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Abstract: The free radical scavenging properties of 1,3,4-oxadiazoles have been explored by the 

application of quantitative structure activity relationship (QSAR) studies. The entire data set of the 
oxadiazole derivatives were minimized and subsequently optimized at the density functional theory (DFT) 

level in combination with the Becke's three-parameter Lee-Yang-Parr (B3LYP) hybrid functional  and 6-
311G* basis set. Kennard Stone algorithm was employed in data division into training and test sets. The 
training set was employed in QSAR model development by genetic function algorithm (GFA), while the test 
set was used to validate the developed models. The applicability domain of the developed model was 

accessed by the leverage approach. The variation inflation factor, degree of contribution and mean effect 
of each descriptor were calculated. Quantum chemical and molecular descriptors were generated for each 
molecule in the data set. Five predictive models that met all the requirements for acceptability with good 
validation results were developed. The best of the five models gave the following validation results: 𝑅 =
0.944, 𝑅2 = 0.891, 𝑄2(𝑅2

𝐶𝑉) = 0.831, 𝑅2
𝑝𝑟𝑒𝑑 = 0.858 and c𝑅𝑝

2 = 0.810    𝑠 = 0.114,  rmsep = 0.121 . The QSAR 

analysis revealed that the sum of e-state descriptors of strength for potential hydrogen bonds of path 
length 9 (SHBint9) and topological radius (topoRadius) are the most crucial descriptors that influence the 

free radical scavenging activities of 1,3,4-oxadiazole derivatives.  
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INTRODUCTION 
 
Antioxidants are molecular systems that inhibit or 
delay the oxidation of other molecules to 
generate free radicals by employing various 
mechanisms in their mode of action (1). In 

biological systems to be precise, antioxidants are 
involved in the control of oxidative chemical 
processes. Natural sources of antioxidants for the 

human system include: ascorbic acid, thyme, 
pepper, nutmeg and tea. Free radicals are 
molecules or their fragments that contain one or 
more unpaired electrons in their atomic or 

molecular orbitals (2). The considerable level of 
reactivity associated with free radicals is due to 
the presence of these unpaired electrons. 
 
Various methods have been developed to 
measure the efficacy of antioxidants either as 
pure compounds or in extracts. The methods 

employed to screen compounds for their free 
radical scavenging activities include: nitric oxide 
radical (NO⦁) scavenging assay (3), superoxide 

anion radical (O2
⦁−) scavenging assay (4), hydroxyl 

radical (OH⦁) scavenging assay (3,4) hydrogen 

peroxide (H2O2) scavenging assay (3), 2,2ˈ-

azinobis(3-ethylbenzothiazoline-6-sulfonate) cat-
ionic radical (ABTS⦁+) scavenging assay (4, 5, 6), 

and ferric reducing antioxidant power (FRAP) 

methods (6). The most accepted method 
employed in screening the free radical scavenging 
activities of antioxidants is the DPPH (2,2ˈ-

diphenyl-1-picrylhydrazyl) radical scavenging 
assay (3-7) . This method involves a change in 
color from deep-violet to light-yellow due to the 

reduction of the stable free radical DPPH to the 
reduced form DPPH-H (2,2ˈ-diphenyl-1-

picrylhydrazine) (8). The radical scavenge 
examined in this research is based on the DPPH 
method. 
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Normal cellular metabolism in living systems 
results in the production of reactive oxygen 

species (ROS) (superoxide anion radical, the 
hydroxyl radical, etc.) and reactive nitrogen 
species (RNS) (nitric oxide radical, peroxynitrite, 
etc.). External factors that induce free radical 

generation in the body include the penetration of 
the skin by ultraviolet light, and polluted air with 
high levels of smog (9). Free radicals at moderate 
levels are essential in maintaining the 
physiological processes in the body. High levels of 
ROS and RNS in the body are harmful and may 
cause damage to proteins and other cell 

structures which results to oxidative stress and 
nitrosative stress respectively (2). The body can 
overcome these adverse effects by an efficient 
antioxidant protection system.  
 
The 1,3,4-oxadiazole derivatives have been 

studied extensively and found to possess 

antioxidant activities (6, 10,11). They are a class 
of heterocyclic compounds that contain one 
oxygen and two nitrogen atoms in a five 
membered ring system.  
 
A method widely employed to correlate the 

relationship between molecular structure and 
biological activities of compounds is quantitative 
structure activity relationship (QSAR) (12-16).  
In this research, QSAR through genetic function 
algorithm was employed to investigation the 
antioxidant properties of 1,3,4 oxadiazole 
derivatives. The data set of the oxadiazoles and 

their IC50 antioxidant activities were generated 
from the literature (6, 10, 11). The molecular 
structures were initially subjected to energy 
minimization and subsequently optimized at the 

density functional theory (DFT) level. The entire 
data set were divided into training and test sets 
by Kennard Stone algorithm (KSA). The training 

set was used to develop the QSAR models by 
genetic function algorithm (GFA), while the test 
set was employed in model validation. The 
variation inflation factor, mean effect and degree 
of contribution of each descriptor in the developed 
model were all calculated. Also, the applicability 

domain of the developed model was accessed by 
the leverage approach.    
 
COMPUTATIONAL METHODS 
 
Data set generation 
The data set of 50 derivatives of 1,3,4-oxadiazole 
and their 𝐼𝐶50 antioxidant activities based on 

DPPH free radical scavenging assay was sourced 
from literature (6, 10, 11). The antioxidant 
activities were converted to uniform unit values 
in 𝜇𝑔/𝑚𝐿  and subsequently to their 𝑝𝐼𝐶50 values.  

 
Geometry optimization / Descriptors 
calculation 

ChemDraw software (17) was utilized in drawing 
the chemical structures of the compounds. The 
minimization of the molecular geometries and 
their subsequent optimization were executed with 

the Spartan 14 program (18) at the density 

functional theory (DFT) level using Becke's three-
parameter Lee-Yang-Parr hybrid functional 

(B3LYP) in combination with the 6-311G* basis 
set without symmetry constraints (19). This 
operation also resulted in the generation of 
quantum chemical descriptors. The PaDEL 

program package version 2.20 (20), was 
employed in the generation of molecular 
descriptors for the optimized molecular 
structures.  
 
Data pre-treatment, normalization and 
division 

The program "Data Pre-Treatment GUI 1.2" (21, 
22), was employed in data pre-treatment in which 
constant value descriptors and pairs of 
descriptors whose correlation coefficients are 
greater than 0.9 were removed. Also, in order to 
ensure that no particular descriptor dominates 

the model due to very high or low values, data 

normalization was conducted by scaling between 
the interval  𝑁(0,1) (23, 24). A rational selection 

of training and test sets from the data set was 
carried out using the program "Dataset Division 
GUI 1.2" tool (25), by employing the Kennard 
Stone algorithm technique. This technique is a 
classical selection method that selects a 

representative subset from a pool of N samples 
that employs the Euclidean distances 𝑑𝑥(𝑦, 𝑧) 
between the x-vectors of each pair (y, z) of 
samples. 
 
Development and validation of the QSAR 
models 

The training set was used to develop the QSAR 
model in which the independent variables 
(descriptors) and the dependent variables (𝑝𝐼𝐶50) 

were subjected to multivariate analysis by 
Genetic Function Approximation (GFA) using the 
material studio software. During the model 
development, 50,000 crossovers, a smoothness 

value of 1.00 and other default settings were used 
for each combination.  
 
The internal stability and predictive ability of the 
developed models were tested by subjecting 
them to internal validation by leave- one- out 
(LOO) cross- validation. Various internal 

validation metrics such as the correlation 
coefficient, R; the cross-validated squared 

correlation coefficient, 𝑅𝑐𝑣
2(𝑄2); the adjusted 𝑅2 

(𝑅𝑎
2); the variance ratio, F and the standard error 

of estimate, s were calculated (12,16,26-28). 
 

The external validation metrics calculated include 
the following: 
The predictive R2 (𝑅2

𝑝𝑟𝑒𝑑) which is the predicted 

correlation coefficient calculated from the 
predicted activity of all the test set compounds 
was calculated as presented in Equation 1. 

𝑅2
𝑝𝑟𝑒𝑑 = 1 −

∑(𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡)−𝑌(𝑇𝑒𝑠𝑡))
2

∑(𝑌(𝑇𝑒𝑠𝑡)−�̅�(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2        ( 1) 
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Where 𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡) and 𝑌(𝑇𝑒𝑠𝑡) are the predicted and 

observed activity values of the test set 
compounds. �̅�(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔) is the mean activity value 

of the training set. 
 

Due to the dependence of 𝑅2
𝑝𝑟𝑒𝑑 on ∑(𝑌(𝑇𝑒𝑠𝑡) −

�̅�(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔))
2
 its value may not reflect the predictive 

potential of the developed QSAR model (29) For 
this reason, a modified 𝑅2 called 𝑟2

𝑚 is thus 

introduced (30), as presented in equation 
Equation 2.  

𝑟2
𝑚 = 𝑟2 (1 − √𝑟2 − 𝑟0

2) ( 2) 

 
A plot of observed activities against the 
corresponding predicted values has slope equal to 
𝑘 and squared correlation coefficient 𝑟0

2  with 

intercept set to zero. When the intercept is not 
set to zero, the squred correlation coefficient 𝑟2 is 

obtained. The interchange of the axis gives the 

parameter 𝑟𝑚
′ 2

 (Equation 3) (24, 31-33). 

𝑟𝑚
′ 2

= 𝑟2 × (1 − √𝑟2 − 𝑟0
′2

)   ( 3). 

 
The Y-randomization test was employed in 
checking the robustness of the models by 
permuting the activity values against the matrix 
of the descriptors (34). The robustness of the 
model is reflected in the value of  c𝑅𝑝

2  parameter 

computed as presented in equation 4. 

 

c𝑅𝑝
2 = 𝑅 × √𝑅2 − 𝑅𝑟

2    (4) 

 
Calculation of the variation inflation factor 
parameter  
The multi-collinearity, among the descriptors in 

the developed model was estimated using 
equation (5). 

𝑉𝐼𝐹 =
1

1 − 𝑟2    (5) 

 
Where 𝑉𝐼𝐹 is the variation inflation factor, while 𝑟 

is the correlation coefficient of multiple 
regressions of a given descriptor with the other 
descriptors. 
 
Mean effect and degree of contribution 
estimates 
The mean effect (MF) which signifies the relative 

significance of each descriptor in the model, was 
estimated using Equation 6.  
 

𝑀𝐹𝑗 =
𝛽𝑗 ∑ 𝑑𝑖𝑗

𝑖=𝑛
𝑖=1

∑ 𝛽𝑗 ∑ 𝑑𝑖𝑗
𝑛
1

𝑚
𝑗

      ( 6) 

 
Where 𝑀𝐹𝑗 = mean effect for the considered 

descriptor 𝑗.  
  𝛽𝑗 = coefficient of the descriptor 𝑗  

  𝑑𝑖𝑗 = value of the target descriptors for each 

molecule,  
 𝑚 = number of  descriptors in the model. 

 The Degree of Contribution (DC), which is the 

standardized regression coefficient was also 
calculated for each descriptor.  

 
Applicability domain investigation 
The applicability domain of a model is the range 
of compounds within which the model makes 

predictions with a given reliability (35). 
 
The applicability domain of the developed 1,3,4-
oxadiazoles antioxidants’ QSAR model was 
accessed by the leverage approach (36). The 
leverage value for all compounds in the dataset 𝑋 

were calculated from the hat matrix (H) (equation 

7). 
 

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇       ( 7) 
 
Where 𝑋 is the two-dimensional 𝑛 × 𝑘 descriptor 

matrix of the training set compounds that 

contains n compounds and k descriptors, The 
transpose of 𝑋 is reoresented as 𝑋𝑇. The leverage 

value of the 𝑖th compound (ℎ𝑖) was estimated 

using equation 8. 
ℎ𝑖 = 𝑥𝑖(𝑋𝑇𝑋)−1𝑥𝑖

𝑇       (𝑖 = 1, … , 𝑚)    ( 8) 
 

The cut-off leverage, h*, which is the limit of 
normal values for 𝑋 outliers, was also calculated 

as presented in equation 9 (37). 

ℎ∗ =
3(𝑘 + 1)

𝑛
     ( 9) 

 
For the estimation of the standard residuals, 
equation 10 was employed.  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑅𝑀𝑆𝐸
     (10) 

 
Where 𝑅𝑀𝑆𝐸 is the Root Mean Square Error. 

 
The Williams plot was obtained by plotting the 

standard residuals against the leverage values. 
(38).  
 
RESULTS AND DISCUSSION 
 
Data set generation and pre-treatment 
The chemical name of the entire data set together 
with their corresponding 𝐼𝐶50 (𝜇𝑔/𝑚𝐿) antioxidant 

activities are presented in Table 1. A total of 32 
quantum chemical descriptors were obtained 
upon geometry optimization of the molecular 
structures. Also 1875 molecular descriptors were 
generated after descriptors calculation. These 
computations gave a total of 1907 descriptors. 

The resulting descriptors can broadly be 

categorized into electronic, spatial, structural, 
thermodynamic, topological, constitutional, 
geometrical, RDF and 3D-Morse. The entire data 
set upon feature processing produced 1181 
descriptors. Recall that data pre-treatment 
ensures that the predictivity and generalization of 

the resulting model does not fail under the 
prevailing conditions. The resulting data set was 
then normalized and upon data division, gave 40 
training set compounds and 10 test set 
compounds. 
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Analysis of the results of developed models 

and their validation 
A total of five QSAR models were developed by 

genetic function approximation. These models are 
represented in Table 2. These descriptors are 

observed to fall within the categories of 

autocorrelation, barysz matrix, electrotopological 
state atom type, topologica and radial distribution 

function descriptors. 
 

Table 2: Developed models for 1,3,4-oxadiazole antioxidant derivatives by genetic function approximation 

Model 
No 

Equation 

1 𝑝𝐼𝐶50 =   0.514 * ATSC7v  - 2.505 * SpAbs_Dzv   + 0.644 * SHBint9 + 1.800 * topoRadius    - 

0.334 * TDB9m    + 0.448 * RDF85e + 4.024 

2 𝑝𝐼𝐶50 =  0.635 * ATSC7v   - 2.119 *  SpAbs_Dzv   + 0.341 * VE3_Dzv + 0.338 * SHBint9    + 

1.324 * topoRadius    + 0.468 * RDF85e + 3.813 

3 𝑝𝐼𝐶50 =  0.531 * ATSC7v   - 2.494 * SpAbs_Dzv     + 0.564 * SHBint9 + 1.755 * topoRadius   - 

0.368 * TDB9m    + 0.401 * RDF75m + 0.390 * RDF85e    + 3.977 

4 𝑝𝐼𝐶50 =  0.534 * ATSC7v   - 2.368 * SpAbs_Dzv    + 0.485 * nHBint9 + 1.464 * topoRadius   - 

0.291 * TDB9m    + 0.556 * RDF85e + 4.017 

5 𝑝𝐼𝐶50 =  0.661 * ATSC7v   - 0.236 * GATS5i     - 2.038 * SpAbs_Dzp + 0.442 * nHBint9    + 

1.079 * topoRadius     + 0.633 * RDF85e + 4.058 

 
A summary of the internal validation results of the 

five models is presented in Table 3. All the five 
models met the requirements for model 
acceptability based on the results of their internal 
validation. For instance, for models 1, 2, 3, 4 and 

5 their (𝑅2 − 𝑅𝑎
2) values are 0.019885, 0.019963, 

0.020424, 0.020266 and 0.020297, respectively. 

These results are by far lower than the threshold 
value of 0.3. Thus the number of descriptors in 
the developed models are within the acceptable 

range since the value of (𝑅2 − 𝑅𝑎
2) for each model 

is less than 0.3. Also their 𝑅2 values are well 

above the threshold limit of 0.6. Model 3 has the 

highest 𝑅2 and 𝑅𝑎
2 values of 0.907 and 0.886 

respectively. This model also has the lowest 
standard error value of 0.107. While model 5 has 

the lowest 𝑅2 and 𝑅𝑎
2 values of 0.888 and 0.868 

respectively. Also, model 2 has the highest 

𝑅𝑐𝑣
2(𝑄2) value of 0.840 while model 3 has the 

lowest value of 0.807. 
 

Table 3: Summary of internal validation results for 1,3,4-oxadiazole antioxidant derivatives. 

Parameters Equation 

1 

Equation 

2 

Equation 

3 

Equation 

4 

Equation 

5 

Friedman LOF 0.023 0.024 0.024 0.024 0.024 
R-squared 0.891 0.890 0.907 0.889 0.888 
Adjusted R-squared 0.871 0.870 0.886 0.868 0.868 
Cross validated R-squared 0.831 0.840 0.807 0.815 0.834 
Significant Regression Yes Yes Yes Yes Yes 

Significance-of-regression F-value 44.790 44.590 44.390 43.840 43.770 
Critical SOR F-value (95%) 2.404 2.404 2.321 2.404 2.404 
Replicate points 0.000 0.000 0.000 0.000 0.000 
Computed experimental error 0.000 0.000 0.000 0.000 0.000 
Lack-of-fit points 33.000 33.000 32.000 33.000 33.000 
Min expt. error for non-significant LOF 
(95%) 

0.095 0.096 0.089 0.096 0.096 

Standard Error of Estimate  0.114 0.115 0.107 0.115 0.116 

*The criteria for model acceptability is: 𝑅2 ≥ 0.6  

From the results of Y- randomization tests as 

presented in Table 4, all the models gave 
encouraging results. The five models passed the 
tests for model acceptability with model 
parameter results well above the threshold values 
:  𝑅 ≥ 0.8 ,   𝑅2 ≥ 0.6 ,   𝑄2 > 0.5 , c𝑅𝑝

2 ≥ 0.5 (39). 

Model 2 recorded the highest  𝑐𝑅𝑝
2 value of 0.822, 

while model 3 has the lowest value of 0.789. Thus 

model 2 is the most robust of the five models. 
Recall that based on the Y-randomization test, the 
predictive power of a model which is reflected on 
the value of c𝑅𝑝

2 must be greater than or equal to 

0.5 (40).  
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Table 4: Results of Y-randomization for 1,3,4-oxadiazole antioxidant derivatives. 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

𝑹 0.944 0.944 0.952 0.943 0.943 
𝑹𝟐 0.891 0.890 0.907 0.889 0.888 
𝑸𝟐 0.831 0.840 0.807 0.815 0.834 

Random Model Parameters      
Average       𝒓 0.392 0.363 0.469 0.405 0.374 
Average       𝒓𝟐 0.167 0.141 0.230 0.175 0.145 
Average      𝑸𝟐 -0.590 -0.560 -0.420 -0.280 -0.400 

𝒄𝑹𝒑
𝟐 0.810 0.822 0.789 0.802 0.815 

*Model acceptability criteria:  𝑅 ≥ 0.8 ,   𝑅2 ≥ 0.6 ,   𝑄2 > 0.5 , c𝑅𝑝
2 ≥ 0.5 (39). 

Table 5: External validation results for 1,3,4-oxadiazole antioxidant derivatives. 

Validation Parameters Model 1 Model 2 Model 3 Model 4 Model 5 

𝒓𝟐 0.829 0.774 0.760 0.723 0.682 
𝒓𝟎

𝟐 0.821 0.745 0.695 0.686 0.606 
Reverse 𝒓𝟎

𝟐 0.822 0.769 0.760 0.710 0.676 
𝒓𝟐

𝒎 0.752 0.641 0.566 0.585 0.494 
Reverse 𝒓𝟐

𝒎 0.759 0.719 0.749 0.643 0.627 
Average 𝒓𝟐

𝒎 0.755 0.68 0.658 0.614 0.561 
Delta  𝒓𝟐

𝒎 0.007 0.078 0.182 0.058 0.133 
𝒓𝟐 − 𝒓𝟎

𝟐 𝒓𝟐⁄  0.010 0.038 0.085 0.050 0.112 

𝒓𝟐 − 𝒓𝟎
′ 𝟐

𝒓𝟐⁄  0.009 0.007 3E-04 0.017 0.010 

𝒌 0.994 0.996 0.987 0.988 0.993 
𝒌′ 1.005 1.003 1.012 1.011 1.006 

|𝒓𝟎
𝟐 − 𝒓𝟎

′ 𝟐
| 0.001 0.024 0.065 0.024 0.070 

rmsep 0.121 0.142 0.166 0.165 0.178 
𝑹𝟐

𝒑𝒓𝒆𝒅 0.858 0.805 0.735 0.737 0.694 

The acceptable threshold values for the given parameters are as follows: 

𝑅2
𝑝𝑟𝑒𝑑 > 0.5 ,  𝑟2 > 0.6,    𝑟2

𝑚 ≥ 0.5 , Delta  𝑟2
𝑚 < 0.2,  |𝑟0

2 − 𝑟0
′2

| < 0.3 ,     (𝑟2 − 𝑟0
2) 𝑟2⁄ < 0.1   𝑎𝑛𝑑   

0.85 ≤ 𝑘 ≤ 1.15, 𝑜𝑟 (𝑟2 − 𝑟0
′2

) 𝑟2⁄ < 0.1 𝑎𝑛𝑑 0.85 ≤ 𝑘′ ≤ 1.15 (24). 

The external validation results for the developed 
models are presented in Table 5. These developed 

models passed all the Golbraikh and Tropsha 

criteria for acceptability, as the results of their 
external validation are within the recommended 
threshold values as presented in Table 5. 
 
The computed predicted activities and residual 
values for the training set and test set compounds 
are also presented in Table 1. These results 

indicate very small residual values for each 
compound. Also the plot of predicted activities 
against experimental activities for the training set 
are presented in Figure 1. While, that of the test 
set are presented in Figure 2. 
 
The acceptable threshold values for the given 

parameters are as follows: 
𝑅2

𝑝𝑟𝑒𝑑 > 0.5 ,  𝑟2 > 0.6,    𝑟2
𝑚 ≥ 0.5 , Delta  𝑟2

𝑚 <

0.2,  |𝑟0
2 − 𝑟0

′2
| < 0.3 ,     (𝑟2 − 𝑟0

2) 𝑟2⁄ < 0.1   𝑎𝑛𝑑   

0.85 ≤ 𝑘 ≤ 1.15, 𝑜𝑟 (𝑟2 − 𝑟0
′2

) 𝑟2⁄ < 0.1 𝑎𝑛𝑑 0.85 ≤ 𝑘′ ≤
1.15 (24). 

 
From the results of Y- randomization tests as 
presented in Table 4, all the models gave 
encouraging results. The five models passed the 

tests for model acceptability with model 
parameter results well above the threshold values 
:  𝑅 ≥ 0.8 ,   𝑅2 ≥ 0.6 ,   𝑄2 > 0.5 , c𝑅𝑝

2 ≥ 0.5 (39). 

Model 2 recorded the highest  𝑐𝑅𝑝
2 value of 0.822, 

while model 3 has the lowest value of 0.789. Thus 
model 2 is the most robust of the five models. 

Recall that based on the Y-randomization test, the 

predictive power of a model which is reflected on 
the value of c𝑅𝑝

2 must be greater than or equal to 

0.5 (40).  
 
The external validation results for the developed 
models are presented in Table 5. These developed 
models passed all the Golbraikh and Tropsha 
criteria for acceptability, as the results of their 

external validation are within the recommended 
threshold values as presented in Table 5. 
 
The computed predicted activities and residual 
values for the training set and test set compounds 
are also presented in Table 1. These results 
indicate very small residual values for each 

compound. Also the plot of predicted activities 
against experimental activities for the training set 

are presented in Figure 1. While, that of the test 
set are presented in Figure 2. 
 
Model 1 has the highest  𝑅2

𝑝𝑟𝑒𝑑 value of 0.858, 

the highest  𝑟2 value of 0.829, the lowest Delta  

𝑟2
𝑚 value of 0.007 and the lowest rmsep value of 

0.121. Recall that the higher the 𝑅2
𝑝𝑟𝑒𝑑 and  𝑟2 

values in combination with very low Delta 𝑟2
𝑚  

and rmsep values, the better the model. Since 

model 1 possess the best results based on these 
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standards, in combination with the good internal 

validation results, it is hereby recognized as the 
best of the five developed models. Thus, the 

predicted activities and residual values for the 
entire data set as presented in Tables 1 and the 
plots of predicted activities against the 
experimental activities as presented in Figures 1 

and 2 are generated from model 1 results. 
  This model is given by: 
𝑝𝐼𝐶50 =   0.514 * ATSC7v  - 2.505 * SpAbs_Dzv   

+ 0.644 * SHBint9 + 1.800 * 
topoRadius    - 0.334 * TDB9m    + 
0.448 * RDF85e + 4.024 

𝑅 = 0.944, 𝑅2 = 0.891, 𝑄2(𝑅2
𝐶𝑉) = 0.831, 𝑅2

𝑝𝑟𝑒𝑑 =

0.858 and c𝑅𝑝
2 = 0.810    𝑠 = 0.114,  rmsep = 0.121   

 
Analysis of applicability domain results 

The results of the applicability domain of the 
developed model for the training and test set 
compounds is presented in the William’s plot 

(Figure 3). This is a plot of the standard residual 
for each molecule against its corresponding 
leverage value. In this plot, the applicability 

domain for the developed model was established 
inside a squared area within ±2.5 bound for 

residuals and a warning leverage, h* value of 

0.525. From this plot, no response outliers were 

identified for both the training set and test set 
compounds as all the compounds were found 
within the limit of ±2.5 standard deviation units. 

In terms of structural outliers, only one training 
set compound (M30) and two test set compounds 
(M37 and M42) were identified. A close 
observation on the molecular structure of these 

compounds reveal that these structural outliers 
have peculiar molecular structure. For M30 a long 
alkyl group is attached to the terminal phenyl 
ring. While M37 and M42 are the only molecules 
with two methyl groups linked to the amino group 
attached to this terminal phenyl ring. These 

molecules are recognized as extrapolations from 
the structural domain of the model since their h 
values are greater than h* (0.525) (41). Thus 

prediction for these compounds are considered 
unreliable. Based on these results, the 
applicability domain of the 1,3,4-oxadiazole 

antioxidant derivatives is thus established.  
 

Molecular descriptors and their significance 
The computed results of Coefficient, Standard 
Error, Mean Effect, Variation Inflation Factor and 
Degree of Contribution of the Descriptors for the 
oxadiazole antioxidants are presented in Table 6.  

 

Table 6: Specifications of coefficient, standard error, mean effect, variation inflation factor and degree of 
contribution of the descriptors for 1,3,4-oxadiazole antioxidants. 

Descriptor Coefficient Standard 
Error 

P-Value DC MF VIF 

ATSC7v 0.514 0.106 2.96E-05 4.839 0.906 1.512 

SpAbs_Dzv -2.505 0.279 2.14E-10 -8.995 -4.417 6.359 
SHBint9 0.645 0.094 7.52E-08 6.876 1.136 3.908 

topoRadius 1.800 0.272 1.65E-07 6.605 3.173 5.774 
TDB9m -0.334 0.113 0.006 -2.967 -0.589 1.915 

RDF85e 0.448 0.119 0.001 3.751 0.790 2.264 

 

 
Figure 1: Graphical plot of experimental activities against predicted activities for training set of 1,3,4-

oxadiazole antioxidants. 
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Figure 2: Graphical plot of experimental activities against predicted activities for test set of oxadiazole 

antioxidants. 
 

 
Figure 3: William’s Plot for Oxadiazole Antioxidant Derivatives 
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Table 1: Data set chemical name and their 𝑰𝑪𝟓𝟎 and  𝒑𝑰𝑪𝟓𝟎 Values 

Comp 
No 

Compounds 
𝑰𝑪𝟓𝟎 𝒑𝑰𝑪𝟓𝟎 

   Observed Predicted Residual 
M01* 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-((phenylamino)methyl)-1,3,4-oxadiazole-2(3H)-thione 11.140 4.953 4.960 -0.007 

M02 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((2-fluorophenyl)amino)methyl) -1,3,4-oxadiazole-2(3H)-thione 13.401 4.873 4.996 -0.123 
M03 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((3-fluorophenyl)amino)methyl) -1,3,4-oxadiazole-2(3H)-thione 12.780 4.893 4.951 -0.058 
M04 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((4-fluorophenyl)amino)methyl) -1,3,4-oxadiazole-2(3H)-thione 10.519 4.978 5.021 -0.043 

M05 
3-(((2,6-difluorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-
thione 

8.2267 5.085 5.009 0.075 

M06 
5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((3,4,5-trifluorophenyl)amino) methyl)-1,3,4-oxadiazole-2(3H)-
thione 

7.757 5.11 4.996 0.115 

M07 
5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((2-(trifluoromethyl)phenyl) amino) methyl)-1,3,4-oxadiazole-

2(3H)-thione 
27.945 4.554 4.673 -0.120 

M08 
5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((3-(trifluoromethyl)phenyl) amino) methyl)-1,3,4-oxadiazole-
2(3H)-thione 

14.541 4.837 4.819 0.018 

M09 
3-(((3,5-bis(tifluoromethyl)phenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-
oxadiazole-2(3H)-thione 

42.630 4.370 4.453 -0.083 

M10 3-(((2-chlorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-thione 11.463 4.941 4.866 0.074 
M11 3-(((3-chlorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-thione 8.5578 5.068 4.825 0.242 
M12 3-(((4-chlorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-thione 11.764 4.929 4.868 0.062 

M13 
3-(((2,4-dichlorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-
thione 

17.827 4.749 4.752 -0.003 

M14 
3-(((2,5-dichlorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-

thione 
14.384 4.842 4.810 0.032 

M15 
3-(((3,4-dichlorophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-
thione 

14.856 4.828 4.741 0.088 

M16 3-(((2-bromophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-thione 15.156 4.819 4.751 0.068 
M17* 3-(((3-bromophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-thione 21.418 4.669 4.809 -0.14 
M18 3-(((4-bromophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-thione 29.962 4.523 4.738 -0.215 

M19 
3-(((2,4-dibromophenyl)amino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)- 1,3,4-oxadiazole-2(3H)-
thione 

17.931 4.746 4.577 0.170 

M20* 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((2-nitrophenyl)amino)methyl)- - 1,3,4-oxadiazole-2(3H)-thione 18.477 4.733 4.800 -0.066 
M21 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((3-nitrophenyl)amino)methyl)- - 1,3,4-oxadiazole-2(3H)-thione 14.803 4.830 4.903 -0.074 
M22 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((4-nitrophenyl)amino)methyl)- - 1,3,4-oxadiazole-2(3H)-thione 18.477 4.733 4.705 0.028 

M23 
3-(((2-chloro-4-nitrophenyl)amino)methyl)- 5-(2,3 dihyrobenzo[b][1,4] dioxin-6-yl)- - 1,3,4-oxadiazole-

2(3H)-thione 
35.076 4.455 4.637 -0.182 

M24 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-((o-tolylamino)methyl)- 1,3,4-oxadiazole-2(3H)-thione 12.902 4.889 4.798 0.091 

M25 
5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-((p-tolylamino)methyl)- 1,3,4-oxadiazole-2(3H)-thione 

8.9459 5.048 5.049 
-4.17E-

04 

M26 
5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((2-methoxyphenyl)mino) methyl)-1,3,4-oxadiazole-2(3H)-
thione 

10.637 4.973 4.982 -0.009 

M27 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((4-methoxyphenyl)mino) methyl)-1,3,4-oxadiazole-2(3H)-
thione 

11.792 4.928 4.922 0.006 



Alisi IO et al. JOTCSA. 2019; 6(2): 103-114.   RESEARCH ARTICLE 

111 
 

M28 
5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-(((2-ethoxyphenyl)amino) methyl)-1,3,4-oxadiazole-2(3H)-

thione 
8.6339 5.064 5.149 -0.086 

M29* 3-((cyclohexylamino)methyl)-5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-1,3,4-oxadiazole-2(3H)-thione 32.798 4.484 4.583 -0.099 
M30 5-(2,3-dihyrobenzo[b][1,4]dioxin-6-yl)-3-((hexadecylamino)methyl)-1,3,4-oxadiazole-2(3H)-thione 52.680 4.278 4.262 0.017 
M31 (E)-5-((2-((2,4-dimethoxybenzylidene)amino)-5-methylthiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 14.900 4.827 4.785 0.042 

M32 
(E)-5-((2-((benzo[d][1,3]dioxol-5-ylmethylene)amino)-5-methylthiazol-4-yl)methyl)-1,3,4-oxadiazole-2-
thiol 

32.800 4.484 4.511 -0.027 

M33* (E)-5-((2-((4-methoxybenzylidene)amino)-5-methylthiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 18.400 4.735 4.651 0.084 
M34 (E)-5-((2-((4-isopropylbenzylidene)amino)-5-methylthiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 24.100 4.618 4.632 -0.014 

M35 
(E)-4-(((4-((5-mercapto-1,3,4-oxadiazol-2-yl)methyl)-5-methylthiazol-2-yl)imino)methyl)-2-
methoxyphenol 

15.000 4.824 4.647 0.177 

M36 
(E)-2-(4-(((4-((5-mercapto-1,3,4-oxadiazol-2-yl)methyl)-5-methylthiazol-2-
yl)imino)methyl)phenyl)ethanol 

24.500 4.611 4.571 0.039 

M37* (E)-5-((2-((4-(dimethylamino)benzylidene)amino)-5-methylthiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 25.700 4.59 4.703 -0.112 
M38 (E)-5-((2-((furan-3-ylmethylene)amino)-5-methylthiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 37.100 4.431 4.557 -0.126 
M39 (E)-5-((5-methyl-2-((2-nitrobenzylidene)amino)thiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 31.500 4.502 4.482 0.019 
M40 (E)-5-((5-methyl-2-((pyridine-2-ylmethylene)amino)thiazol-4-yl) methyl)-1,3,4-oxadiazole-2-thiol 33.100 4.480 4.680 -0.200 
M41 1-(2-phenyl-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone 73.000 4.137 4.079 0.058 
M42* 1-(2-(4-(dimethylamino)phenyl-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone 88.000 4.056 4.202 -0.147 
M43 1-(2-(2-chlorophenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone 99.000 4.004 4.078 -0.074 

M44 1-(2-(2-nitrophenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone 84.000 4.076 3.961 0.115 
M45* 1-(2-(4-methoxyphenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl) ethanone 42.000 4.377 4.198 0.179 
M46 1-(2-(3-chloro-4-nitrophenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl) ethanone 96.000 4.018 4.019 -0.002 
M47* 1-(2-(3-nitrophenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl)ethanone 91.000 4.041 4.156 -0.115 

M48 1-(2-(4-hydroxy-3-methoxyphenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3 (2H)-yl)ethanone 83.000 4.081 4.273 -0.192 
M49 1-(5-(pyridine-3-yl)-2-(p-tolyl)-1,3,4-oxadiazol-3(2H)-yl)ethanone 37.000 4.432 4.341 0.091 
M50* 1-(2-(3,4-dimethoxyphenyl)-5-(pyridine-3-yl)-1,3,4-oxadiazol-3(2H)-yl) ethanone 34.000 4.469 4.306 0.162 

*Test Set 
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From Table 6, we observe that the minimum and 
maximum VIF values are 1.512 and 6.359 for the 

descriptors ATSC7v and SpAbs_Dzv respectively. 
These results are within the acceptable limits, 
hence the developed model should be accepted. 
Recall that there is no inter-correlation among the 
descriptors when 𝑉𝐼𝐹 = 1. The model is acceptable 

when the  𝑉𝐼𝐹 result lies in the range 1 − 5. Also, 

if 𝑉𝐼𝐹 > 10, the developed model is unstable (42). 

 
SHBint9 (Sum of E-State descriptors of strength 
for potential hydrogen bonds of path length 9). 
This descriptor possess the highest DC value of 
6.876, the second largest MF value of 1.136 in 
addition to the smallest standard error value of 

0.094. For a given descriptor, the higher the MF 
and DC values, the higher the relative significance 
and contribution of that descriptor in the 
developed model. To substantiate these results, 

this descriptor is positively correlated with the 
antioxidant activities of the oxadiazole 

derivatives. These results imply that an increase 
in the strength for potential hydrogen bonds of 
path length 9 on the oxadiazole moiety improve 
their activity. This descriptor is hereby recognized 
as the most influential descriptor for the 1,3,4-
oxadiazoles. Thus in the design of new set of 
oxadiazole antioxidants, emphasis should be laid 

on this descriptor. 
 
topoRadius: Topological radius. This descriptor 
for a given molecule, implies the minimum atom 
eccentricity of that molecule. This descriptor has 
the highest MF and coefficient values of 3.173 and 
1.800 with a very encouraging value for DC of 

6.605. Also it is positively correlated with the 
antioxidant activities of the oxadiazoles. Thus the 

larger the value of the minimum atom eccentricity 
among the oxadiazoles, the higher their activities.  
 
TDB9m (3D topological distance based 

autocorrelation - lag 9 / weighted by mass). This 
is a 3D descriptor in which the topological 
distance between pairs of atoms is 9 with a 
weighting component of relative atomic mass. 
This descriptor is negatively correlated with the 
antioxidant activities of the 1,3,4-oxadiazoles 
with very low values of -2.967 and  -0.589 for DC 

and MF respectively.    
 
SpAbs_Dzv: Graph energy from Barysz matrix / 
weighted by van der Waals volumes. As can be 
seen in Table 6, these two descriptors possess the 
lowest results for coefficient, DC and MF. In 

addition, they are negatively correlated with the 

antioxidant activities of the oxadiazole 
antioxidants. These results portray the low 
contribution and influence of these descriptors on 
the antioxidant activities of the oxadiazoles. 
 
RDF85e (Radial distribution function - 085 / 

weighted by relative Sanderson 
electronegativities). This is a 3D descriptor that 
describes the probability distribution of locating 
an atom in a spherical volume of radius 𝑟 in which 

the associated weighing scheme is the Sanderson 
electronegativity. In our developed model, this 

descriptor is positively correlated with the 
antioxidant activities of the oxadiazoles with a 
coefficient of 0.448. As can be observed from 
Table 6, the DC value for this descriptor is 3.751, 

while the MF value is 0.790. These results suggest 
that the addition of electronegative entities 
improve the free radical scavenging activities of 
the oxadiazoles. 
 
ATSC7v (Centered Broto-Moreau autocorrelation 
- lag 7 / weighted by van der Waals volumes) This 

descriptor describes the distribution of van der 
Waals volume with a lag of 7 along the topological 
structure of the 1,3,4-oxadiazole molecule. Recall 
that the lag is the topological distance between 
pairs of atoms. In the developed model, the 
ATSC7v descriptor has moderate values for DC 

and MF, in addition of being positively correlated 

with the antioxidant activity of the 1,3,4-
oxadiazoles.   
 
CONCLUSION 
 
Quantitative structure activity relationship 

(QSAR) by genetic function algorithm (GFA) was 
successfully employed to investigate the 
antioxidant properties of 1,3,4-oxadiazoles. Five 
QSAR models were developed and subjected to 
various validation tests. All the developed models 
passed the various validation tests with highly 
encouraging results. The best of the five 
developed models which is represented as: 𝑝𝐼𝐶50 

=   0.514 * ATSC7v  - 2.505 * SpAbs_Dzv   + 
0.644 * SHBint9 + 1.800 * topoRadius    - 0.334 
* TDB9m    + 0.448 * RDF85e + 4.024 is a 

reference basis in the design of new antioxidants 
with 1,3,4-oxadiazole moiety. 
 

The results of mean effect, degree of contribution 
and variation inflation factor show that the most 
important descriptors that influence the free 
radical scavenge of 1,3,4-oxadiazole derivatives 
are: Sum of E-State descriptors of strength for 
potential hydrogen bonds of path length 9 
(SHBint9) and topological radius (minimum atom 

eccentricity) (topoRadius) descriptors. In the 
design of new set of compounds with potent 
antioxidant activities, these highly influential 
descriptors should be considered. 
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