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Abstract

G.D. Anderson and S. L. Qiu (A monotonicity property of the gamma

function, Proc. Amer. Math. Soc. 125 (11) (1997), 3355–3362) ob-
tained a double inequality for the function Γ(x). Their result was im-
proved by H. Alzer (Inequalities for the gamma function, Proc. Amer.
Math. Soc. 128 (1), 141–147, 1999), and by X. Li, Ch. P. Chen (In-

equalities for the gamma function, J. Ineq. Pure Appl. Math. 8 (1),
Art.28, 2007). Li and Chen remarked that their bounds could not be
compared with those of Alzer. In this note, we will show that there
exist a constant γ such that, in the intervals (1, γ) and (γ, +∞), the
upper bounds can be compared to each other. We will also show that
there exist a constant ξ such that it will be possible to compare lower
bounds in the intervals (1, ξ) and (ξ, +∞).
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1. Introduction

The Euler gamma function Γ(x) is defined for x > 0 by

Γ(x) =

∫

∞

0

e−ttx−1 dt.

In 1997, G. D. Anderson and S. L. Qiu [2] proved the following double inequality for
Γ(x) :

(1.1) x(1−γ)x−1 < Γ(x) < xx−1, (x > 1),

where γ is the Euler constant with value γ = 0.577215 . . ..
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Then, in 1999, H. Alzer [1] proved that for x > 1 the following inequalities hold:

(1.2) xα(x−1)−γ < Γ(x) < xβ(x−1)−γ ,

with the best possible constants

α =
(π2

6
− γ

)

/2, β = 1.

Relation (1.2) represents an improvement on (1.1).

In 2007, X. Li and Ch. P. Chen [4] improved inequalities (1.1) as follows:

(1.3)
xx−γ

ex−1
< Γ(x) <

xx− 1

2

ex−1
, (x > 1).

At the end of their paper [4], they remarked that the upper and lower bounds of (1.2)
and (1.3) cannot be compared to each other.

It is natural to ask whether there exist some intervals in which the comparison of the
bounds can be done? In these notes, we will show that there exist a constant γ (ξ) such
that, in the intervals (1, γ) and (γ, +∞) ((1, ξ) and (ξ, +∞)) the upper bounds (the lower
bounds) can be compared to each other.

Hence, we will compare both the lower and upper bounds of (1.2) and (1.3) in both
intervals, keeping in mind that with

α =
(π2

6
− γ

)

/2 and β = 1

the relation (1.2) would be:

(1.4) xα(x−1)−γ < Γ(x) < xx−1−γ

So, in fact, we will compare lower and upper bounds of (1.3) and (1.4).

2. Main results

2.1. Theorem. (Upper bounds of (1.3) and (1.4)) Let

x ∈

(

1, γ +
1

2

)

.

Then:

(2.1) xx−1−γ <
xx− 1

2

ex−1
.

Proof. Consider the function:

(2.2) v(x) = x − 1 −

(

γ +
1

2

)

· ln x, x ∈

[

1, γ +
1

2

)

.

It’s derivative is

(2.3) v′ = 1 −
γ + 1

2

x
.

Clearly, for x ∈

[

1, γ + 1
2

)

, v′ < 0. Hence, v is a decreasing function. Since v(1) = 0, we

have v(x) < 0, for x ∈

(

1, γ + 1
2

)

. So, one obtains:

x − 1 −

(

γ +
1

2

)

· ln x < 0

After transformations we have:

ex−1 < xx− 1

2
−((x−1)−γ),
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so finally

xx−1−γ <
xx− 1

2

ex−1
,

completing the proof. �

If we refer to (1.7) we see that for x > γ + 1
2
, we have v′ > 0, so in that case v is an

increasing function.

Clearly, for x = γ + 1
2
, the function v attains its minimum.

Now, it is easy to verify that v
(

γ + 1
2

)

< 0, and v(γ + 1) > 0. Since, for x > γ + 1
2
, v

is increasing, then in the interval
(

γ + 1
2
, γ + 1

)

there is exactly one zero of the function

v. Let us denote this by η. (So v(η) = 0 and η ∈

(

γ + 1
2
, γ + 1

)

).

In view of the above facts (v - increasing and v
(

γ + 1
2

)

< 0), we conclude that for

x ∈

(

γ+ 1
2
, η

)

the function v is negative, so Theorem 2.1 can be extended to the following:

2.2. Theorem. Let x ∈ (1, η). Then (1.5) is true. So:

xx−1−γ <
xx− 1

2

ex−1
. �

Theorem 2.2 says that, for x ∈ (1, η), the upper bound given in [1] is better than
upper bound given in [4].

Now clearly for x ∈ (η, +∞), the function v is positive so the following is true:

2.3. Theorem. Let x ∈ (η, +∞). Then

xx−1−γ >
xx− 1

2

ex−1
.

Proof. Similar to the proof of the Theorem 2.1. �

In view of similar comments made after the proof of Theorem 2.2, now we have the
opposite. The upper bound given in [4] is better than that of [1].

Clearly, for x = η in (2.1) we have equality.

Next, we compare lower bounds of (1.3) and (1.4). First, we prove the following:

2.4. Lemma. The function

(2.4) θ(x) = x − 1 + (αx − α − x) · ln x, x > 1

has exactly on zero, where α =
(π2

6
− γ

)

/2 ≈ 0.53385.

Proof. We will show that the zero of the function θ is in the interval (1, e). It is easy to
find x0, x1 > 1 such that θ(x0) > 0 and θ(x1) < 0 (x0 = 1+ε, with ε ”small” and positive
and x1 = e satisfy those conditions). Hence, there is at least on number ξ ∈ (1, e) such
that θ(ξ) = 0.

The graphical method (see [3]) shows that in (1, e) there is exactly one zero of the
function θ.

By the halving method (see [3]) (or any other geometric approaching method (see
[5])) we find that the root ξ is in the interval (1.5,1.51), and to be “more precise” it is
approximately 1.502.

We have to show that the root is unique. We will achieve this by proving that for
x > ξ, θ(x) < 0.

We will show that for x > ξ, the function θ is decreasing.
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It is easy to see that:

θ
′

(x) = (α − 1) · ln x + α −
α

x
.

After transformations we obtain:

θ
′

(x) = (α − 1) ·
(

ln x +
α(x − 1)

x(α − 1)

)

.

Next we show that ln x + α(x−1)
x(α−1)

> 0, which is equivalent to:

x lnx

x − 1
>

α

1 − α
.

Let f(x) =
x lnx

x − 1
. Then f

′

(x) =
x − 1 − ln x

(x − 1)2
.

Using the graphical method it is easy to show that x− 1− ln x > 0 for x > 1 (and so,

also for x > ξ). So for x > ξ, f
′

(x) > 0. This means that f is increasing for x > ξ. So,
f(x) > f(ξ) or

x lnx

x − 1
>

ξ ln ξ

ξ − 1
.

Computations show that

ξ ln ξ

ξ − 1
>

α

1 − α
.

So we have

x lnx

x − 1
>

α

1 − α
.

Since α − 1 < 0, we have θ′(x) < 0, so θ is a decreasing function of x. This means that
for x > ξ, θ(x) < θ(ξ) = 0, which completes the proof. �

Now we are able to prove the following:

2.5. Theorem. Let x ∈ (ξ,+∞). Then:

(2.5) xα(x−1)−γ <
xx−γ

ex−1
.

Proof. In view of Lemma 2.4, we have θ(x) < 0 for x > ξ. So we have

x − 1 + (αx − α − x) ln x < 0,

which is equivalent to

x − 1 < (x − α(x − 1)) ln x.

After transformations one obtains:

ex−1 < xx−γ−α(x−1)+γ .

So finally we have:

xα(x−1)−γ <
xx−γ

ex−1
,

completing the proof. �

As a comment on Theorem 2.5, we say that for x ∈ (ξ,∞), the upper bound given
with (1.3) is better than that of (1.4).

Now, since there is exactly one zero in (1, 2) and since θ(1 + ε) > 0 with ε small and
positive, for x ∈ (1, ξ) we have θ(x) > 0, so the following theorem holds:
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2.6. Theorem. Let x ∈ (1, ξ). Then:

(2.6) xα(x−1)−γ >
xx−γ

ex−1
.

Proof. Similar to the proof of Theorem 2.5. �

Clearly, in this case, the upper bound given in (1.4) is better that that of (1.3). Also
it is clear that for x = ξ in (2.5), (2.6) we have equality.

To conclude, we pose this problem:

2.7. Problem. Find a non-computational proof for the inequality (2.5).
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