx

=

√
n

γn

∫ un

0

(
Fn(x)− F (x)

)
g′
(
F (x)

)
dx+ oP(1).(5.7)

Continuing with (5.7), we have that

An = −
√
n

γn

∫ un

0

(Fn(x)− F (x)) g′
(
F (x)

)
dx+ oP(1)

= −
√
n

γn

∫ un

0

(
1

n

∑
1 (Xi ≤ x)− F (x)

)
g′
(
F (x)

)
dx+ oP(1)

= −
√
n

γn

(
1

n

∑∫ un

0

1 (Xi ≤ x) g′
(
F (x)

)
dx−

∫ un

0

F (x)g′
(
F (x)

)
dx

)
+ oP(1)

= −
√
n

γn

(
Z −E [Z1]

)
+ oP(1),

where Z is the arithmetic average of the n random variables

Zi :=

∫ un

0

g′
(
F (x)

)
1 (Xi ≤ x) dx.

Note that the quantity γ2
n defined in the formulation of the Theorem 3.2 is equal to

Var[Z1].
Next, we shall show that

√
n

γn

(
Z −E [Z1]

) D−→ N(0, 1)

when n→∞. We shall next employ the Lindeberg-Feller Theorem. For this, we write:
√
n

γn

(
Z −E [Z1]

)
=

n∑
k=1

∫ un

0
g′
(
F (x)

)
1 (Xk ≤ x) dx−E [Z1]

γn
√
n

≡
n∑
k=1

ξk,n,

where E (ξk,n) = 0, E
(
ξ2k,n

)
= 1/n, and

∑n
k=1 E

(
ξ2k,n

)
= 1 for all n ≥ 1. Furthermore,

for all α ∈ (0, 1) , ξ ∈ (0, 1) and ε > 0, where un = O
(
nαξ
)
was used. This means that

n∑
k=1

E
[
|ξk,n|2 1 |ξk,n| > ε

]
=

1

γ2
n

E
[
[Zk −E [Z1]]2 1 |Zk −E [Z1]| > εγn

√
n
]

≤ u2
n

γ2
n

P
[
|Zk −E [Z1]| > εγn

√
n
]

≤ u2
n

γ4
nε2n

.
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We have, from (5.2) with un = nαξ, that

u2
n

γ4
nn

= nα(4(r−1)−2ξ)−1O(1)

As α (4 (r − 1)− 2ξ)− 1 < 0, we conclut that
n∑
k=1

E
[
|ξk,n|2 ; |ξk,n| > ε

]
→ 0 as n→∞.

Finally, we obtain that
√
n

γn

(
Ĥρ,n −Hρ

)
→ −

√
n

γn

(
Z −E [Z1]

)
+ θ1

√
pn (1− pn)

γn

√
n√

pn (1− pn)
(p̂n − pn)

+
θ2√
pnγn

√
npn

(
β̂n/β − 1

)
+

θ3√
pnγn

√
npn

(
ξ̂n − ξ

)
+ oP(1),

From Lemma A-2 of Johansson 2003 [15], under the assumptions of Theorem 3.2, for
any real numbers, t1, t2, t3 and t4, we have

E

[
exp

{
it1

√
n

γn

(
Z −E [Z1]

)
+ i
√
npn (t2, t3)

(
β̂n/β − 1

ξ̂n − ξ

)
+ it4

√
n (p̂n − pn)√
pn (1− pn)

}]

→ exp

{
− t

2
1

2
− 1

2
(t2, t3) Σ−1

(
t2
t3

)
− t24

2

}
(1 + oP (1)) .

as n→∞, where Σ−1 is that in (2.8), γ2
n = V ar(Z1) and i2 = −1. It follows that, with

this result that√
n

γnσn

(
Ĥρ,n −Hρ

)
D−→ N (0, 1) , as n→∞,

where

σ2
n = 1 +

θ21
γ2
n

pn (1− pn) +
2 (1 + ξ) θ22

pnγ2
n

+
(1 + ξ)2 θ23
pnγ2

n

− (1 + ξ) θ2θ3
pnγ2

n

.

This complet the proof of Theorem 3.2. �
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