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Abstract 

This paper presents the constrained thermodynamic optimization of a crossflow heat ex-
changer with ram air on the cold side.  The ram-air stream passes through a diffuser be-
fore entering the heat exchanger, and exits through a nozzle.  This configuration is used 
in the environmental control systems of aircraft.  In the first part of the study the heat 
exchanger is optimized alone, subject to fixed total volume and volume fraction occu-
pied by solid walls.  Optimized geometric features such as the ratio of channel spacings 
and flow lengths are reported.  It is found that the optimized features are relatively in-
sensitive to changes in other physical parameters of the installation.  In the second part 
of the study the entropy generation rate also accounts for the irreversibility due to dis-
charging the ram-air stream into the atmosphere.  The optimized geometric features are 
relatively insensitive to this additional effect, emphasizing the robustness of the thermo-
dynamic optimum. 
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1. Thermodynamic Optimization of Air-

Craft Energy Systems 

 In a paper at the 1999 ASME congress I 

drew attention to a very important and growing 

industrial sector that is an ideal candidate for the 

application of exergy analysis and thermody-

namic optimization: energy systems for modern 

aircraft (Bejan, 1999).  Interest is expressed by 

aircraft manufacturers, government sponsors and 

university researchers.   

 Exergy analysis and the minimization of 

exergy destruction can be used by themselves 

especially in areas where the total cost of the 

installation is dominated by the cost due to ther-

modynamic irreversibility.  The classical exam-

ple of this kind is cryogenics, or refrigeration at 

very low temperatures, where the power re-

quirement is substantial and proportional to the 

entropy generated in the cold space (Ahern, 

1980; Bejan, 1982). 

 To see why aircraft energy systems can also 
be conceptualized on the basis of thermodynamic 
optimization, consider their objectives and 
physical constraints.  Power and refrigeration 
systems are assemblies of streams and hardware 
(components).  The size of the hardware is al-
ways constrained (e.g., weight, volume).  Each 

stream carries exergy (useful work content), 
which is the life blood of the power system, i.e., 
another form of the fuel brought on board and 
burned in order to drive the system.  Exergy is 
destroyed (or entropy is generated) whenever 
streams interact with each other and with com-
ponents.  The design objectives are:  (i) to opti-
mize streams and components so that they de-

stroy least exergy subject to constraints, and (ii) 
to make sure that the optimized entities "match", 
or can be "fitted" together (wrapped around each 
other) into a new integrative design of the larger 
system. 

 What emerges is a visible structure that 
reflects the optimization principle and the vari-
ous constraints.  The same principle generates 
geometric shape and structure in natural systems, 
animate and inanimate, cf. constructal theory 
(Bejan, 1997, chapter 13). 

 In an earlier paper in this journal we illus-

trated this optimization principle by using as 

example a combined power and refrigeration 

system driven by a stream of hot gas (Ordoñez et 

al., 1999).  In the present paper we treat the more 

specific example of a crossflow heat exchanger 

with a stream of ram air on the cold side.  This 

heat exchanger type is often used in the envi-

ronmental control system of modern aircraft. 
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2. Thermodynamic Analysis 

 The crossflow heat exchanger brings to-

gether the hot air stream )fixed(m e
&  drawn from 

the engine, and the cold ram-air stream am& , 

Figure 1.  The inlet properties of the two streams 

are fixed, namely Te and Pe for the engine 

stream, and Ta, Pa and Va for the ram air.  The 

ram air velocity Va is first decreased in a diffuser 

such that the inlet to the heat exchanger is char-

acterized by T1, P1 and V1.  Immediately down-

stream of the heat exchanger, the ram air proper-

ties are T2, P2 and V2.  The stream is accelerated 

in a nozzle so that the exit pressure drops to the 

ambient level (Pa), where the velocity (V2) is 

comparable with the inlet velocity (V1).  Finally, 

the exhaust is brought in complete thermal and 

mechanical equilibrium with the ambient, at state 

(a). 

 The rate of entropy generation in the entire 

system shown with dashed line in Figure 1 is 

(Bejan, 1982, 1996; Moran, 1982) 

 
Figure 1.  Cross-flow heat exchanger with 

engine air on the hot side and ram air on the 

cold side, and the temperature-entropy diagram 

of the process undergone by the ram air stream. 
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where the term multiplied by am&  is zero and 
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The two fluids are treated as ideal gases with 

constant specific heats.  We expect the larger 

capacity flow rate to reside on the ram air side, 
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and use Cmin to nondimensionalize Eq.(1).  We 

also use the ambient properties to nondimension-

alize all the temperatures and pressures that ap-

pear in this analysis, 

  ˜ T =
T

Ta

˜ P =
P

Pa
 (3) 

 In this new notation, Eq.(1) delivers the en-

tropy generation number NS 
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where be = (R/cp)e and ba = (R/cp)a are known 

constants.  Fixed parameters are ˜ T e  and 
˜ P e , 

while µ, ˜ T a,out, 
˜ T e,out and 

˜ P e,out may vary.  

Included in the calculated NS are the irreversi-

bilities of the diffuser, heat exchanger, nozzle 

and mixing of the exhaust with the ambient. 

 The variable parameters are related through 

the first law statements for the three physical 

components that appear in Figure 1.  The dif-

fuser (a) →  (1) is governed by the first law 

(Moran and Shapiro, 1995), 
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1

2
aa1pa VV

2

1
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The state (1) is determined with reference to the 

temperature-entropy diagram of Figure 1, by 

specifying the diffuser isentropic efficiency 
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The state (1, rev) is located by intersecting  
P1,rev = P1  with s1, rev =s a , which yields 
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The dimensionless version of Eqs.(5)-(7) is 
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where the velocities have been nondimensional-

ized by defining 
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Note that the v definition is comparable with the 

Mach number definition, M = V/(kaRaTa)
1/2, 

where ka = (cp/cv)a. 

 The analysis of the nozzle flow from (2) to 

(a,out) consists of the first law statement and the 

definition of nozzle isentropic efficiency (Moran 

and Shapiro, 1995), 
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The state (3,rev) is located on Figure 1 by inter-

secting P3,rev = Pa with s2 = s3,rev, namely 

 0 = cpa ln
T2

T3, rev

– Ra ln
P2

Pa
 (13) 

The dimensionless summary of Eqs.(11)-(13) is 

 ( )2

2

2
out,aout,a2 vv

2

1
T
~

T
~

−=−  (14) 

 ηn =
˜ T 2 – ˜ T a,out
˜ T 2 – ˜ T 3,rev

 (15) 

 ˜ T 2 = ˜ T 3, rev
˜ P 2
b a  (16) 

3. Heat Transfer Analysis 

 The heat exchanger analysis is constructed 

in terms of effectiveness and number of heat 

transfer units, 

 ε =
˜ T e – ˜ T e,out

˜ T e – 1
 (17) 

 ε = µ
˜ T a,out – 1

˜ T e – 1
 (18) 
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The combined first law and heat transfer analysis 

of the heat exchanger yields the function 

 ε = F (N, µ, configuration)  (20) 

which is available for several stream-to-stream 

arrangements in the literature (Bejan, 1993). 

 The next task is to relate the heat transfer 

and pressure drop characteristics of the heat ex-

changer to the properties at states (1) and (2), 

which appeared in the analyses of the diffuser 

and the nozzle.  The overall thermal resistance 

(UA)–1 is the sum of three resistances, namely 

convection on the engine air side, conduction 

through the heat exchanger wall, and convection 

on the ram air side, 
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In this equation he and ha are the average heat 

transfer coefficients based on the contact sur-

faces Ae and Aa, respectively.  The separating 

wall has the thickness1 tw and thermal conduc-

tivity kw.  The conduction cross-section Aw is an 

appropriately defined average between Ae and 

Aa.  The heat transfer coefficients are available 

in the literature in the form of Stanton number 

correlations 
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where Ge and Ga are the mass velocities based 

on the flow cross-sectional areas Ace and Aca, 
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and Ree and Rea are the respective Reynolds 

numbers based on hydraulic diameters 
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 Equations (21)-(25) are discussed further in 

the next section, after assuming a specific geo-

metric arrangement of the two streams.  At this 

stage we can also list the formulas for evaluating 

the pressure drop along the engine air side 
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 ρ e =
2ρe ρe, out
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 (27) 

and the pressure drop along the ram air side, 
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  ρ a =
2ρ1ρ2

ρ1 + ρ2
 (29) 

The contraction and enlargement loss coeffi-

cients (Kc, Ke) for various geometries are avail-

able in the literature (Kays and London, 1984).  

The flow cross-section reduction factors are 
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where Afe and Afa are the frontal areas faced by 

the approaching streams.  The friction factors are 

available as functions of the respective Reynolds 

numbers, 

 ( ) ( )aaaeee ReffReff ==  (31) 

4. Heat Exchanger Geometry 

 The minimization of the entropy generation 

rate will be achieved by making appropriate 

changes in the physical parameters of the system.  

Most of these parameters account for the dimen-

sions of the flow passages that make up the heat 

exchanger.  In order to determine which of these 

parameters play trade-off roles that lead to the 

minimization of NS, we make the important as-

sumption that every single geometric parameter 

is not specified in priori.  In other words, we 

depart from the traditional approach in which 

some geometric features of the heat exchanger 

are fixed by the "surface type" that may be avail-

able in a handbook and on the market.  We can 

return to the commercial surface types only after 

we have determined the passage dimensions that 

guarantee operation in the close vicinity of the 

thermodynamic optimum. 

 This first phase of our work is aided by the 

preliminary simplifying assumption that fins are 

absent.  Each channel is a narrow space between 

two parallel plates of area Le ×  La, as shown in 

Figure 2.  There are n channels in total, n/2 for 

the em&  stream, and n/2 for the am&  stream.  The 

channel spacings are De and Da.  The height of 

the heat exchanger is H.  The plate thickness tw 

is assumed given, as in Eq.(21).  There are five 

dimensions that may vary:  Le, La, De, Da and H.  

The total volume B is an important constraint, 

   HLLB ae=  (32) 

which reduces to four the number of geometric 

degrees of freedom.  The cross-flow configura-

tion is also characterized by the relations 

    n =
H

tw + (De + Da ) / 2
 (33a) 

 Ae = Aw = Aa = n Le La  (33b) 

  σe =
De

2tw + De + Da
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where m is the total mass of the heat exchanger. 

 We place the entire thermodynamic optimi-

zation procedure on a fixed-volume basis [more 

on this when we discuss Eq.(41)] by using B1/3 

as length scale in the nondimensionalization of 

all the lengths: 
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Figure 2.  Cross-flow arrangement consist-
ing of parallel-plate channels. 
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Equations (38)-(40) reveal the ratio 
32B/me& , 

in which both em&  and B are specified.  We ac-

count for this ratio by defining the dimensionless 

number 
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The factors that contain B in Eqs.(38)-(40) be-

come 
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 The advantage of this formulation is that it 

begins to show analytically that certain geomet-

ric features play trade-off roles in the thermody-

namic design.  For example, Eqs.(38) and (39) 

show that the channel slenderness ratio De/Le 

can be varied to trade "improved heat transfer" 

for "decreased friction", and vice versa.  The 

same role is played by Da/La, as shown by 

Eqs.(38) and (40). 

5. The Generation of Entropy in the Heat  

Exchanger 

 We start with the innermost part of the sys-

tem—the crossflow heat exchanger—and opti-

mize its geometry subject to its volume and mass 

constraints, Eqs.(32) and (36).  We assume tem-

porarily that the heat exchanger is isolated from 

the rest of the system of Figure 1, as shown in 

the lower part of Figure 2.  The two streams 

( )ea m,m &&  are specified, and so are the two inlet 

states, (T1, P1) and (T3, P3).  The outlet condi-

tions (T2, P2) and (T4, P4) are the four unknowns 

that will be determined from the heat transfer 

and pressure drop analysis of the core.  For 

consistency, we changed the names of states (e) 

and (e, out) to (3) and (4), respectively. 

(e, out) to (3) and (4), respectively. 

 The heat transfer Eqs.(17)-(18) become 

 ε =
˜ T 3 − ˜ T 4
˜ T 3 − ˜ T 1

 (45) 

ε = µ
˜ T 2 − ˜ T 1
˜ T 3 − ˜ T 1

 (46) 

and, in conjunction with Eq.(20) they deliver ˜ T 4  

and ˜ T 2 .  The overall number of heat transfer 

units relation (38) can now be rewritten as 
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where the dimensionless wall thickness 

 ˆ t w = tw cpe ρe
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should not be confused with ˜ t w  = tw/B
1/3.  The 

pressure-drop Eqs.(39-40) become 
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while the average density definitions (27) and 

(29) continue to apply.  Invoking the ideal gas 

model for each stream, we can also write 
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The four outlet properties ( )4422 P
~
,T

~
,P

~
,T

~  calcu-

lated based on Eqs.(45-46) and (49, 50) are fi-

nally substituted into the entropy generation 

number of the heat exchanger, NS
he

, which has 

to be minimized: 

  NS
he = ln

˜ T 4
˜ T 3

− be ln
˜ P 4
˜ P 3

+ µ ln
˜ T 2
˜ T 1

− ba ln
˜ P 2
˜ P 1

 
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 

 
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 Equations (45)-(50) show that the NS
he

 cal-

culation also depends on the geometry of the 

heat exchanger, which is characterized by 8 vari-

ables:  ˜ L a ,
˜ D a ,

˜ L e ,  
˜ D e ,

˜ H , n,σa and σe .  The 

wall thicknessÿÿ
 EMBED "Eq36ÿÿ  " \* merge-

format  
( )ww t

~
ort̂  is assum h kt wnÿÿ The 8 

variables are related through equations (33a) and 
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(34), 

 n =
˜ H 

˜ t w + ˜ D e + ˜ D a( )/ 2
 (53) 

σe =
˜ D e

2 ˜ t w + ˜ D e + ˜ D a
σa =

˜ D a

2 ˜ t w + ˜ D e + ˜ D a
(54) 

and the volume and mass constraints (32) and 

(36), 

    ˜ L e
˜ L a

˜ H = 1  (55) 

     
˜ t w n ˜ L e

˜ L a = φ
 

 (56) 

The dimensionless parameter φ accounts for the 
total mass of the core, 

 φ = m/(ρw B) (57) 

and can be interpreted as a volume fraction:  the 

fraction occupied by all the solid walls in the 

entire volume B.  In view of the 5 geometric re-

lations (53) - (56), there are only three degrees of 

freedom in the core geometry, for example, 
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, ˜ L a ,
˜ H 

 

 
 

 

 
  (58) 

 The final ingredient in this analytical model 

is the characterization of the heat transfer sur-

face.  For simplicity, we assume fully developed 

flow between parallel plates, such that for each 

duct we may use the laminar and turbulent flow 

correlations (Bejan, 1993): 
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We also used the simpler Reynolds number nota-

tion ReDh + Re, so that for the duct of spacing 

De we write Dh,e = 2De and 
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and similarly 
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where ˜ B  is a dimensionless version of the speci-

fied size (length scale B1/3) of the heat ex-

changer core, 

  ˜ B = B
1 /3 ρe Pa( )1 /2 / µ e  (63) 

The ˜ B  dimension is assumed known, for exam-

ple ˜ B  = 107, which corresponds physically to 

the volume scale B = 0.5m3 (TABLE I).  This 

dimension also dictates the proportionality be-

tween ˆ t w  and ˆ t w , 

  ˆ t w = ˜ t w
˜ B Pr e

ke

kw
 (64) 

and the way to calculate the R parameter (41), 
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~
/m~R=  (65) 

where ˜ m  is the specified dimensionless mass 

flow rate on the engine-air side, 
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In summary, the friction factors and Stanton 

numbers appearing in Eqs.(47) and (49-50) are 

calculated after the Reynolds numbers (61, 62), 

by using Eqs.(59)-(60). 

6. Optimization of the Heat Exchanger  

 Geometry 

 The numerical work consisted of minimiz-

ing the heat exchanger entropy generation rate 

NS
he

, Eqs.(52) and (58), by varying three geo-

metric features of the core architecture.  This 

optimization work is illustrated sequentially in 

Figures 3-7.  The calculations were performed 

for the reference case defined by the physical 

and dimensionless parameters shown in TABLE 

I. 

 The first optimization opportunity is pre-

sented by the ratio De/Da, because we can expect 

large pressure drop irreversibilities in both ex-

tremes, De << Da and De >> Da.  This behavior 

is confirmed by Figure 3, which shows the effect 

of De/Da on the heat exchanger irreversibility 

NS
he

, when the other two geometric parameters 

( )H
~
,L

~
a

 are fixed.  The figure also shows how 

this irreversibility is divided between the heat 

transfer and fluid friction effects.  The lower 

curve ( )he
T,SN ∆  represents the irreversibility due 

solely to heat transfer across finite temperature 

differences: this portion was calculated based on 

the two temperature-ratio terms that appear in 

Eq.(52).  The difference between the two ordinate 
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values ( )he
T,S

he

S NN ∆−  represents the pressure 

drop irreversibility, or the two pressure-ratio 

terms that are present in Eq.(52). 

TABLE I.  Physical and dimensionless parame-

ters for the heat exchangers opti-

mized in Figures 3-7. 

B = 0.5 m3 R = ˜ m / ˜ B 2 = 10–3 

˜ B  = 107 
Ra = Re = 0.287 kJ 

kg–1 K–1 

cpa = cpe = 1 kJ kg
–1 

K–1 
tw = 0.4 mm 

ka = 0.02 W m–1 K–1 ˜ t w   = 5 ∞ 10–4 

ke = 0.03 W m–1 K–1 ˆ t w  = 0.512 

kw = 205 W m–1 K–1 Ta = 245 K 

am&  = 0.84 kg s–1 T1 = 245 K 

em&  = 0.16 kg s–1 ˜ T 1 =  1 

˜ m  = 1011 T
3 = 360 K 

Pa = P1 = 31 kPa ˜ T 3 =  1.47 

˜ P 1 =  1 µ = 5.33 

P3 = 269 k Pa 
µa = 1.55 ∞ 10–5 W 

s–1 m–1 

˜ P 3 = 8. 7  
µe = 2.12 ∞ 10–5 W 

s–1 m–1 

Pra = Pre = 0.7 φ = 0.1 

 
Figure 3.  The first minimization of the heat 

exchanger entropy generation rate. 

 It is clear that the heat exchanger irreversi-

bility has a minimum with respect to De/Da, and 

that this minimum is due almost entirely to the 

variation of the pressure drop irreversibility.  The 

heat transfer irreversibility is relatively insensi-

tive to changes in De/Da.  At the optimum the 

entropy generation rate is dominated by the irre-

versibility due to heat transfer. 

 We search for a second minimization of the 

heat exchanger irreversibility by varying the di-

mension ˜ L a  while continuing to hold 
˜ H  fixed.  

Since the volume ˜ L a
˜ L e

˜ H  is constrained, this 

optimization is the same as selecting the shape 

(aspect ratio La/Le) of each rectangular heat 

transfer surface, or trading off the flow length of 

one stream for the flow length of the other. 

 This procedure is illustrated in Figure 4.  

Plotted on the ordinate is the entropy generation 

rate already minimized with respect to De/Da:  

this number is labeled NS,m
he

, where the subscript 

"m" stands for "minimized once".  Figure 4 was 

constructed by repeating for many ˜ L a  cases the 

procedure of Figure 3.  In this way we find that 

the entropy generation rate has a minimum with 

respect to ˜ L a .  At this minimum the entropy 

generation rate is dominated by heat transfer 

effects ( )he
T,m,SN ∆ , and the contribution due to the 

pressure drops ( )he
T,m,S

he
m,S NN ∆−  is minor. 

 

Figure 4.  The variation of the minimized 

entropy generation rate with respect to the flow 

length ˜ L a . 

The resulting figure of merit of the second 

minimization is the entropy generation number 

NS,mm
he

 plotted in Figure 5.  On the abscissa var-

ies the third geometric feature of the heat ex-

changer, ˜ H .  Figure 5 was generated by repeat-

ing many times the nested optimization loops 

illustrated in Figures 3 and 4.  The conclusion is 

that a third minimization is not possible, i.e., an 

optimal dimension ˜ H  does not exist. 
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 The top frame of Figure 6 reports the opti-

mal ratio of channel spacings, and shows that 

(De/Da)opt is of order 1 and relatively insensitive 

to the assumed ˜ H  value.  The same figure shows 

the corresponding number of channels: n in-

creases with the transversal dimension ˜ H . 

 

Figure 5.  The heat exchanger entropy gen-

eration rate minimized with respect to De/Da and 
˜ L a , and its variation versus the third geometric 

parameter of the heat exchanger ( ˜ H ). 

 

Figure 6.  The ratio of channel spacings, number 

of channels and channel aspect ratios that corre-

spond to the system optimized in Fig. 5. 

 The streamwise dimensions of the twice-

optimized heat exchangers are reported in the 

middle part of Figure 6.  The lengths ˜ L e,opt  and 
˜ L a, opt  differ by a factor of order 10, and de-

crease gradually as the transversal dimension ˜ H  

increases.  The lower part of the figure reports 

the corresponding slenderness ratios of the flow 

channels, (D/L)e and (D/L)a.  These ratios are 

sufficiently small, so that the fully developed 

laminar or turbulent flow assumption [Eqs.(59)-

(60)] is justified.  In the range 0.1 < ˜ H  < 2 cov-

ered by Figures 5 and 6 the channel Reynolds 

numbers (Rea, Ree) vary in the range 200-2300. 

 In the same Rea,e range the effectiveness is 

greater than 0.99, and the number of heat transfer 

units is greater than 10.  Both ε and N are practi-
cally insensitive to changes in ˜ H . 

 As an alternative to the local minimization 

of NS,m
he

 (Figure 4), we fixed from the outset ˜ L a  

= 1 and proceeded with the optimization with 

respect to De/Da. The optimized spacings and 

channel aspect ratios are presented in Figure 7.  

These results can be compared directly with  

Figure 6 to see that the optimization of ˜ L a  has a 

significant effect on the spacings ratio 

(De/Da)opt, no effect on the number of channels, 

and only a weak effect on the slenderness ratios 

of the two channel shapes. 

 The geometric optimization results are sen-

sitive to changes in other parameters that until 

now were fixed.  The effect of changing the ca-

pacity  rate  ratio  µ is  documented  in  Figure 8.  
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Figure 7.  Optimal ratio of channel spac-

ings and number of channels when ˜ L a  = 1, and 

the corresponding streamwise dimensions and 

channel aspect ratios. 

 

Figure 8.  The effect of the capacity rate ra-

tio on the ratio of channel spacings, and on the 

minimized entropy generation rate. 

 

Figure 8.  The effect of the capacity rate ra-

tio on the ratio of channel spacings, and on the 

minimized entropy generation rate. 

The results were generated by repeating for sev-

eral µ values the double optimization procedure 

that led to Figure 6.  The upper graph in Figure 

8 shows that the capacity rate ratio has an effect 

on the order of magnitude of (De/Da)opt when µ 

is smaller than approximately 5, above this µ 

value the ratio (De/Da)opt is approximately equal 

to 1, i.e., insensitive to changes in µ and ˜ H . The 

lower graph shows the corresponding entropy 

generation number, which increases with µ and 

is practically insensitive to changes in ˜ H .  Not 

shown in Figure 8 are the corresponding aspect 

ratios of the two channels,  (Da/La)opt and  

 

Figure 9.  The effect of the engine-air mass 

flow rate  on the channel spacings ratio and the 

corresponding entropy generation rate. 
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Figure 10.  The effect of the heat exchanger 

core volume on the channel spacings ratio and 

the corresponding entropy generation rate. 

(De/Le)opt, which are consistently of order 10
–2 

and 10–3, respectively.  The numerical results 

also show that the capacity rate ratio has no ef-

fect on the required number of channels, n:  these 

results are also omitted. 

 The mass flow rate on the engine-air side is 

represented by the dimensionless group ˜ m .  The 

effect of changes in this parameter is docu-

mented in Figure 9.  The spacings ratio 

(De/Da)opt is consistently of order 1.  The lower 

part of Figure 9 shows that the entropy genera-

tion rate is practically constant when ˜ m  is 

smaller than the reference value of 1011, and that 
˜ H  has a noticeable effect when ˜ m  is greater 

than 1011.  The same series of numerical results 

show that ˜ m  has no effect on the number of 

channels that corresponds to each of these de-

signs.  Throughout the range covered by Figure 

9 the orders of magnitude of (Da/La)opt and 

(De/Le)opt are 10
–2 and 10–3 respectively. 

 The volume of the heat exchanger core ( ˜ B ) 

does not affect the order of magnitude of 

(De/Da)opt as 
˜ B  and ˜ H  increase.  This effect is 

shown in the upper part of Figure 10.  The corre-

sponding number of channels (n) is insensitive to 
˜ B  in the range investigated.  In the same range 

the channel aspect ratios (Da/La)opt and 

(De/Le)opt maintain their orders of magnitude, 

10–2 and 10–3, respectively.  The lower frame of 

Figure 10 shows that the volume has an effect on 

the entropy generation rate when ˜ B  and ˜ H  de-

crease. 

 

Figure 11.  The effect of the volume frac-

tion occupied by the solid parts of the heat ex-

changer core. 

 The volume fraction occupied by all the 

solid parts of the core (φ) has a noticeable effect 
on the spacings ratio as φ decreases:  see the up-
per frame of Figure 11.  In the same limit the 

calculated aspect ratios of the two channels be-

come insensitive to decreases in φ, namely 

(Da/La)opt ~ 10
–2 and (De/Le)opt ~ 10

–3.  The 

corres-ponding number of channels (n, not 

shown) decreases almost proportionally with φ 
and H

~
.  The lower frame of Figure 11 reports 

the corresponding entropy generation number, 

which decreases weakly and monotonically with φ. 

7. Minimization of the Total Entropy  

 Generation Rate 

 We now reconsider the entire optimization 

procedure by focusing on the total entropy gen-

eration rate, Eqs.(1) and (4).  Instead of account-

ing only for the irreversibility of the heat ex-

changer (sections 5 and 6), we now include the 

entropy generated by the diffuser, nozzle and 

mixing undergone by the exhaust. 

 In this new analysis the streams ( )ea m,m &&  

are specified, and so are the inlet states of the 

diffuser (Ta, Pa) and engine air (T3, P3).  The 

diffuser and nozzle efficiencies are specified, ηd 

= 0.97 and ηn = 0.95.  The diffuser inlet state is 

also specified: Ta, Pa and Ma = 0.34 , which core-

sponds to Va = 107 m/s.  The heat transfer and 

pressure drop analyses of the diffuser, heat ex-
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changer and nozzle (sections 2-4) allow us to 

determine the four unknowns of the problem:  

the outlet temperature and velocity of the nozzle 

(Ta,out, Va,out) and the outlet conditions of the 

heat exchanger (T4, P4).  With these values 

known, the entropy generation number is finally 

calculated from Eq.(4). 

 As in the optimization of the isolated heat 

exchanger, we regard NS as a function of three 

dimensionless parameters, De/Da, 
˜ L a  and 

˜ H .  In 

the first phase of the numerical work we mini-

mized the total entropy generation rate with re-

spect to De/Dawhile holding 
˜ L a  and 

˜ H  fixed.  

The results obtained en route to NS,m and 

(De/Da)opt are qualitatively similar to what we 

saw in Figure 3, and are not shown. 

 The second phase of the numerical work 

focused on the second minimum:  the minimiza-

tion of NS,m with respect to 
˜ L a .  The resulting 

NS,m curve has the same behavior versus ˜ H  as 

the NS,mm
he

 curve of Figure 5.  The NS,mm value, 

however, is almost three times greater than 

NS,mm
he

 because of the additional irreversibility 

contributions made by the diffuser, nozzle and 

mixing with the ambient. 

 The resulting geometric characteristics of 

the optimized design are reported in Figure 12.  

These should be compared with the correspond-

ing quantities obtained by minimizing the heat 

exchanger irreversibility alone, Figure 6.  The 

ratio of channel spacings (Figure 12) is larger by 

a factor of ten or more than in Figure 6:  the per-

formance of the greater system is optimized 

when the engine-air passages are ten or more 

times wider than the ram-air passages.  The 

lower portion of the (De/Da)opt curve in Figure 

12 is a reflection of the Reynolds number on the 

engine-air side, which passes through the lami-

nar-turbulent transition as ˜ H  decreases (Ree = 

2300).  In the same range the ram-air flow 

through the heat exchanger persists in the lami-

nar regime. 

 The upper graph in Figure 12 also shows 

that the required number of channels (n) is prac-

tically the same as when the heat exchanger irre-

versibility was minimized alone (Figure 6).  The 

channel lengths and slenderness ratios shown in 

the lower part of  Figure 12 have  the same order  
 

 

 

Figure 12.  The ratio of channel spacings, 

number of channels and slenderness ratios that 

correspond to the double minimization of the 

total rate of entropy generation. 

of magnitude and behavior as in the preceding 

sections (Figure 6).  The same can be said about 

the heat exchanger effectiveness and number of 

heat transfer units, which are comparable with 

the earlier results, ε ~>  0.99 and N ~>  12.  This 

degree of robustness is remarkable, especially if 

we consider the occurrence of the laminar-

turbulent transition on the engine-air side, in the 

case of Figure 12. 

 The thermodynamic optimization of the 

complete system of Figure 1 continued with the 

numerical study of the individual effects of µ, 

˜ m , ˜ B  and φ on the twice-minimized entropy 

generation rate and the associated geometric fea-

tures.  The behavior of these results is not shown 

because it parallels what we saw earlier in Fig-

ures 8-11.  New effects that deserve to be inves-

tigated at the complete-system level are the ap-

proach velocity Va and the diffuser and nozzle 

efficiencies. 
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Figure 13.  The effect of the approach 

Mach number on the optimized internal geome-

try of the heat exchanger. 

 Figure 13 shows the effect of the air stream 

relative velocity, which is represented by the 

Mach number Ma on the abscissa.  The effect on 

the optimized geometric parameters De/Da, 
˜ L e  

and ˜ L a  is weak, regardless of the relative height 

of the heat exchanger core (0.1 < ˜ H  ≤ 2).  The 

optimized internal structure of the heat ex-

changer is robust with respect to changes in the 

external (global) parameter Ma.  The bottom 

graph of Figure 13 confirms a trend that was 

expected:  the minimized entropy generation rate 

increases monotonically as the relative velocity 

increases. 

 More robustness is documented in Figure 

14, which shows the effect of varying the dif-

fuser efficiency in the range 0.8 ≤ ηd ≤ 1.  The 

effect on the optimized geometric features of the 

heat exchanger core is imperceptible.  As ex-

pected, the total entropy generation rate de-

creases monotonically as ηd increases.  The dif-

fuser irreversibility is not negligible, because 

NS,mm decreases by more than 10 percent as ηd 

increases from 0.8 to 1. 

 

Figure 14.  The effect of the diffuser effi-

ciency on the optimized internal geometry of the 

heat exchanger. 

 It can be shown analytically that the nozzle 

efficiency has no effect on the total entropy gen-

eration rate, Eq.(4), and, consequently, no effect 

on the optimized geometry of the heat ex-

changer.  The reason is that the entropy genera-

tion rate due to thermal and mechanical mixing 

with the ambient, from state (a,out) to (0), is in-

cluded in the total entropy generation rate (1).  

The exergy savings that would be registered in 

the nozzle section by increasing ηn are destroyed 

immediately downstream of the nozzle. 

8. Conclusion 

 The main conclusion of this study is that it 

is possible to determine several of the main ar-

chitectural features of a relatively complicated 

system by optimizing it thermodynamically sub-

ject to global constraints.  The crossflow heat 

exchanger with ram air flow on the cold side 

(Figure 1) was used as an example. The opti-

mized geometric features were robust relative to 

changes in other physical parameters, such as the 

core height ˜ H  in Figure 6, or the solid fraction φ 
in Figure 11. 

 More robustness emerged when we in-

cluded in the entropy generation formula the 

contribution made by the discharging of the air 

stream [state (a,out)] into the ambient [state (0)].  

The optimized geometric features are relatively 



 

 Int.J. Applied Thermodynamics, Vol.2 (No.4) 157 

insensitive to this additional and thermodynami-

cally relevant irreversibility.  The reason, we 

think, is that the heat exchanger cases optimized 

in the first part of the study had relatively high ε 
and N values.  In this range the minimization of 

the heat exchanger irreversibility in isolation 

"makes sense", as explained in the maximum-

genS&  paradox discussed in Bejan (1997), pp. 

604-609.  In other words, in this (ε, N) range the 
principle of proper thermodynamic isolation is 

satisfied and, as a preliminary step, the heat ex-

changer can be optimized alone. 

 The system analyzed and optimized in this 

study showed that opportunities for geometric 

optimization can be identified based on relatively 

simple but realistic models subjected to con-

straints that are ultimately related to economic 

considerations.  Once identified, these optimiza-

tion opportunities deserve to be pursued in engi-

neering practice, based on considerably more 

refined models with more systems parameters.  

The robustness of the optimum relative to certain 

parameters may be used to simplify future op-

timizations of similar combined systems. 
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Nomenclature 

A heat transfer area, m
2
 

Ac cross-sectional area, m
2
 

Af frontal area, m
2
 

b dimensionless constant, R/cp 

B volume, m
3
 

cp specific heat at constant pressure, J kg
−1
 K

−1
 

C capacity rate, WK
−1
 

D spacing, m 

Dh hydraulic diameter, m 

f friction factor 

G mass velocity, kg m
−2
 s

−1
 

h heat transfer coefficient, W m
−2
 K

−1
 

H height, m 

k thermal conductivity, W m−1 K−1 

ka cp/cv of air 

Kc,e contraction and expansion coefficients 

La,e lengths, m 

m mass, kg 

m&  mass flow rate, kg s
−1 

˜ m  dimensionless engine-air flow 

rate,Eq.(66) 

M Mach number, Eq.(10) 

n number of channels 

N number of heat transfer units, Eq.(19) 

NS entropy generation number, Eq.(4) 

P pressure, Pa 

Pr Prandtl number 

0Q&  heat transfer rate, W 

R dimensionless factor, Eq.(41) 

Ra,e ideal gas constants, J kg−1 K−1 

Re Reynolds number, Eqs.(25) 

s specific entropy, J kg
−1
 K

−1
 

genS&  entropy generation rate, W K
−1
 

St Stanton number 

t thickness, m 
ˆ t w  dimensionless wall thickness, Eq.(48) 

T temperature, K 

U overall heat transfer coefficient, W m
−2
 K

−1
 

V velocity, m s−1 

Greek symbols 

∆P pressure drop, Pa 

∆T temperature difference, K 

ε effectiveness, Eqs.(17-18) 

ηd diffuser efficiency 

ηn nozzle efficiency 

µ ratio of capacity rates, Eq.(2) 

µa,e viscosities, kg s
−1
 m

−1
 

ρ density, kg m
−3
 

σ cross-section reduction factor 

φ volume fraction occupied by solid walls 

Superscripts 

he heat exchanger 

~ dimensionless notation, Eqs.(3), (37) 

and (63) 

Subscripts 

a ambient air 

e engine air 

m minimized once 

max maximum 

min minimum 

mm minimized twice 
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opt optimum 

out outlet 

rev reversible 

w wall 
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