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On the expected discounted penalty function for a
risk model with two classes of claims and random

incomes
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Abstract

In this paper, we consider a risk model with two independent classes
of insurance risks and random incomes. We assume that the two inde-
pendent claim counting processes are, respectively, the Poisson and the
Erlang(2) process. When the individual premium sizes are exponen-
tially distributed, the explicit expressions for the Laplace transforms
of the expected discounted penalty functions are derived. We prove
that the expected discounted penalty functions satisfy some defective
renewal equations. By employing an associated compound geometric
distribution, the analytic expressions for the solutions of the defective
renewal equations are obtained. Assuming that the distributions of pre-
mium sizes have rational Laplace transforms, we also give the explicit
representations for the Laplace transforms of the expected discounted
penalty functions.
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1. Introduction
In the actuarial literature, the surplus process of an insurance company is often mod-

eled by the following classic risk process

U(t) = u+ ct−
N(t)∑
i=1

Yi, t ≥ 0, (1.1)

where u = U(0) ≥ 0 is the initial surplus, c > 0 is the constant premium income rate,
N(t) counting the number of claims that occurred before time t is a Poisson process, and
{Yi}i≥1 is a sequence of strictly positive random variables (r.v.) representing the claim
amounts.

Classic risk models rely on assumption that there is only one class of claims. Although
this hypothesis simplifies the study of many risk quantities, it has been proven to be
too restrictive in different contexts. In recent years, many authors have studied various
aspects of the so-called correlated aggregate claims risk model. Yuen et al. [18] considered
the non-ruin probability for a correlated risk process involving two dependent classes of
insurance risks, with exponential claims, which can be transformed into a surplus process
with two independent classes of insurance risks, for which one claim number process is
Poisson and the other is a renewal process with Erlang(2) claim inter-arrival times. Li
and Garrido [9] considered a risk process with two classes of independent risks, namely,
the compound Poisson process and the renewal process with generalized Erlang(2) inter-
arrival times. A system of integro-differential equations for the non-ruin probabilities
was derived and explicit results for claim amounts having distributions belonging to
the rational family were obtained. A further extension was given by Li and Lu [10].
They derived a system of integro-differential equations for the Gerber-Shiu discounted
penalty functions, when the ruin is caused by a claim belonging either to the first or
to the second class and obtained explicit results when the claim sizes are exponentially
distributed. Recently, Zhang et al. [19] extended the model of Li and Lu [10], by
considering the claim number process of the second class to be a renewal process with
generalized Erlang(n) inter-arrival times. The authors derived an integro-differential
equation system for the Gerber-Shiu functions, and obtained their Laplace transforms
when the corresponding Lundberg equation has distinct roots. Chadjiconstantinidis and
Papaioannou [4] studied a risk model with two independent classes of insurance risks in
the presence of a constant dividend barrier. A system of integro-differential equations
with certain boundary conditions for the Gerber-Shiu function was derived and solved.
Using systems of integro-differential equations for the moment-generating function as well
as for the arbitrary moments of the discounted sum of the dividend payments until ruin,
a matrix version of the dividends-penalty was derived. Under the risk models involving
two classes of insurance risks described above, the premiums are assumed to be received
at a constant rate over time.

Sometimes, the insurance company may have lump sums of income. In order to
describe the stochastic income, Boucherie et al. [3] added a compound Poisson process
with positive jumps to the Cramér-Lundberg model. The (non-)ruin probabilities for
the risk models with stochastic premiums were studied in Boikov [2] and Temnov [12].
Assuming that the premium process is a Poisson process, Bao [1] studied the Gerber-
Shiu function in the compound Poisson risk model. Yang and Zhang [17] extended the
compound Poisson risk model in Bao [1] to a Sparre Andersen risk model with generalized
Erlang(n) interclaim time distribution. Labbe and Sendova [7] considered a risk model
with stochastic premiums income, where both the premium size distribution and the
claim size distribution are non-lattice. Zhang and Yang [20] extended the model in
Labbe and Sendova [7] by assuming that there exists a specific dependence structure



among the claim sizes, interclaim times and premium sizes. Xie and Zou [16] construct
a risk model with a dependence setting where there exists a specific structure among the
time between two claim occurrences, premium sizes and claim sizes. When the claims are
subexponentially distributed, the asymptotic formulae for ruin probabilities are obtained.

All risk models with random incomes described in the paragraph above focus on risk
model with only one class of insurance risk. Motivated by these papers, we explore
analogue problems, but in a risk model with random incomes involving two independent
classes of insurance risks. Moreover, we assume that the two independent claim counting
processes are, respectively, the Poisson and the Erlang(2) process.

Studying the risk model with two classed of claims and random incomes is of interest
in ruin theory for two reasons. The first is to make predictions and give risk measures
for smaller business whose premium income is more fluctuant than what is received in
well establish and large insurance company. The second reason for study this risk model
is to provide insight about how the randomness in premiums’ process influences the risk
process with two classes of claims. Replacing the constant premium income in risk model
with two classes of claims by a stochastic income can also be interpreted as a stepping
stone for risk models with two classes of claims that are closer to real phenomena.

The paper is structured as follows: the risk model with two independent classes of
insurance risks and random incomes is introduced in Section 2. Assuming that the pre-
miums are exponentially distributed, the explicit expressions for the Laplace transforms
of the expected discounted penalty are derived in Section 3 and the defective renewal
equations for the expected discounted penalty are obtained in Section 4. By employing
an associated compound geometric distribution, the analytic expressions for the solu-
tions of the defective renewal equations are also given in Section 4. In Section 5, given
that distributions of the premium sizes have rational Laplace transforms, we derive the
explicit representations for the Laplace transforms of the expected discounted penalty
functions. Finally, in Section 6, two numerical examples are given.

2. The model
Let us consider the surplus process U(t) of an insurance company,

U(t) = u+

M(t)∑
j=1

Xj − S(t), t ≥ 0, (2.1)

where u = U(0) is the initial capital and Xj is the jth premium income with distribution
function G, probability density function (p.d.f.) fG, mean µG and Laplace transform
(LT) f̃G(s) =

∫∞
0
e−sxfG(x)dx. We assume thatM(t) is a Poisson process with intensity

λ > 0, then the corresponding premium income inter-arrival times, denoted by {Wi}i≥1,
are independent and identically distributed (i.i.d.) exponentially distributed r.v. with
parameter λ.

In this paper, we assume that S(t) is generated by two classes of insurance risks,
namely

S(t) = S1(t) + S2(t) =

N1(t)∑
i=1

Yi +

N2(t)∑
i=1

Zi, t ≥ 0, (2.2)

where Si(t), i = 1, 2, represents the aggregate claims up to time t from the i-th class.
Although such models are usually studied in the context of correlated aggregate claims,
here we assume that S1(t) and S2(t) are stochastically independent.

The r.v. {Yi}i≥1 are the nonnegative claim severities from the first class, which are
i.i.d. random variables with common distribution function F1, p.d.f. f1, mean µF1 and
LT f̃1(s) =

∫∞
0
e−sxf1(x)dx. Similarly, {Zi}i≥1 are the positive claim severities from the



second class, also assumed i.i.d. r.v., with common distribution function F2, p.d.f. f2,
mean µF2 and LT f̃2(s) =

∫∞
0
e−sxf2(x)dx. The claim number process N1(t) is assumed

to be Poisson with parameter λ1 > 0. More specifically, the corresponding claim inter-
arrival times, denoted by {Vi}i≥1, are i.i.d. exponentially distributed r.v. with parameter
λ1. In addition, N2(t) is a renewal process with i.i.d. claim inter-arrival times {Li}i≥1,
which are independent of {Vi}i≥1 and Erlang(2) distributed r.v., i.e. Li = Li1 + Li2,
where {Lij}i≥1,j≥1 are i.i.d. exponentially distributed r.v. with parameter λ2.

We finally assume that {Xi}i≥1, {Yi}i≥1 and {Zi}i≥1 are mutually independent, also
independent of M(t), N1(t) and N2(t), and λµG > λ1µF1 + λ2/2µF2 , providing a net
profit condition.

Denote the ruin time by T = inf{t ≥ 0 : U(t) < 0} and ∞ if U(t) ≥ 0 for all t ≥ 0.
The ruin probability is defined as φ(u) = P (T < ∞|U(0) = u), u ≥ 0. Further define
J to be the cause-of-ruin r.v., i.e., J = j, if the ruin is caused by a claim of class j,
j = 1, 2, then ruin probability φ(u) can be decomposed as φ(u) = φ1(u) + φ2(u), where
φj(u) = P (T < ∞, J = j|U(0) = u), u ≥ 0, j = 1, 2, is the ruin probability due to a
claim of class j. For δ ≥ 0, and j = 1, 2, the expected discounted penalty (Gerber-Shiu)
function at ruin, if the ruin is caused by a claim of class j is defined as

Φj(u) = E[e−δTwj(U(T−), |U(T )|)I(T <∞, J = j)|U(0) = u], u ≥ 0, (2.3)

where δ ≥ 0 is interpreted as the force of interest, U(T−) is the surplus immediately
before ruin, |U(T )| is the deficit at ruin, I(.) is the indicator function, and wj(x1, x2), 0 ≤
x1, x2 <∞, j = 1, 2, be the non-negative measurable function defined on [0,∞)× (0,∞).
The financial explanations on w(x1, x2) can be found in Gerber and Shiu [6]. It is easy
to see that choosing different forms of the function wj(x1, x2) in Eq.(2.3) yields different
information relating to the deficit at ruin and the surplus immediately before ruin.

In the classical risk model, due to the strong Markov property of the surplus process,
the expected discounted penalty function is time homogenous, i.e., it is independent of
the time at which the surplus process is observed. However, for our risk model, the
expected discounted penalty function functions are no longer time homogeneous, due to
the assumption that the claim inter-arrival times from the second class are Erlang(2)
distributed. Therefore, for the expected discounted penalty functions, defined in (2.3),
we assume that a claim from the second class occurs exactly at time 0. More generally, we
can define the expected discounted penalty functions, denoted by Φj(u, τ), as bivariate
functions of current reserve u and the length of time τ , elapsed since the time of the
last claim from the second class (the surplus process renews itself at these points). The
quantities we are interested in are Φj(u, 0) = Φj(u), j = 1, 2, and u ≥ 0,

Ψj(u) = E[e−δ(T−t)wj(U(T−), |U(T )|)I(T <∞, J = j)|L11 = t, U(t) = u], (2.4)

the expected discounted penalty functions at the time of the realization of {Li1}i≥1.
Then by the law of total probability, for j = 1, 2, we have

Φj(u, τ) = Φj(u)Pr(L11 > τ) + Ψj(u)Pr(L11 < τ) = e−λ2τΦj(u) + (1− e−λ2τ )Ψj(u).

3. Laplace transforms
Throughout this paper, we will use a hat ˜ to designate the Laplace transform of

a function. Given that the premium size is exponentially distributed, the explicit ex-
pressions for the Laplace transforms of the expected discounted penalty functions can be
derived. For this purpose, we first consider the integral equation satisfied by the expected
discounted penalty function.



Let J = min{V1, L11,W1}, then for u ≥ 0,

Φ1(u) =

∫ ∞
0

∫ ∞
0

Pr(J = t, J = W1)e−δtΦ1(u+ x)dG(x)dt

+

∫ ∞
0

Pr(J = t, J = V1)e−δt
[∫ u

0

Φ1(u− y)dF1(y) +

∫ ∞
u

w1(u, y − u)dF1(y)

]
dt

+

∫ ∞
0

Pr(J = t, J = L11)e−δtΨ1(u)dt. (3.1)

Note that Pr(J = W1) = λ/(λ + λ1 + λ2), Pr(J = V1) = λ1/(λ + λ1 + λ2), Pr(J =
L11) = λ2/(λ+ λ1 + λ2), Pr(J > t|J = W1) = Pr(J > t|J = V1) = Pr(J > t|J = L11) =
exp(−(λ+ λ1 + λ2)t).

Plugging the expressions above into (3.1) and making some simplifications, we can get

Φ1(u) =
λ

λ∗ + δ

∫ ∞
0

Φ1(u+ x)dG(x) +
λ2

λ∗ + δ
Ψ1(u)

+
λ1

λ∗ + δ

[∫ u

0

Φ1(u− y)dF1(y) + w1(u)

]
, (3.2)

where λ∗ = λ+ λ1 + λ2, w1(u) =
∫∞
u
w1(u, y − u)dF1(y). Similarly, we derive

Ψ1(u) =
λ

λ∗ + δ

∫ ∞
0

Ψ1(u+ x)dG(x) +
λ2

λ∗ + δ

∫ u

0

Φ1(u− y)dF2(y)

+
λ1

λ∗ + δ

[∫ u

0

Ψ1(u− y)dF1(y) + w1(u)

]
, (3.3)

Assume A1(u) =
∫∞

0
Φ1(u + x)dG(x) and Ā1(u) =

∫∞
0

Ψ1(u + x)dG(x). Taking
Laplace transforms in (3.2) and (3.3) and making some simplifications, we have

Φ̃1(s) =
λ

λ∗ + δ
Ã1(s) +

λ2

λ∗ + δ
Ψ̃1(s) +

λ1

λ∗ + δ

[
Φ̃1(s)f̃1(s) + w̃1(s)

]
, (3.4)

Ψ̃1(s) =
λ

λ∗ + δ
˜̄A1(s) +

λ2

λ∗ + δ
Φ̃1(s)f̃2(s) +

λ1

λ∗ + δ

[
Ψ̃1(s)f̃1(s) + w̃1(s)

]
, (3.5)

Similar analysis gives

Φ2(u) =
λ

λ∗ + δ

∫ ∞
0

Φ2(u+x)dG(x)+
λ2

λ∗ + δ
Ψ2(u)+

λ1

λ∗ + δ

∫ u

0

Φ2(u−y)dF1(y), (3.6)

Ψ2(u) =
λ

λ∗ + δ

∫ ∞
0

Ψ2(u+ x)dG(x) +
λ2

λ∗ + δ

[∫ u

0

Φ2(u− y)dF2(y) + w2(u)

]
+

λ1

λ∗ + δ

∫ u

0

Ψ2(u− y)dF1(y). (3.7)

Assume A2(u) =
∫∞

0
Φ2(u+ x)dG(x) and Ā2(u) =

∫∞
0

Ψ2(u+ x)dG(x). Taking Laplace
transforms in (3.6) and (3.7) and making some simplifications, we obtain

Φ̃2(s) =
λ

λ∗ + δ
Ã2(s) +

λ2

λ∗ + δ
Ψ̃2(s) +

λ1

λ∗ + δ
Φ̃2(s)f̃1(s), (3.8)

Ψ̃2(s) =
λ

λ∗ + δ
˜̄A2(s) +

λ2

λ∗ + δ

[
Φ̃2(s)f̃2(s) + w̃2(s)

]
+

λ1

λ∗ + δ
Ψ̃2(s)f̃1(s). (3.9)

Now, we introduce the Dickson-Hipp operator Tr provided by Dickson and Hipp [5].
Define the Dickson-Hipp operator Tr as be

Trf(x) =

∫ ∞
x

e−r(y−x)f(y)dy, x ≥ 0,



where f(x) is a real-valued function, r is a complex number. It is easy to see that
Tsf(0) = f̃(s), and that for distinct r1 and r2,

Tr1Tr2f(x) = Tr2Tr1f(x) =
Tr1f(x)− Tr2f(x)

r2 − r1
, x ≥ 0.

If r1 = r2 = r,

Tr1Tr2f(x) =

∫ ∞
x

(y − x)e−r(y−x)f(y)dy, x ≥ 0.

The properties for the Dickson-Hipp operator can also be found in Dickson and Hipp [5],
Li and Garrido [8], Xie and Zou [15].

Suppose the premium sizes are exponentially distributed, i.e., G(x) = 1 − e
− x
µG ,

for µG > 0. Taking Laplace transform of Ai(u), i = 1, 2, and using the Dickson-Hipp
operator, we can get

Ãi(s) =

∫ ∞
0

e−su
∫ ∞

0

Φi(u+ x)
e
− x
µG

µG
dxdu =

∫ ∞
0

∫ ∞
0

e−suΦi(u+ x)du
e
− x
µG

µG
dx

=

∫ ∞
0

TsΦi(x)
e
− x
µG

µG
dx =

1

µG
T 1
µG

TsΦi(0) =
Φ̃i(s)− Φ̃i(

1
µG

)

1− sµG
, i = 1, 2. (3.10)

Similarly,

˜̄Ai(s) =
Ψ̃i(s)− Ψ̃i(

1
µG

)

1− sµG
, i = 1, 2. (3.11)

Combining the above results with (3.4), (3.5), (3.8) and (3.9), respectively, we derive

Φ̃1(s) =

−
(

1− λ
(λ∗+δ)(1−sµG)

− λ1f̃1(s)
λ∗+δ

)( λΦ̃1( 1
µG

)

(λ∗+δ)(1−sµG)
− λ1w̃1(s)

λ∗+δ

)
− λ2$1(s)

λ∗+δ(
1− λ

(λ∗+δ)(1−sµG)
− λ1f̃1(s)

λ∗+δ

)2

− λ2
2f̃2(s)

(λ∗+δ)2

, (3.12)

Φ̃2(s) =
−
λΦ̃2( 1

µG
)(1− λ

(λ∗+δ)(1−sµG)
−λ1f̃1(s)

λ∗+δ )

(λ∗+δ)(1−sµG)
− λ2$2(s)

λ∗+δ(
1− λ

(λ∗+δ)(1−sµG)
− λ1f̃1(s)

λ∗+δ

)2

− λ2
2f̃2(s)

(λ∗+δ)2

. (3.13)

where $i(s) =
λΨ̃i(

1
µG

)

(λ∗+δ)(1−sµG)
− λiw̃i(s)

λ∗+δ , i = 1, 2.
To obtain Φ̃1(s) and Φ̃2(s), we still have to determine Φ̃1( 1

µG
), Ψ̃1( 1

µG
), Φ̃2( 1

µG
), and

Ψ̃2( 1
µG

). For this purpose, we discuss analytically the zeros of the common denominators
of (3.12) and (3.14), i.e., the roots of following equation(

1− λ

(λ∗ + δ)(1− sµG)
− λ1f̃1(s)

λ∗ + δ

)2

− λ2
2f̃2(s)

(λ∗ + δ)2
= 0. (3.14)

3.1. Lemma. 1. For δ > 0, Eq.(3.14) has exactly two roots, say, ρ1(δ), and ρ2(δ), in
the right half complex plane, i.e., Re ρi(δ) > 0 for i = 1, 2.

Proof. Eq.(3.14) can be simplified as(
1− sµG −

λ

λ∗ + δ
− λ1(1− sµG)f̃1(s)

λ∗ + δ

)2

− (λ2(1− sµG))2f̃2(s)

(λ∗ + δ)2
= 0.

Let r > 0 be a sufficiently large number, and define Cr as the contour containing the
imaginary axis running from −ir to ir and a half circle with radius r running clockwise
from ir to −ir. Firstly, we apply Rouché,s theorem to prove that equation

1− sµG −
λ

λ∗ + δ
− λ1(1− sµG)f̃1(s)

λ∗ + δ
= 0,



has exactly one root inside Cr. When s on the imaginary axis, we have,∣∣∣λ1(1−sµG)f̃1(s)
λ∗+δ

∣∣∣∣∣∣1− sµG − λ
λ∗+δ

∣∣∣ =

∣∣∣λ1(1−sµG)
λ∗+δ

∣∣∣ |f̃1(s)|∣∣∣λ1+λ2+δ
λ∗+δ − sµG

∣∣∣ ≤
∣∣∣λ1(1−sµG)

λ∗+δ

∣∣∣∣∣∣λ1+λ2+δ
λ∗+δ − sµG

∣∣∣ < 1.

For s on the half circle, we have for ∀ ε > 0,∣∣∣ 1
µG
− s
∣∣∣∣∣∣ λ1+λ2+δ

(λ∗+δ)µG
− s
∣∣∣ < 1 + ε,

when r is sufficiently large. In particular, for ε = λ+λ2+δ
λ1

, there exists r0 > 0 such that
when r > r0, we get∣∣∣λ1(1−sµG)f̃1(s)

λ∗+δ

∣∣∣∣∣∣1− sµG − λ
λ∗+δ

∣∣∣ ≤ λ1

λ∗ + δ

∣∣∣ 1
µG
− s
∣∣∣∣∣∣ λ1+λ2+δ

(λ∗+δ)µG
− s
∣∣∣ < λ1

λ∗ + δ
(1 + ε) ≤ 1.

That is to say, we show that for s ∈ Cr, the module |1− sµG − λ
λ∗+δ | > |

λ1(1−sµG)f̃1(s)
λ∗+δ |.

Using Rouché,s theorem, we conclude that the number of roots of the equation 1−sµG−
λ

λ∗+δ −
λ1(1−sµG)f̃1(s)

λ∗+δ = 0 equals the number of roots of the equation 1−sµG− λ
λ∗+δ = 0

inside Cr. Moreover, the latter has exactly one root inside Cr. It follows that 1− sµG−
λ

λ∗+δ −
λ1(1−sµG)f̃1(s)

λ∗+δ = 0 has exactly one positive real root inside Cr.
Secondly, we apply Rouché,s theorem and the result above to prove this Lemma.

When s on the imaginary axis∣∣∣∣∣
(

1− sµG −
λ

λ∗ + δ
− λ1(1− sµG)f̃1(s)

λ∗ + δ

)2
∣∣∣∣∣

≥
(∣∣∣∣λ1 + λ2 + δ

λ∗ + δ
− sµG

∣∣∣∣− ∣∣∣∣λ1(1− sµG)f̃1(s)

λ∗ + δ

∣∣∣∣)2

>

(
λ2 |1− sµG|
λ∗ + δ

)2

≥
∣∣∣∣ (λ2(1− sµG))2f̃2(s)

(λ∗ + δ)2

∣∣∣∣ .
For s on the half circle, we get for ε = λ

λ1+λ2+δ
, there exists r1 > 0 such that when

r > r1,∣∣∣ (λ1+λ2+δ)(1−sµG)
λ∗+δ

∣∣∣∣∣∣1− sµG − λ
λ∗+δ

∣∣∣ ≤ λ1 + λ2 + δ

λ∗ + δ

∣∣∣ 1
µG
− s
∣∣∣∣∣∣ λ1+λ2+δ

(λ∗+δ)µG
− s
∣∣∣ < λ1 + λ2 + δ

λ∗ + δ
(1 + ε) ≤ 1,

then ∣∣∣∣∣
(

1− sµG −
λ

λ∗ + δ
− λ1(1− sµG)f̃1(s)

λ∗ + δ

)2
∣∣∣∣∣

>

(
(λ1 + λ2 + δ) |1− sµG|

λ∗ + δ
− λ1 |1− sµG|

λ∗ + δ

)2

>

∣∣∣∣ (λ2(1− sµG))2f̃2(s)

(λ∗ + δ)2

∣∣∣∣ .
That is to say, for s ∈ Cr,∣∣∣∣∣

(
1− sµG −

λ

λ∗ + δ
− λ1(1− sµG)f̃1(s)

λ∗ + δ

)2
∣∣∣∣∣ >

∣∣∣∣ (λ2(1− sµG))2f̃2(s)

(λ∗ + δ)2

∣∣∣∣ .
Using Rouché,s theorem, we conclude that the number of roots of the equation(

1− sµG −
λ

λ∗ + δ
− λ1(1− sµG)f̃1(s)

λ∗ + δ

)2

− (λ2(1− sµG))2f̃2(s)

(λ∗ + δ)2
= 0



equals the number of roots of the equation
(

1− sµG − λ
λ∗+δ −

λ1(1−sµG)f̃1(s)
λ∗+δ

)2

= 0 in-
side Cr. Moreover, by the discussion in the paragraph above, the latter has exactly two
roots with positive real parts inside Cr. It follows from all above that Eq.(3.14) has
exactly two distinct positive real roots, say, ρ1(δ), and ρ2(δ), inside Cr. Finally, letting
r →∞ completes the proof. 2

Denote the root with the smaller module by ρ1(δ). It is easily seen that ρ1(δ) → 0+

as δ → 0+. In the rest of the paper, we denote these two roots ρi(δ) by ρi, i = 1, 2, for
simplicity.

Since Φ̃(s) is finite for all s with Re s ≥ 0, we know ρ1 and ρ2 must be zeros of the
numerators of (3.12) and (3.13). From Eq.(3.12), we can give the following equations for
Φ̃1( 1

µG
) and Ψ̃1( 1

µG
),

−(1− λ

(λ∗ + δ)(1− ρiµG)
− λ1f̃1(ρi)

λ∗ + δ
)(

λΦ̃1( 1
µG

)

(λ∗ + δ)(1− ρiµG)
− λ1w̃1(ρi)

λ∗ + δ
)

=
λ2(

λΨ̃1( 1
µG

)

(λ∗+δ)(1−ρiµG)
− λ1w̃1(ρi)

λ∗+δ )

λ∗ + δ
, (3.15)

where i = 1, 2. From Eq.(3.13), we can give the following equations for Φ̃2( 1
µG

) and
Ψ̃2( 1

µG
),

−
λΦ̃2( 1

µG
)
(

1− λ
(λ∗+δ)(1−ρiµG)

− λ1f̃1(ρi)
λ∗+δ

)
(λ∗ + δ)(1− ρiµG)

=

λ2

(
λΨ̃2( 1

µG
)

(λ∗+δ)(1−ρiµG)
− λ2w̃2(ρi)

λ∗+δ

)
λ∗ + δ

. (3.16)

By solving linear equations (3.15) and (3.16), we can get Φ̃i(
1
µG

) and Ψ̃i(
1
µG

), i = 1, 2.
Then Φ̃1(s) and Φ̃2(s) can also be obtained.

4. Defective renewal equations
In this section, we study the defective renewal equations satisfied by the two expected

discounted penalty functions in the risk model with two classes of claims and random
income.

Based on the results of (3.12) and (3.13), the Laplace transforms of Φ1(u) and Φ2(u)
can be simplified as

Φ̃1(s) =
f̃1,1(s) + f̃1,2(s)

h̃1(s)− h̃2(s)
, (4.1)

Φ̃2(s) =
f̃2,1(s) + f̃2,2(s)

h̃1(s)− h̃2(s)
, (4.2)

where h̃1(s) = (1−sµG− λ
λ∗+δ )2, h̃2(s) =

s2µ2
G

(λ∗+δ)2 (2λ1(λ∗+δ)f̃1(s)+λ2
2f̃2(s)−λ2

1f̃
2
1 (s))+

2sµG
(λ∗+δ)2 ((2λ1(λ∗+δ)−λλ1)f̃1(s)+λ2

2f̃2(s)−λ2
1f̃

2
1 (s))+ 1

(λ∗+δ)2 ((2λ1(λ∗+δ)−2λλ1)f̃1(s)+

λ2
2f̃2(s)− λ2

1f̃
2
1 (s)), f̃1,1(s) = −(1− sµG − λ

λ∗+δ )
λΦ̃1( 1

µG
)

λ∗+δ −
λλ2(1−sµG)Ψ̃1( 1

µG
)

(λ∗+δ)2 , f̃1,2(s) =
λ1

(λ∗+δ)2 ((λ∗+λ2−λ1+δ)w̃1(s)−λ1f̃1(s)w̃1(s)+λΦ̃1( 1
µG

)f̃1(s))− sµGλ1

(λ∗+δ)2 ((2(λ∗+λ2+δ)−

λ)w̃1(s)− 2λ1f̃1(s)w̃1(s) + λΦ̃1( 1
µG

)f̃1(s)) +
s2µ2

Gλ1

(λ∗+δ)2 ((λ∗+ λ2 + δ)w̃1(s)− λ1f̃1(s)w̃1(s)),

f̃2,1(s) = −(1 − sµG − λ
λ∗+δ )

λΦ̃2( 1
µG

)

λ∗+δ −
λλ2(1−sµG)Ψ̃2( 1

µG
)

(λ∗+δ)2 , f̃2,2(s) = 1
(λ∗+δ)2 (λ2

2w̃2(s) +

λλ1f̃1(s)Φ̃2( 1
µG

))− sµG
(λ∗+δ)2 (2λ2

2w̃2(s) + λλ1f̃1(s)Φ̃2( 1
µG

)) +
s2µ2

Gλ
2
2w̃2(s)

(λ∗+δ)2 . Define f1,1(u),
f1,2(u), f2,1(u), f2,2(u), h1(u) and h2(u) as the inverse image functions of f̃1,1(s), f̃1,2(s),



f̃2,1(s), f̃2,2(s), h̃1(s), and h̃2(s), i.e., Tsfi,j(0) = f̃i,j(s) and Tshi(0) = h̃i(s), i = 1, 2,
j = 1, 2.

4.1. Proposition. 1. The Laplace transform Φ̃i(s) of the expected discounted penalty
function satisfies

Φ̃i(s) =
TsTρ2Tρ1h2(0)

µ2
G

Φ̃i(s) +
TsTρ2Tρ1fi,2(0)

µ2
G

, i = 1, 2. (4.3)

Proof. Since Φ̃i(s) (i = 1, 2) is analytic for all s with Re s ≥ 0, we know ρ1 and ρ2

are zeros of the numerators of which means that f̃i,1(ρj) = −f̃i,2(ρj) for i = 1, 2, j = 1, 2.
Because f̃i,1(s) is a polynomial of degree 1, applying the Lagrange interpolating theorem,
we have

f̃i,1(s) = − f̃i,2(ρ1)(s− ρ2)− f̃i,2(ρ2)(s− ρ1)

ρ1 − ρ2
,

which yields

f̃i,1(s) + f̃i,2(s) =
(s− ρ2)

(
f̃i,2(s)− f̃i,2(ρ1)

)
− (s− ρ1)

(
f̃i,2(s)− f̃i,2(ρ2)

)
ρ1 − ρ2

= (s− ρ1)(s− ρ2)TsTρ2Tρ1fi,2(0). (4.4)

Obviously, an simple expression for the denominator of Φ̃i(s), i = 1, 2, can be dealt
with in a similar way. Due to Lemma 1, we get that h̃1(ρi) = h̃2(ρi) for i = 1, 2. Similarly,
because h̃1(s) is a polynomial of degree 2, using the Lagrange interpolating theorem, we
have

h̃1(s) = h̃1(0)
(s− ρ1)(s− ρ2)

ρ1ρ2
+ s

(
h̃1(ρ1)

ρ1

s− ρ2

ρ1 − ρ2
+
h̃1(ρ2)

ρ2

s− ρ1

ρ2 − ρ1

)

= h̃1(0)
(s− ρ1)(s− ρ2)

ρ1ρ2
+ (s− ρ1)(s− ρ2)

(
h̃2(ρ1)

ρ1

1

ρ1 − ρ2
+
h̃2(ρ2)

ρ2

1

ρ2 − ρ1

)
+h̃2(ρ1)

s− ρ2

ρ1 − ρ2
+ h̃2(ρ2)

s− ρ1

ρ2 − ρ1
.

Using the result above and recalling the Property 6 of the Dickson-Hipp operator derived
in Li and Garrido [8], h̃1(s)− h̃2(s) can be rewritten as

h̃1(s)−h̃2(s) = h̃1(0)
(s− ρ1)(s− ρ2)

ρ1ρ2
+(s−ρ1)(s−ρ2)

(
h̃2(ρ1)

ρ1(ρ1 − ρ2)
+

h̃2(ρ2)

ρ2(ρ2 − ρ1)

)

−
(
h̃2(s)− h̃2(ρ1)

s− ρ2

ρ1 − ρ2
− h̃2(ρ2)

s− ρ1

ρ2 − ρ1

)
= (s− ρ1)(s− ρ2) (T0Tρ2Tρ1h1(0)− TsTρ2Tρ1h2(0)) . (4.5)

It is easy to check that T0Tρ2Tρ1h1(0) = µ2
G which makes (4.5) become

h̃1(s)− h̃2(s) = (s− ρ1)(s− ρ2)
(
µ2
G − TsTρ2Tρ1h2(0)

)
. (4.6)

Invoking (4.4) and (4.6) into (4.1) and (4.2), we can derive Φ̃i(s) =
TsTρ2Tρ1fi,2(0)

µ2
G
−TsTρ2Tρ1h2(0)

which gives (4.3). The result of Proposition 1 is proved. 2

Now, we are ready to obtain the defective renewal equations for Φi(u), i = 1, 2.



4.2. Proposition. 2. Φi(u) satisfies the following defective renewal equation

Φi(u) = κδ

∫ u

0

Φi(u− y)ς(y)dy + ξi(u), i = 1, 2, (4.7)

where

κδ =
(2λ1(λ∗ + δ)− 2λλ1)T0Tρ2Tρ1f1(0) + λ2

2T0Tρ2Tρ1f2(0)− λ2
1T0Tρ2Tρ1f1 ∗ f1(0)

(λ∗ + δ)2µ2
G

+
2

(λ∗ + δ)2µG
((2λ1(λ∗ + δ)− λλ1)(ρ1T0Tρ2Tρ1f1(0)− T0Tρ2f1(0))

+λ2
2(ρ1T0Tρ2Tρ1f2(0)− T0Tρ2f2(0))− λ2

1(ρ1T0Tρ2Tρ1f1 ∗ f1(0)− T0Tρ2f1 ∗ f1(0)))

+
1

(λ∗ + δ)2
(2λ1(λ∗ + δ)(1− (ρ2 + ρ1)T0Tρ2f1(0)

+ρ2
1T0Tρ2Tρ1f1(0)) + λ2

2(1− (ρ2 + ρ1)T0Tρ2f2(0) + ρ2
1T0Tρ2Tρ1f2(0))

−λ2
1(1− (ρ2 + ρ1)T0Tρ2f1 ∗ f1(0) + ρ2

1T0Tρ2Tρ1f1 ∗ f1(0))),

ς(y) =
1

κδ
{ (2λ1(λ∗ + δ)− 2λλ1)Tρ2Tρ1f1(y) + λ2

2Tρ2Tρ1f2(y)− λ2
1Tρ2Tρ1f1 ∗ f1(y)

(λ∗ + δ)2µ2
G

+
2

(λ∗ + δ)2µG
((2λ1(λ∗ + δ)− λλ1)(ρ1Tρ2Tρ1f1(y)− Tρ2f1(y))

+λ2
2(ρ1Tρ2Tρ1f2(y)− Tρ2f2(y))− λ2

1(ρ1Tρ2Tρ1f1 ∗ f1(y)− Tρ2f1 ∗ f1(y)))

+
1

(λ∗ + δ)2
(2λ1(λ∗ + δ)(f1(y)− (ρ2 + ρ1)Tρ2f1(y)

+ρ2
1Tρ2Tρ1f1(y)) + λ2

2(f2(y)− (ρ2 + ρ1)Tρ2f2(y) + ρ2
1Tρ2Tρ1f2(y))

−λ2
1(f1 ∗ f1(y)− (ρ2 + ρ1)Tρ2f1 ∗ f1(y) + ρ2

1Tρ2Tρ1f1 ∗ f1(y))) }.

and

ξ1(u) =
λ1((λ∗ + λ2 − λ1 + δ)Tρ2Tρ1w1(u)− λ1Tρ2Tρ1f1 ∗ w1(u) + λΦ̃1( 1

µG
)Tρ2Tρ1f1(u))

(λ∗ + δ)2µ2
G

− λ1

(λ∗ + δ)2µG
(((2(λ∗ + λ2 + δ)− λ)(ρ1Tρ2Tρ1w1(u)− Tρ2w1(u))

−2λ1(ρ1Tρ2Tρ1f1 ∗ w1(u)− Tρ2f1 ∗ w1(u)) + λΦ̃1(
1

µG
)(ρ1Tρ2Tρ1f1(u)− Tρ2f1(u)))

+
λ1

(λ∗ + δ)2
((λ∗ + λ2 + δ)(w1(u)− (ρ2 + ρ1)Tρ2w1(u) + ρ2

1Tρ2Tρ1w1(u))

−λ1(f1 ∗ w1(u)− (ρ2 + ρ1)Tρ2f1 ∗ w1(u) + ρ2
1Tρ2Tρ1f1 ∗ w1(u))),

ξ2(u) =
1

(λ∗ + δ)2µ2
G

(λ2
2Tρ2Tρ1w2(u) + λλ1Φ̃2(

1

µG
)Tρ2Tρ1f1(u))

−
2λ2

2(ρ1Tρ2Tρ1w2(u)− Tρ2w2(u)) + λλ1Φ̃2( 1
µG

)(ρ1Tρ2Tρ1f1(u)− Tρ2f1(u))

(λ∗ + δ)2µG

+
λ2

2

(λ∗ + δ)2
(w2(u)− (ρ2 + ρ1)Tρ2w2(u) + ρ2

1Tρ2Tρ1w2(u)).



Proof. By employing the property of the Dickson-Hipp operator, we deduce
f̃(s)−f̃(ρ2)

s−ρ2
− f̃(s)−f̃(ρ1)

s−ρ1
ρ2 − ρ1

=
TsTρ1f(0)− TsTρ2f(0)

ρ2 − ρ1
= TsTρ2Tρ1f(0), (4.8)

sf̃(s)−ρ2f̃(ρ2)
s−ρ2

− sf̃(s)−ρ1f̃(ρ1)
s−ρ1

ρ2 − ρ1
= ρ1TsTρ2Tρ1f(0)− TsTρ2f(0), (4.9)

s2f̃(s)−ρ22f̃(ρ2)

s−ρ2
− s2f̃(s)−ρ21f̃(ρ1)

s−ρ1
ρ2 − ρ1

= f̃(s)− (ρ2 + ρ1)TsTρ2f(0) + ρ2
1TsTρ2Tρ1f(0). (4.10)

Recalling the definition of the Dickson-Hipp operator Tr and together with (4.8)-
(4.10), one finds

TsTρ2Tρ1h2(0)

=
(2λ1(λ∗ + δ)− 2λλ1)TsTρ2Tρ1f1(0) + λ2

2TsTρ2Tρ1f2(0)− λ2
1TsTρ2Tρ1f1 ∗ f1(0)

(λ∗ + δ)2

+
2µG

(λ∗ + δ)2
((2λ1(λ∗ + δ)− λλ1)(ρ1TsTρ2Tρ1f1(0)− TsTρ2f1(0))

+λ2
2(ρ1TsTρ2Tρ1f2(0)− TsTρ2f2(0))− λ2

1(ρ1TsTρ2Tρ1f1 ∗ f1(0)− TsTρ2f1 ∗ f1(0)))

+
µ2
G

(λ∗ + δ)2
(2λ1(λ∗ + δ)(f̃1(s)− (ρ2 + ρ1)TsTρ2f1(0)

+ρ2
1TsTρ2Tρ1f1(0)) + λ2

2(f̃2(s)− (ρ2 + ρ1)TsTρ2f2(0) + ρ2
1TsTρ2Tρ1f2(0))

−λ2
1(f̃2

1 (s)− (ρ2 + ρ1)TsTρ2f1 ∗ f1(0) + ρ2
1TsTρ2Tρ1f1 ∗ f1(0))). (4.11)

Similarly, we find

TsTρ2Tρ1f1,2(0) =
λ1

(λ∗ + δ)2
((λ∗+λ2−λ1 + δ)TsTρ2Tρ1w1(0)

−λ1TsTρ2Tρ1f1 ∗ w1(0) + λΦ̃1(
1

µG
)TsTρ2Tρ1f1(0))

− µGλ1

(λ∗ + δ)2
(((2(λ∗ + λ2 + δ)− λ)(ρ1TsTρ2Tρ1w1(0)− TsTρ2w1(0))

−2λ1(ρ1TsTρ2Tρ1f1 ∗ w1(0)− TsTρ2f1 ∗ w1(0))

+λΦ̃1(
1

µG
)(ρ1TsTρ2Tρ1f1(0)− TsTρ2f1(0))) +

µ2
Gλ1

(λ∗ + δ)2
((λ∗ + λ2 + δ)(w̃1(s)

−(ρ2 + ρ1)TsTρ2w1(0) + ρ2
1TsTρ2Tρ1w1(0))− λ1(f̃1(s)w̃1(s)

−(ρ2 + ρ1)TsTρ2f1 ∗ w1(0) + ρ2
1TsTρ2Tρ1f1 ∗ w1(0))) = µ2

GTsξ1(0), (4.12)

and

TsTρ2Tρ1f2,2(0) =
1

(λ∗ + δ)2
(λ2

2TsTρ2Tρ1w2(0) + λλ1Φ̃2(
1

µG
)TsTρ2Tρ1f1(0))

− µG
(λ∗ + δ)2

(2λ2
2(ρ1TsTρ2Tρ1w2(0)− TsTρ2w2(0))

+λλ1Φ̃2(
1

µG
)(ρ1TsTρ2Tρ1f1(0)− TsTρ2f1(0)))

+
µ2
Gλ

2
2

(λ∗ + δ)2
(w̃2(s)− (ρ2 + ρ1)TsTρ2w2(0) + ρ2

1TsTρ2Tρ1w2(0)) = µ2
GTsξ2(0), (4.13)

where the operator * is denoted as convolution.
Therefore, plugging (4.11), (4.12) and (4.13) into (4.3), we can get

Φ̃i(s) =
TsTρ2Tρ1h2(0)

µ2
G

Φ̃i(s) + Tsξi(0), i = 1, 2. (4.14)



Inverting the Laplace transform in (4.14) gives

Φi(u) =
T0Tρ2Tρ1h2(0)

µ2
G

∫ u

0

Φi(u− y)
Tρ2Tρ1h2(y)

T0Tρ2Tρ1h2(0)
dy + ξi(u),

which corresponds to (4.7).
To show that (4.7) to be a defective renewal equation, we need to verified κδ < 1. We

first consider the case δ > 0. Comparing (4.11) at s = 0 to the expression of κδ gives
κδ =

T0Tρ1Tρ2h2(0)

µ2
G

. Because of ρ1(δ) > 0 and ρ2(δ) > 0, putting (4.6) at s = 0 in (4.6),
one deduces

κδ =
T0Tρ1Tρ2h2(0)

µ2
G

= 1− h̃1(0)− h̃2(0)

µ2
Gρ1ρ2

= 1− δ2 + 2λ2δ

µ2
G(λ∗ + δ)2ρ1ρ2

< 1.

For δ = 0, putting s = ρ1(δ) in (3.14) yields(
λ∗ + δ − (λ∗ + δ)µGρ1(δ)− λ− λ1(1− µGρ1(δ))f̃1(ρ1(δ))

)2

= λ2
2(1− µGρ1(δ))2f̃2(ρ1(δ)).

Note the fact that ρ1(0) = 0. Differentiating the equation above with respect to δ and
then putting δ = 0, one finds

ρ
′
1(0) =

1

λµG − λ1µF1 −
λ2µF2

2

> 0,

where the inequality above follows from the net profit condition. Then takeing the limit
δ → 0+ in κδ and using L,Hôpital,s rule, we can get

κ0 =
T0T0Tρ2(0)h2(0)

µ2
G

= 1− 1

µ2
G(λ∗)2ρ2

× lim
δ→0+

δ2 + 2λ2δ

ρ1(δ)

= 1− 2λ2

µ2
G(λ∗)2ρ2ρ

′
1(0)

< 1.

Thus, Eq.(4.7) is defective renewal equation. This completes the proof. 2

In order to derive the analytic expression for Φi(u), an associated compound geometric
distribution function are defined as

H(u) =
ζ

1 + ζ

∞∑
n=1

(
1

1 + ζ

)n
K
∗n

(u), u ≥ 0,

where ζ = (1−κδ)/κδ, K
∗n

(u) is the tail of the n-fold convolution of K(u) = 1−K(u) =∫ u
0
ς(y)dy. By employing the Theorem 2.1 of Lin and Willmot [11], we can derive the

following Proposition.

4.3. Proposition. 3. The expected discounted penalty function Φi(u) satisfying the
defective renewal equation (4.7) can be rewritten as

Φi(u) =
1

ζ

∫ u

0

[1−H(u− y)]dBi(y) +
Bi(0)

ζ
[1−H(u)], i = 1, 2, (4.15)

or

Φi(u) =
1

ζ

∫ u

0

Bi(u− y)dH(y) +
1

1 + ζ
Bi(u), i = 1, 2, (4.16)

where Bi(u) = ξi(u)/κδ.

Proof. Using the Eq.(4.7) and the result of Theorem 2.1 obtained in Lin and Willmot
[11], the proof is straightforward. 2



5. Premium sizes with rational Laplace transforms
In this section, we consider the situation in which the premium size have the following

rational Laplace transforms, i.e.,

f̃G(s) =
%(s)∏N

i=1(s+ %i)ni
, (5.1)

where N,ni ∈ N+ with n1 + n2 + · · ·+ nN = n, %i > 0, i = 1, 2, · · · , N , and %i 6= %j for
i 6= j. %(s) is a polynomial function of degree n−1 or less and satisfying %(0) =

∏N
i=1 %

ni
i .

Using partial fraction, Eq.(5.1) can be rewritten as

f̃G(s) =

N∑
i=1

ni∑
j=1

αij%
j
i

(s+ %i)j
, (5.2)

where

αij =
1

%ji (ni − j)!
dni−j

dsni−j


N∏

k=1,k 6=i

%(s)

(s+ %k)nk

 |s=−%i
Taking the inverse Laplace transform of Eq.(5.2), one deduces

fG(x) =

N∑
i=1

ni∑
j=1

αij
xj−1%jie

−%ix

(j − 1)!
, (5.3)

which is a density function of a combination of Erlangs. Define

βij(x) =
xj−1%jie

−%ix

(j − 1)!
, x > 0, j ∈ N+,

as the density function of Erlang(j) with parameter %i, χij is a random variable with
density function βij(x). Thus, χij can be defined as χij = ϑi1 + ϑi2 + · · · + ϑij , where
ϑi1, ϑi2, · · · , ϑij are i.i.d. exponentials with mean 1/%i. For Re s > max(%i), we get, for
k = 1, 2,

Ãk(s) =

∫ ∞
0

e−su
∫ ∞

0

Φk(u+ x)fG(x)dxdu

=

N∑
i=1

ni∑
j=1

αij

∫ ∞
0

βij(x)TsΦk(x)dx =

N∑
i=1

ni∑
j=1

αijE[TsΦk(ϑi1 + ϑi2 + · · ·+ ϑij)]

=

N∑
i=1

ni∑
j=1

αij%
j
iE
[
TsT

j
%iΦk(0)

]
,

where T j%i = T%i · · ·T%i︸ ︷︷ ︸
j

. Furthermore, by the Property 5 of the Dickson-Hipp operator

provided in Li and Garrido [8], we get, k = 1, 2,

Ãk(s) =

N∑
i=1

ni∑
j=1

αij%
j
i

(
Φ̃k(s)

(%i − s)j
−

j∑
l=1

T j%iΦk(0)

(%i − s)j+1−l

)
= f̃G(−s)Φ̃k(s)−Qk(s), (5.4)

where Qk(s) =
∑N
i=1

∑ni
j=1 αij%

j
i

∑j
l=1

T j%i
Φk(0)

(%i−s)j+1−l . Similarly, after some careful calcula-
tions, we can find k = 1, 2,

˜̄Ak(s) =

N∑
i=1

ni∑
j=1

αij%
j
i

(
Ψ̃k(s)

(%i − s)j
−

j∑
l=1

T j%iΨk(0)

(%i − s)j+1−l

)
= f̃G(−s)Ψ̃k(s)− Q̄k(s), (5.5)

where Q̄k(s) =
∑N
i=1

∑ni
j=1 αij%

j
i

∑j
l=1

T j%i
Ψk(0)

(%i−s)j+1−l .



Substituting (5.4) and (5.5) into (3.4), (3.5), (3.8) and (3.9), one finds

Φ̃1(s) =
λ1L(s)w̃1(s)− λL(s)Q1(s)− λλ2Q̄1(s) + λ1λ2w̃1(s)

L2(s)− λ2
2f̃2(s)

, (5.6)

Φ̃2(s) =
−λL(s)Q2(s)− λλ2Q̄2(s) + λ2

2w̃2(s)

L2(s)− λ2
2f̃2(s)

, (5.7)

where L(s) = λ∗ + δ − λf̃G(−s)− λf̃1(s).
Note that the common denominator of (5.6) and (5.7) is analytic for s in the right

half complex plane expect the points %i’s. To make it analytic for all s with Re s ≥ 0,
we assume Λ(s) =

∏N
i=1(s − %i)ni and multiply both the numerators and denominators

of (5.6) and (5.7) by Λ(s). Then, one finds

Φ̃1(s) =
λ1L(s)Λ(s)w̃1(s)− λL(s)Λ(s)Q1(s)− λλ2Λ(s)Q̄1(s) + λ1λ2Λ(s)w̃1(s)

L2(s)Λ(s)− λ2
2f̃2(s)Λ(s)

, (5.8)

Φ̃2(s) =
−λL(s)Λ(s)Q2(s)− λλ2Λ(s)Q̄2(s) + λ2

2Λ(s)w̃2(s)

L2(s)Λ(s)− λ2
2f̃2(s)

. (5.9)

From (5.8) and (5.9), in order to determine Φ̃1(s) and Φ̃2(s), we need to find Λ(s)Qk(s)
and Λ(s)Q̄k(s), k = 1, 2. Note that Λ(s)Qk(s) and Λ(s)Q̄k(s), k = 1, 2 are polynomials
of degree n− 1, i.e.,

Λ(s)Qk(s) =

n∑
i=1

Lk,is
i−1, Λ(s)Q̄k(s) =

n∑
i=1

L̄k,is
i−1.

Then, we need to find n unknown coefficients Lk,i’s and n unknown coefficients L̄k,i’s.
For this purpose, we give without proof the following Lemma. The result of the following
Lemma can be proved by the same technique provided in Lemma 1.

5.1. Lemma. 2 For δ > 0, the common denominator of (5.8) and (5.9) has exactly 2n
zeros, say ρ1(δ), · · · , ρ2n(δ), in the right half complex plane.

Assume that ρ1(δ), · · · , ρ2n(δ) are distinct. Since Φ̃1(s) and Φ̃2(s) are analytic for all
s with Re s ≥ 0, then the roots ρ1(δ), · · · , ρ2n(δ) are zeros of the numerators of (5.8)
and (5.9). Thus we can get the following 2n linear equations satisfied by L1,i and L̄1,i,
i = 1, 2, · · · , 2n,

λ1L(ρi(δ))Λ(ρi(δ))w̃1(ρi(δ))− λL(ρi(δ))Λ(ρi(δ))Q1(ρi(δ))− λλ2Λ(ρi(δ))Q̄1(ρi(δ))

+λ1λ2Λ(ρi(δ))w̃1(ρi(δ)) = 0. (5.10)

Similarly, we also get 2n linear equations satisfied by L2,i and L̄2,i, i = 1, 2, · · · , 2n,

−λL(ρi(δ))Λ(ρi(δ))Q2(ρi(δ))−λλ2Λ(ρi(δ))Q̄2(ρi(δ))+λ2
2Λ(ρi(δ))w̃2(ρi(δ)) = 0. (5.11)

After solving linear equations (5.10) and (5.11), Lk,i and L̄k,i, k = 1, 2, i = 1, 2, · · · , n
can be determined. Then, we can derive the Laplace transforms (5.8) and (5.9).

6. Numerical examples
In this section, we give two numerical examples to show how to find the ruin proba-

bilities φ1(u), φ2(u) and φ(u) and illustrate the behavior of these ruin probabilities.
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Figure 1. (a)Ruin probabilities in Example 1. (b)Ruin probabilities
in Example 2.

6.1. Example 1. We illustrate the ruin probabilities when the claim sizes and the
premium sizes are exponentially distributed. For illustration purpose, we set µG = 1.8,
µF1 = 1.5, µF2 = 1, λ = 2.5, λ1 = 1 and λ2 = 3. The net profit condition is obviously
fulfilled. Let δ = 0, wi(x1, x2) = 1(i = 1, 2), then the expected penalty function Φi(u)(i =
1, 2) simplifies to the ruin probability φi(u)(i = 1, 2).

Eq. (3.14) can be simplified as(
1− 5

13(1− 1.8s)
− 1

6.5(1 + 1.5s)

)2

=

(
3

6.5

)2
1

(1 + s)
.

After solving the equation above, we obtain five roots, 0, 0.390477, -0.879945, -0.600289, -
0.141669. Then, we derive Φ̃1( 1

µG
) = 0.640091, Ψ̃1( 1

µG
) = 0.559909, Φ̃2( 1

µG
) = 0.510574,

and Ψ̃1( 1
µG

) = 0.689426. Finally, the inversion of the Laplace transforms in (3.12) and
(3.13) yields

φ1(u) = −0.071144e−0.879945u + 0.018003e−0.600289u + 0.469982e−0.141669u,

φ2(u) = 0.079266e−0.879945u − 0.016749e−0.600289u + 0.327589e−0.141669u.

Figure 1(a) shows the behavior of ruin probabilities φ1(u), φ2(u) and φ(u) in Example
1, for different values of u ∈ [0, 15].

6.2. Example 2. In this numerical example, we illustrate the ruin probabilities ruin
probabilities when claim sizes from one class are distributed as Erlang(2) and claim
sizes from the other class are distributed as a mixture of two exponentials, i.e., f1(x) =
6.76xe−2.6x and f2(x) = 0.15e−x + 1.5e−2x, for x ≥ 0. For illustration purpose, we also
assume that δ = 0, wi(x1, x2) = 1(i = 1, 2) and the premium sizes are exponentially dis-
tributed with µG = 1.8. Let λ = 2.5, λ1 = 1, λ2 = 3. Solving Eq.(3.14) yields eight roots,
0, 0.390985, -1.194764, -0.489621, -3.578668-0.234714i, -3.578668+0.234714i, -1.946361-
0.1240087i, -1.946361+0.1240087i. Then, we derive Φ̃1( 1

µG
) = 0.307941, Ψ̃1( 1

µG
) =

0.307444, Φ̃2( 1
µG

) = 0.453832, and Ψ̃1( 1
µG

) = 0.296168. Furthermore, the inversion of
the Laplace transforms in (3.12) and (3.13) gives

φ1(u) = 0.081003e−1.946361u cos(0.124009u) + 0.088605e−1.946361u sin(0.124009u)

−0.125463e−3.578668u cos(0.234714u) + 0.117397e−3.578668u sin(0.234714u)



+0.093966e−1.194764u + 0.273590e−0.489621u.

φ2(u) = −0.072828e−1.946361u cos(0.124009u)− 0.084349e−1.946361u sin(0.124009u)

+0.084415e−3.578668u cos(0.234714u)− 0.108023e−3.578668u sin(0.234714u)

−0.046824e−1.194764u + 0.348229e−0.489621u.

Figure 1(b) shows the behavior of the ruin probabilities φ1(u), φ2(u) and φ(u) in Example
2, for different values of u ∈ [0, 5].

7. Concluding remarks
In this paper, we analyze the ruin problems in a risk model with two independent

classes of insurance risks and random incomes, one is from the classical risk process, the
other is from a Erlang(2) risk process. The expected discounted penalty functions are
studied through some analytic methods. Assuming that the premium sizes are exponen-
tially distributed, we show the defective renewal equations for the expected discounted
penalty functions can be derived. While for the distributions of premium sizes have ra-
tional Laplace transforms, the Laplace transforms for the discounted penalty functions
are also be derived.

The model considered in this paper can be extended in the more general framework.
For example, the model can be a risk process with two independent classes, one being
compound Poisson, the other being generalized Erlang(2), and such extension will only
lead to a little computation involvement.

Acknowledgements

The author thanks the referees for their valuable comments and suggestions which
led to the improvement of the paper. This research is supported by the Natural Science
Foundation of China under Grant No. 11201217 and the Natural Science Foundation of
JiangXi Province under Grant No. 20132BAB211010. This research is also supported
by the Natural Science Foundation of China under Grant No. 71301067 and the Natural
Science Foundation of JiangXi Province under Grant No. 20142BAB211015.

References
[1] Bao,Z.H. The expected discounted penalty at ruin in the risk process with random income,

Applied Mathematics and Computation 179(2), 559-566, 2006.
[2] Boikov,A.V. The Cramér-Lundberg model with stochastic premium process, Theory of Prob-

abilistic Applications 47(3), 489-493, 2002.
[3] Boucherie,R.J., Boxma,O.J. and Sigman,K. A note on negative customers, GI/G/I work-

load, and risk processes, Probability in Engineering and Informational System 11(3), 305-
311, 1997.

[4] Chadjiconstantinidis, S. and Papaioannou, A.D. Analysis of the Gerber-Shiu function and
dividend barrier problems for a risk process with two classes of claims, Insurance: Mathe-
matics and Economics 45(3), 470-484, 2009.

[5] Dickson, D.C.M. and Hipp, C. On the time to ruin for Erlang(2) risk processes, Insurance:
Mathematics and Economics 29(3), 333-344, 2001.

[6] Gerber, H.U. and Shiu, E.S.W. On the time value of ruin, North American Actuarial Journal
2(1), 48-78, 1998.
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