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Multi-sample test based on bootstrap methods for
second order stochastic dominance
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Abstract
Statistical inferences under second order stochastic dominance for two
sample case has a long and rich history. But the k(≥ 2) sample case has
not been well studied. In this article we consider k(≥ 2) sample test for
the equality of distribution functions against second order stochastic
dominance alternative. A test statistic is constructed with isotonic re-
gression estimates of stop-loss transform functions, and the asymptotic
distribution of the proposed test is given. A bootstrap procedure is
employed to obtain the p-value of the test, and some simulation results
are presented to illustrate the proposed test method.
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1. Introduction
Ordering of distribution functions play an important role in many scientific areas

including lifetime testing, reliability and economics, (see, for example, Alzaid et al. [1],
Boland and Samaniego [6], Li and Lu [14], Shaked and Shanthikumar [18]). Many types
of orderings of varying degrees of strength for comparing univariate distributions are
discussed in the literature, including likelihood ratio ordering (Dykstra et al. [8]), uniform
stochastic ordering or hazard rate ordering (Dykstra et al. [7]), and first- and second-
order stochastic ordering (Feng and Wang [11], Klonner [13], Schnid and Trede [17]).
Among them, first- and second-order stochastic ordering are the weakest, and used widely
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in practice (see, for example, Fong et al. [12], Klonner [13], Sriboonchita et al. [20], Wong
[23]).

Second-order stochastic ordering is often called as second-order stochastic dominance
or concave stochastic order, especially in economics. Since the beginning of the 1970’s,
stochastic dominance rules have been an essential tool in the comparison and analysis of
poverty and income inequality. More recently, stochastic dominance has also been em-
ployed in the development of the theory of decision under risk and in actuarial sciences.
The influential articles by Atkinson [2] and Shorrocks [19] are examples of theoretical
works that provided a far-reaching insight into the importance of the stochastic domi-
nance rules. And in economics and finance, second order stochastic dominance plays a
major role in developing a general framework to establish a criterion for selecting one
option over another. Therefore, it is of major interest to acquire a deep understanding
of the meaning and implications of the second order stochastic dominance assumptions.
This is why we focus on the statistical test of second order stochastic dominance in this
article.

Testing against second order stochastic dominance of two distributions has a rich
history and has been studied by many authors, for example, Liu and Wang [15], Bai
et al.[3] and Berrendero and Carcamo [5], among others. In practice, we may be faced
to compare multiple distributions in the mean of second order stochastic dominance.
However, as far as we know, the multi-sample comparisons have not been well studied.
In this article, we consider the test of stochastic equality of multiple distributions against
the stochastic monotonicity under second order stochastic dominance.

The rest of the article is organized as follows. In section 2, as preparation we define
some estimators for the unknown functionals of distribution functions, and discuss their
consistency. In section 3 we provide test for the stochastic equality against second order
stochastic dominance of k distributions and give the asymptotic distribution of the test
statistic. In section 4 we establish a bootstrap procedure to implement the proposed test.
In section 5 we present simulation to illustrate the performance of the proposed method.
Some conclusion remarks are given in section 6.

2. Preliminaries
In this section, we first recall the definition of second order stochastic dominance for

the convenience of statement, and then present estimators of the integrated distribution
functions which satisfy the ordering restrictions.

2.1. Second order stochastic dominance.

2.1. Definition. Let X and Y be independent random variables with corresponding
cumulative distribution functions F and G respectively. We say that Y dominates X in
the sense of second order stochastic dominance, and denote by X ≤SSD Y or F ≤SSD G,
if for every nondecreasing and concave function u(·), we have

(2.1) E(u(X)) ≤ E(u(Y ))

or if

(2.2) E(X − t)− ≤ E(Y − t)−, ∀t ∈ R.

The equivalence of (2.1) and (2.2) refers to Stoyan [21]. In addition, a straightforward
application of Fubini’s theorem leads to yet another equivalent expression. In fact, define
the transform WF associated with a distribution function F by

(2.3) WF (t) =
∫ t
−∞ F (y)dy, ∀t ∈ R,



then (2.1) is equivalent to

(2.4) WF (t) ≥WG(t), ∀t ∈ R.

see Theorem 4.A.2 in Shaked and Shanthikumar [18].

2.2. Isotonic regression estimators of the integrated distribution functions.
Assume that there are k independent samplesXi1, Xi2, · · · , Xini , whereXij , j = 1, · · · , ni
have common distribution function Fi, i = 1, 2, · · · , k. We are interested in how to test
with the samples that

(2.5) F1 ≥SSD F2 ≥SSD · · · ≥SSD Fk

or, equivalently

(2.6) WF1(t) ≤WF2(t) ≤ · · · ≤WFk (t), ∀t ∈ R.

For this purpose, we first estimate the integrated distribution functions WFi(t).
As is well known, a suitable estimator of Fi is the empirical distribution function

F̂i(x) =
1

ni

ni∑
j=1

I[Xij ,∞)(x)

where IA(·) denotes the indicator function associated with the set A. An immediate
estimator of WFi , denoted by WF̂i

, can be obtained by substituting Fi(x) with F̂i(x),
WF̂i

(t) =
∫ t
−∞ F̂i(y)dy, ∀t ∈ R. Let

WF̂ (t) = (WF̂1
(t),WF̂2

(t), · · · ,WF̂k
(t)), t ∈ R.

It is obvious that the vectorWF̂ (t) need not satisfy inequality (2.6), even if the inequality

holds. To get such estimators, we employ isotonic regression. Let Nrs =
s∑
j=r

nj , and

Avn[WF̂ (t), r, s] =
s∑
j=r

njWF̂j
(t)/Nrs for r ≤ s. Define the estimator of WFi(t) by

(2.7) W ∗
F̂i

(t) = max
r≤i

min
s≥i

Avn[WF̂ (t), r, s], i = 1, · · · , k.

Avn[WF̂ (t), r, s] is the weighted average of WF̂r
(t), · · · ,WF̂s

(t), and for each t, W ∗
F̂i

(t) is
the isotonic regression estimator of WF̂i

(t) with weights {n1, · · · , nk} (see Robertson et
al.[16]).

Let || · || denote the sup norm. The following lemma gives the consistency of the
estimators, and thus the reasonability to construct a test statistic with them.

2.2. Lemma. P [‖WF̂i
−WFi ‖→ 0, ni →∞, i = 1, · · · , k] = 1.

Furthermore, if inequality (2.6) holds, then

P [||W ∗F̂i
−WFi || → 0, ni →∞, i = 1, 2, · · · , k] = 1.

The first conclusion of Lemma 2.2 is a straightforward consequence of Glivenko-
Cantelli Theorem in van der Vaart and Wellner [22], and the second one can be proved
easily by combining the first one and the properties of isotonic regression ( Robertson et
al. [16]). We omit the proof (see also, for example, El Barmi and Marchev [9]).



3. Hypothesis Tests
In this section, we discuss the tests of hypotheses under second order stochastic dom-

inance. The hypotheses are defined as

H0 : F1 = F2 = · · · = Fk,

and
H1 : F1 ≥SSD F2 ≥SSD · · · ≥SSD Fk,

We first set the notation in Subsection 3.1, then study the tests of H0 versus H1−H0 in
Subsection 3.2.

3.1. Notation and lemmas. Let n =
∑k
i=1 ni,

ain =
ni
n
,

Zini(t) =
√
ni[WF̂i

(t)−WFi(t)],

Z∗ini
(t) =

√
ni[W

∗
F̂i

(t)−WFi(t)], i = 1, 2, · · · , k,

and

Arsn =

s∑
j=r

ajn, 1 ≤ r ≤ s ≤ k.

When limits

(3.1) lim
n→∞

ain = ai > 0, i = 1, 2, · · · , k

exist, denote

Ars = lim
n→∞

Arsn =

s∑
j=r

aj .

For standard Brownian bridge B = (B(t))0≤t≤1 and distribution function H on R,

denote BH(x) =
x∫
−∞

B(H(s))ds, x ∈ R. If
∫
x2H(dx) <∞, then BH = (BH(x))x∈R is a

centered Gaussian process with covariance function

ρH(x, y) =

x∫
−∞

y∫
−∞

(H(u ∧ v)−H(u)H(v))dudv, x, y ∈ R.

See Berrendero and Carcamo [5].
In this paper, we use ”

w→ ” to denote weak convergence (or convergence in distribution
).

The following result is helpful to derive the asymptotic distributions of test statistics.
Its proof is similar to that of Lemma 1 in Baringhaus and Grübel [4].

3.1. Lemma. Let fn, gn(n ∈ N), g, h be continuous real functions on K = [−∞,∞]
such that fn = gn + cnh, where (cn)n∈N is a sequence of non-negative real numbers with
lim
n→∞

cn =∞. Assume further that h ≤ 0, A = {h = 0} 6= ∅, and gn converges uniformly
to g. Then

lim
n→∞

sup
t∈K

fn(t) = sup
t∈A

g(t).



3.2. Test of H0 versus H1−H0. In this subsection, we consider the problem of testing
H0 versus H1 −H0. To this end, define test statistic Tn by

Tn =
√
n sup
t∈R

(W ∗F̂k
(t)−W ∗F̂1

(t)).

It is easy to see from Lemma 2.2 that when the alternative hypotheses holds, W ∗
F̂k

and
W ∗
F̂1

would have different limits, thus Tn would take large values with large probability.
To obtain the properties of Tn more explicitly, we next study its asymptotic distribution.

3.2. Theorem. If for all Fis have finite second moments, then

(Z1n1(t), Z2n2(t), · · · , Zknk (t))′
w→ (BF1(t), BF2(t), · · · , BFk (t))′, ∀t ∈ R,

as minni →∞.

The theorem is an easy result of empirical process theory (van der Vaart and Wellner
[22], see also Theorem 1 in Baringhaus and Grübel [4]). From Theorem 3.2, it may be
shown the following theorem.

Let Si = {j : WFj (t) = WFi(t),∀t ∈ R, j = 1, · · · , k}, ci and di be the left and right
endpoints of the support of Fi, i = 1, 2, · · · , k. The following condition will be employed
to give the asymptotic distribution of Z∗ini

s.

(3.2) inf
ci+η≤t≤di−η

[WFj (t)−WFi(t)] > 0,

for some η > 0 and all j > Si, i = 1, 2, · · · , k, where inf∅(.) = ∞, and j > Si means
j > l for all l ∈ Si.

3.3. Theorem. Suppose all the k distributions have finite second moments, and (3.1)
and (3.2) hold. Then under H1 it holds that

(Z∗1n1
(t), Z∗2n2

(t), · · · , Z∗knk
(t))′

w→ (Z∗1 (t), Z∗2 (t), · · · , Z∗k(t))′, t ∈ R

as n→∞, where

Z∗i (t) =
√
ai max
r≤i,r∈Si

min
i≤s,s∈Si

∑
{r≤j≤s}

√
ajBFj (t)

Ars
.

We omit its proof, which is similar to that of Theorem 4 in El Barmi and Mukerjee
[10]. Based on the conclusion, we may obtain the asymptotic distribution of the test
statistic.

3.4. Theorem. Suppose the conditions of Theorem 3.3 are satisfied. Then under H0 it
holds that

Tn
w→ T = sup

t∈R
{max
r≤k

k∑
j=r

√
ajBFj (t)

Ark
−min

s≥1

s∑
j=1

√
ajBFj (t)

A1s
}.

Proof. Define stochastic processes Vn(t) =
√
n(W ∗

F̂k
(t)−W ∗

F̂1
(t)), then

(3.3)

Vn(t) =
√
n(W ∗

F̂k
(t)−WFk (t))−

√
n(W ∗

F̂1
(t)−WF1(t))

+
√
n(WFk (t)−WF1(t))

=
√

n
nk

√
nk(W ∗

F̂k
(t)−WFk (t))−

√
n
n1

√
n1(W ∗

F̂1
(t)−WF1(t))

+
√
n(WFk (t)−WF1(t))

=
√

n
nk
Z∗knk

(t)−
√

n
n1
Z∗1n1

(t) +
√
n(WFk (t)−WF1(t)).



Under H0, the third term on the right-hand side is just zero. By Theorem 3.3 and Slutsky
theorem, we obtain√

n
nk
Z∗k,nk

(t)−
√

n
n1
Z∗1,n1

(t)
w→

√
1/akZ

∗
k(t)−

√
1/a1Z

∗
1 (t)

= max
r≤k

k∑
j=r

√
ajBFj

(t)

Ark
−min

s≥1

s∑
j=1

√
ajBFj

(t)

A1s
.

By Lemma 3.1 and continuous mapping theorem, we have

Tn
w→ T = sup

t∈R
{max
r≤k

k∑
j=r

√
ajBFj

(t)

Ark
−min

s≥1

s∑
j=1

√
ajBFj

(t)

A1s
}. �

3.5. Theorem. Suppose that H1 −H0 does hold. Then P (Tn →∞) = 1.

Proof. The first two terms on the right-hand side of (3.3) are stochastically bounded.
If H1 −H0 does hold, then there is at least one i which satisfies WFi(t) < WFi+1(t) for
all t in some non-empty interval (a, b) ⊂ R. As

√
n→∞, we obtain

sup
t∈R

Vn(t)→∞

with probability one. �

Theorem 3.4 gives the null asymptotic distribution of Tn, thus the feasibility of the
test theoretically. Theorem 3.5 reveals that the proposed test is consistent.

4. Bootstrap Procedure
To use the statistic Tn to make a decision in practice, we require the p-value of the test

statistic. Although the asymptotic distribution of Tn under the null hypothesis is given,
however, it is very complicated, and depends on the underlying unknown distributions
Fi, thus is difficult to be used directly to compute the critical value. In this section, we
give a bootstrap method to compute an approximated p-value for Tn.

4.1. Asymptotic behavior of Bootstrap statistic. Recall that F̂i are the empirical
distribution functions associated with the samples Xi1, · · · , Xini from Fi, i = 1, · · · , k.
These random variables are the initial segments of k infinite sequences (Xij)j∈N of ran-
dom variables defined on some background probability space (Ω,A, P ); the almost sure
statements below refer to P. Given the initial segments, let ζ̂n,1 · · · , ζ̂n,n be a sample of
size n from the (random) distribution function
(4.1) Hn = n1

n
F̂1 + n2

n
F̂2 + · · ·+ nk

n
F̂k.

Let

F̂n,ni(x) =
1

ni

n1+···+ni∑
j=n1+···+ni−1+1

I[ζ̂n,j ,∞)(x),

W ∗F̂n,ni
(x) = max

r≤i
min
s≥i

Avn[WF̂n,ni
(x), r, s],

Ẑn,ni =
√
ni(WF̂n,ni

−WHn),

Ẑ∗n,ni
=
√
ni(W

∗
F̂n,ni

−WHn), i = 1, · · · , k,

and define the bootstrap version of Tn by

(4.2) T̂n = sup
t∈R

√
n(W ∗

F̂n,nk
(t)−W ∗

F̂n,n1
(t))



The following theorem shows that, with probability 1, the limit distribution of T̂n is
the same as that of Tn.

4.1. Theorem. Suppose that the conditions of Theorem 3.4 hold, then with probability
one,

(4.3) T̂n
w→ sup

t∈R
{max
r≤k

k∑
j=r

√
ajBFj

(t)

Ark
−min

s≥1

s∑
j=1

√
ajBFj

(t)

A1s
}

where ai, Ark, A1s, i, r, s = 1, · · · , k are the same as in Theorem 3.4.

Proof. Let F = {φt(x) = (x− t)− : t ∈ R}, and ÛFi
n,ni

= (ÛFi
ni

(φ))φ∈F,

ÛFi
n,ni

(φ) :=
√
ni(

∫
φdF̂n,ni −

∫
φdHn)

be the empirical processes associated with the k parts of the resamples. See van der
Vaart and Wellner [22], with probability one, we have

(4.4) ÛFi
n,ni

w→ BFi , i = 1 · · · , k.

In analogy to (3.2), we now define the stochastic processes V̂n(t) by

V̂n(t) =
√
n(W ∗F̂n,nk

(t)−W ∗F̂n,n1
(t))

=
√
n[(W ∗F̂n,nk

(t)−
∫
φtdHn)− (W ∗F̂n,n1

(t)−
∫
φtdHn)]

=

√
n

nk

√
nk(W ∗F̂n,nk

(t)−WHn(t))−
√

n

n1

√
n1(W ∗F̂n,n1

(t)−WHn(t))

=

√
n

nk
Ẑ∗n,nk

(t)−
√

n

n1
Ẑ∗n,n1

(t)

Note that Ẑ∗n,nk
(t) may be obtained from the isotonic regression of ÛFi

n,ni
(φt), i = 1, · · · , k.

By continuous mapping theorem, the conditional independence of the subsamples and
(4.4), we obtain

V̂n(t)
w→ max

r≤k

k∑
j=r

√
ajBFj (t)

Ark
−min

s≥1

s∑
j=1

√
ajBFj (t)

A1s

with probability one. This leads to that

T̂n = sup
t∈R

V̂n(t)
w→ sup

t∈R
{max
r≤k

k∑
j=r

√
ajBFj (t)

Ark
−min

s≥1

s∑
j=1

√
ajBFj (t)

A1s
}

with probability one, by continuous mapping theorem and Lemma 3.1. �

4.2. Determination of the p-value. To apply the test in practice, we propose a
bootstrap approximation to the p-value of the test as follows.

Step 1. Compute test statistic Tn from the original samplesXi1, · · · , Xini , i = 1, · · · , k;

Step 2. Let ζ̂n,1 · · · , ζ̂n,n be a bootstrap sample of size n from the pooled empiri-
cal distribution function Hn = n1

n
F̂1 + n2

n
F̂2 + · · · + nk

n
F̂k, where F̂i is the empirical

distribution function associated with the sample Xi1, · · · , Xini , i = 1, · · · , k. Divide this
bootstrap sample into k parts ζ̂n,n1+···+ni−1+1, · · · , ζ̂n,n1+···+ni , i = 1, · · · , k. Use these
k parts to compute a bootstrap version of the test statistic T̂n by (4.2);

Step 3. Repeat step 2 a large number B of times, yielding B bootstrap test statistics
T̂

(b)
n , b = 1, · · · , B;



Step 4. The p-value of the proposed test is given by p = Card{b:T̂ (b)
n >Tn,b=1,··· ,B}

B
.

We reject H0 at a given level α when p < α. Theorem 4.1, Theorem 3.4 and Theorem
3.5 ensure that the true level of the proposed test would be closed to the nominal sig-
nificant level under H0, and the power (the rejection probability) should be high under
H1 − H0 when the sample sizes are enough large. The simulation in next section will
confirm the intuition statements.

5. Simulation Study
To investigate the properties of the tests, we carried out a simulation study for k = 3.

The empirical rejection rates of Tn in 1000 replications are recorded for various scenarios.
For each of the scenarios, the number of resampling is taken as 1000; the sample sizes of
the three distributions are taken as the same, and they are set at 100, 200 in different
simulations for evaluating the effect of sample size.

Table 1 reports the simulation results for scenarios for which H0 is true. Two different
significance levels are considered. In Table 2, the empirical rejection rates of the test
are given for the scenarios for which H1 −H0 is true. The significance level is taken as
α = 0.05.

TABLE 1: Empirical rejection rates of the test under H0

Distributions n1 = n2 = n3 = 100 n1 = n2 = n3 = 200

F1 = F2 = F3 α = 0.01 α = 0.05 α = 0.01 α = 0.05

U(0,1) 0.012 0.060 0.015 0.051
Exp(1) 0.013 0.057 0.010 0.056
N(0,1) 0.012 0.062 0.010 0.048
χ2(2) 0.016 0.037 0.012 0.047

Beta(2,2) 0.007 0.055 0.009 0.052

TABLE 2: Empirical rejection rates of the test under H1 −H0

Distributions n1 = n2 = n3 = 100 n1 = n2 = n3 = 200

F1 F2 F3 p̂ p̂

Uni(0,1.1) Uni(0,1) Uni(0,1) 0.732 0.946
Uni(0,1.1) Uni(0,1.1) Uni(0,1) 0.721 0.985
Exp(1) Exp(1) Exp(1.1) 0.213 0.236
Exp(1) Exp(1.1) Exp(1.1) 0.134 0.291
Exp(1) Exp(1.1) Exp(1.2) 0.324 0.569
N(0.1,1) N(0,1) N(0,1) 0.191 0.275
N(0.1,1) N(0.1,1) N(0,1) 0.174 0.253
N(0.5,1) N(0.25,1) N(0,1) 0.976 1.000
Uni(0,1) Uni(0,1) Beta(2,2) 0.478 0.853
Uni(0,1) Beta(2,2) Beta(2,2) 0.629 0.860

From Table 1, we see that the simulated size of the proposed test is reasonable and
gets closer to α with the sample size n increasing. For fixed sample sizes, the performance
of the test vary slightly with the population distributions.

Furthermore, from Table 2, we could have the following observations.
(1) With the increasing of sample sizes, the power (empirical rejection rate) of the

proposed test increases fast.
(2) The power is related to how the probability distributions going against the null

hypothesis. It is lower when the differences of the population distributions are slight,
and goes higher when the differences become significant. In addition, the test looks more



sensitive to the differences of the distributions with bounded supports than that with
unbounded supports.

6. Concluding Remarks
In this article, we present an extension of Baringhaus and Grübel [4] through isotonic

regression, and give a test for the homogeneity of multiple populations against the second
stochastic dominance ordering. The method can be used also to test the null hypothesis
of second stochastic dominance ordering, even umbrella ordering in the sense of second
stochastic dominance ordering, with an appropriate estimators of the distributions under
umbrella ordering restriction.

Bootstrap method is employed to give the p-value of the proposed test. Generally,
the approximated p-value is good for limited sample sizes. However, when the null
hypothesis is not the homogeneity of the distributions, based on our simulations those
are not presented here, the obtained p-value may not enough accurate (conservative in
general), and how to improve the approximation should be studied further.
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