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Bayram Şahin∗† and Yılmaz Gündüzalp‡
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Abstract

In this paper, we introduce the idea of a lightlike submersion from
a semi-Riemannian manifold onto a lightlike manifold, and give some
examples. Then we define O’Neill’s tensors for such submersions and
investigate their main properties. We show that the Schouten connec-
tion is not a metric connection in a lightlike submersion. We also in-
vestigate curvature properties of the manifolds and establish a relation
between the null sectional curvatures of a semi-Riemannian manifold
and a lightlike manifold.
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1. Introduction

Let M and B be Riemannian manifolds. A Riemannian submersion π : M → B is a
mapping of M onto B satisfying the following axioms S.1 and S.2:

S.1. π has maximal rank.

Hence, for each b ∈ B, π−1(b) is a submanifold of M of dimension dim M − dim B.
The submanifolds π−1(b) are called fibers, and a vector field on M is vertical if it is
always tangent to the fibers, horizontal if always orthogonal to the fibers. The second
axiom is given by

S.2. π∗ preserves the lengths of horizontal vectors.

The theory of Riemannian submersion was introduced by O’Neill and Gray in [7] and
[3], respectively. Since then, it has been used as an effective tool to describe the structure
of a Riemannian manifold. As it is well known, when M and B are Riemannian manifolds,
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then the fibers are always Riemannian manifolds. However, when the manifolds are semi-
Riemannian manifolds, the fibers of π may not be semi-Riemannian (hence Riemannian)
manifolds. Recently, Şahin defined and studied a submersion from lightlike manifolds
onto semi-Riemannian manifolds in [9].

In this paper, we consider a semi-Riemannian manifold M and a lightlike manifold
N , and define a lightlike submersion from M to N . In particular, we focus on the
existence of lightlike submersions and give several examples. Also we show that the
concept of lightlike submersion is very different from that of Riemannian submersion and
semi-Riemannian submersion (For semi-Riemannian submersions, see: [8]).

2. Lightlike manifolds

In this section we give some brief information on lightlike manifolds (For more details,
see [2] and [5]). Let V be a vector space of dimension n. An inner product on V is a
symmetric bilinear form g, which is called a non-degenerate inner product if g(X,Y ) =
0 ∀X ∈ V implies Y = 0. Otherwise it is called degenerate (lightlike). Let V be a vector
space and suppose that there exists a symmetric bilinear form g on V . Then there exists
a basis {ei} on V such that

g(ei, ei) = 0, for 1 ≤ i ≤ r,

g(ej , ej) = −1, for 1 ≤ j ≤ q,

g(ek, ek) = 1, for 1 ≤ k ≤ p,

g(eI , eJ) = 0, for I 6= J.

Such a basis is called orthonormal, and the triple (r, q, p) is called the type of the bilinear
form g ([6, P.107]). We will denote a vector space V endowed with a bilinear form g of
type (r, q, p) by Vr,q,p.

Let (M, g) be a real n-dimensional smooth manifold, where g is a symmetric tensor
field of type (0, 2). We assume that M is paracompact. The radical or null space of TxM

is a subspace, denoted by RadTxM , of TxM defined by

(2.1) Rad TxM = {ξ ∈ TxM : g(ξ,X) = 0, X ∈ Tx M}.

The dimension of RadTxM is called the nullity degree of g. Suppose the mapping Rad TM

that assigns to each x ∈ M the radical subspace RadTxM of TxM with respect to gx,
defines a smooth distribution of rank r > 0 on M . Then RadTM is called the radical
distribution of M . The manifold M is called a lightlike manifold if 0 < r ≤ n.

2.1. Example. We denote by R
n
r,q,p the space R

n endowed with the bilinear form g

defined by g(ei, ej)r,q,p = (Gr,q,p)ij , where ei, i ∈ {1, . . . , n} is the standard basis of En,
and Gr,q,p is the diagonal matrix determined by g, i,e,

(G)ij = diagonal (0, . . . , 0
︸ ︷︷ ︸

r−times

,−1, . . . ,−1
︸ ︷︷ ︸

q−times

, 1 . . . , 1
︸ ︷︷ ︸

p−times

).

Hence, R
n
r,q,p is an r-lightlike manifold.

Now, consider a complementary distribution S(TM) to Rad TM in TM . From [2,
Proposition 2.1], we know that S(TM) is a semi-Riemannian distribution. Therefore, we
have

(2.2) TM = S(TM)⊕ RadTM.
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The associated quadratic form h of g is of type (r, q, p), p + q + r = n, locally given by

(2.3) h = −
q

∑

a=1

(ωa)2 +

q+p
∑

A=q+1

(ωA)2,

where (ω1, . . . , ωp+q) are linearly independent local differential forms on M . Substituting
in (2.3)

ω
a = ω

a
I dx

I
ω

A = ω
A
I dx

I
, I ∈ {1, . . . , n}

we obtain

(2.4) gIJ = −
q

∑

a=1

ω
a
I ω

a
J +

q+p
∑

A=q+1

ω
A
I ω

A
J , J ∈ {1, . . . , n},

where rank [gIJ ] = p + q < n.

Suppose Rad TM is an integrable distribution. Then it follows from the Frobenius
theorem that the leaves of Rad TM determine a foliation on M of dimension r, that is,
M is a disjoint union of connected subsets {Lt}, and each point x of M has a coordinate
system (U, xi), where i ∈ {1, . . . , n} and Lt ∩ U is locally given by the equations xa =
ca, a ∈ {r + 1, . . . , n} for real constants ca and xα, α ∈ {1, . . . , r}, are local coordinates
of the leaf Lt of RadTM passing through x.

Consider another coordinate system (V̄ , x̄α) on M . The transformation of coordinates
on M endowed with an integrable distribution has the following special form

0 = dx̄
a =

∂x̄a

∂xb
dx

b +
∂x̄a

∂xα
dx

α =
∂x̄a

∂xα
dx

α
,

which implies ∂x̄a

∂xα = 0, ∀a ∈ {r + 1, . . . , n}, α ∈ {1, . . . , r}. Hence the transformation
of coordinates on M is given by

(2.5) x̄
α = x̄

α(x1
, . . . , x

n), x̄
a = x̄

a(xr+1
, . . . , x

n).

As g is degenerate on TM , by using(2.1) and (2.3) we obtain gα β = gα a = 0. Thus the
matrix of g with respect to the natural frames {∂} becomes

[gij ] =

(
0r,r 0r,n−r

0n−r,r gab(x
1, . . . , xn)

)

.

Suppose that

(2.6)
∂gab

∂xα
= 0, ∀ a, b ∈ {r + 1, . . . , n}, α ∈ {1, . . . , r}

holds in a fixed adapted coordinate system, then by using the first group of equations
in (2.5), we obtain that it holds in any other coordinate system adapted to the foliation
induced by Rad TM .

2.2. Definition. A lightlike manifold M on which Rad TM is integrable, and there
exists a local coordinate system such that (2.6) is satisfied, is called a Reinhart lightlike
manifold.

For Reinhart lightlike manifolds, we have the following theorem.

2.3. Theorem. [2]. Let (M, g) be a lightlike manifold. Then the following assertions
are equivalent:

(1) (M, g) is a Reinhart lightlike manifold.
(2) Rad TM is a Killing distribution.
(3) There exists a torsion free linear connection ∇ on M such that g is a parallel

tensor field with respect to ∇.
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3. Lightlike submersions

In this section, we will introduce lightlike submersions and give several examples. It
will be seen from these examples that there are many lightlike submersions. We also
define O’Neill’s tensors for lightlike submersions, check the usual properties and observe
that a lightlike submersion does not satisfy these properties in general. Moreover we show
that a Schouten connection is not a metric connection, and give the explicit expression
of the derivative of the metric tensor with respect to this connection.

Let (M1, g1) be a semi-Riemannian manifold and (M2, g2) an r-lightlike manifold. We
consider a smooth submersion f : M1 → M2, then, for p ∈ M2, f−1(p) is a submanifold
of dimension dim M1 − dim M2. On the other hand, the kernel of f∗ at the point p, (f∗
is the derivative map), is defined by

(3.1) Ker f∗ = {X ∈ Tp(M1) : f∗(X) = 0}.

Now, consider (Ker f∗)
⊥ defined as follows

(3.2) (Ker f∗)
⊥ = {Y ∈ Tp(M1) : g1(Y, X) = 0, ∀X ∈ Ker f∗}.

Since TpM1 is a semi-Riemannian vector space, (Kerf∗)
⊥ may not be a complement to

Ker f∗. Suppose △ = Ker f∗ ∩ (Ker f∗)
⊥ 6= {0}. Then, consider the following four cases

of submersions.

Case 1. 0 < dim△ < min{dim(Ker f∗), dim(Ker f∗)
⊥}: Then △ is the radical subspace

of TpM1. Thus, we can construct a quasi-orthonormal basis of M1 along Ker f∗ as in[2].
Since Ker f∗ is a real lightlike vector space, there is a complementary non-degenerate sub-
space to △ (cf. [2, Proposition2.1]). Let S(Ker f∗) be a complementary non-degenerate
subspace to △ in Ker f∗. Then we have

(3.3) Ker f∗ = △ ⊥ S(Ker f∗).

In a similar way we have

(Ker f∗)
⊥ = △ ⊥ S(Ker f∗)

⊥
,

where S(Ker f∗)
⊥ is a complementary subspace of △ in (Ker f∗)

⊥. Since S(Ker f∗) is
non-degenerate in TpM1, we can consider

TpM1 = S(Ker f∗) ⊥ (S(Ker f∗))
⊥

,

where (S(Ker f∗))
⊥ is the complementary subspace of S(Ker f∗) in TpM1. Also since

S(Ker f∗) and (S(Ker f∗))
⊥ are non-degenerate, we obtain

(S(Ker f∗))
⊥ = S(Ker f∗)

⊥ ⊥ (S(Ker f∗)
⊥)⊥.

Then, from [2, Proposition 2.4], we know that “there exists a quasi-orthonormal basis of
TpM1 along Ker f∗,” thus we have

g(ξi, ξj) = g(Ni, Nj) = 0 g(ξi, Nj) = δij

g(Wα, ξj) = g(Wα, Nj) = 0 g(Wα, Wα) = ǫαδαβ

for any i, j ∈ {1, . . . , r} and α, β ∈ {1, . . . , t}, where {Ni} are smooth null vector fields
of (S(Ker f∗)

⊥)⊥, {ξi} is basis of △ and Wα is a basis of S(Ker f∗)
⊥. We denote the set

of vector fields {Ni} by ltr(Ker f∗), and consider the following subspace

tr(Ker f∗) = ltr(Ker f∗) ⊥ S(Ker f∗)
⊥

.
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We notice that ltr(Ker f∗) and Ker (f∗) are not orthogonal to each other. Now, we will
call V = Ker f∗ the vertical space of TpM1, and H = tr(Ker f∗) the horizontal space as is
usual in the theory of Riemannian submersions. Thus we obtain

TpM1 = Vp ⊕Hp.

It is important to emphasize again that V and H are not orthogonal to each other.

We are now ready to give the definition of a lightlike submersion.

3.1. Definition. Let (M1, g1) be a semi-Riemannian manifold and (M2, g2) an r-lightlike
manifold. Suppose that f : M1 →M2 is a submersion such that

(1) dim△ = dim{(Ker f∗)∩(Ker f∗)
⊥} = r, 0<r< min{dim(Ker f∗), dim(Ker f∗)

⊥}.
(2) f∗ preserves the length of horizontal vectors, i.e., g1(X, Y ) = g2(f∗X, f∗Y ) for

X, Y ∈ Γ(H).

Then, we say that f is an r–lightlike submersion.

The other cases arise as follows:

Case 2. dim△ = dim(Ker f∗) < dim(Ker f∗)
⊥. Then V = △ and H = S(Ker f∗)

⊥ ⊥
ltr(Ker f∗). We call f an isotropic submersion.

Case 3. dim△ = dim(Ker f∗)
⊥ < dim(Ker f∗). Then V = S(Ker f∗) ⊥ △ and H =

ltr(Ker f∗). We call f a co-isotropic submersion.

Case 4. dim△ = dim(Ker f∗)
⊥ = dim(Ker f∗). Then V = △ and H = ltr(Ker f∗). We

call f a totally lightlike submersion.

We note that, from the condition of Definition 3.1.(2), it follows that the nullity degree
of M2 and the dimension of △ are equal. Hence we have the following

3.2. Proposition. Let f : M1 →M2 be a lightlike submersion. Then,

(1) If f is an r–lightlike or isotropic submersion, then M2 is an r–lightlike manifold.
(2) If f is a co-isotropic or totally lightlike submersion, then M2 is a totally lightlike

manifold. �

A basic vector field on M1 is a horizontal vector field X which is f–related to a vector
field X̃ on M2, that is, f∗(Xp) = X̃f (p) for all p ∈ M1. Every vector field X̃ on M2

has a unique horizontal lift X to M1, and X is basic. Thus X ←→ X̃ is a one to one
correspondence between basic vector fields on M1 and arbitrary vector fields on M2.

Now, we give one example for r–lightlike, isotropic, co-isotropic and totally lightlike
submersions.

3.3. Example. Let R
4
0,1,3 and R

2
1,0,1 be R

4 and R
2 endowed with the Lorentzian metric

g1 = −(dx1)
2 + (dx2)

2 + (dx3)
2 + (dx4)

2, and degenerate metric g2 = (dy2)
2, where

x1, x2, x3, x4 and y1, y2 are the canonical coordinates on R
4 and R

2, respectively. We
define the following map

f : R
4
0,1,3 → R

2
1,0,1, (x1, x2, x3, x4) 7→

(

x1 + x3,
x2 + x4√

2

)

.

Then, the kernel of f∗ is

Ker f∗ = Span
{

W1 = − ∂

∂ x1
+

∂

∂ x3
, W2 = − ∂

∂ x2
+

∂

∂ x4

}

.

Thus, we obtain

(Ker f∗)
⊥ = Span

{

T1 = − ∂

∂ x1
+

∂

∂ x3
, T2 =

∂

∂ x2
+

∂

∂ x4

}

.

Hence, we have W1 = T1,

△ = Ker f∗ ∩ (Ker f∗)
⊥ = Span{W1}.
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Then, we get ltr(Ker f∗) = Span{N = 1
2
( ∂

∂ x1
+ ∂

∂ x3
)}. It is easy to check that g1(N, W1) =

1 and g1(N, W2) = 0, Thus the vertical and horizontal spaces are given by

V = Span{W1, W2}, H = Span{T2, N}.
Moreover, since f∗(T2) =

√
2 ∂

∂ y2

, f∗(N) = ∂
∂ y1

, we obtain that

g1(N, N) = g2(f∗N, f∗N) = 0

g1(T2, T2) = g2(f∗T2, f∗T2) = 2.

Hence, f is a 1-lightlike submersion.

3.4. Example. Let R
6
0,2,4 and R

3
2,0,1 be R

6 and R
3 endowed with the semi-Riemannian

metric g1 = −(dx1)
2 − (dx2)

2 + (dx3)
2 + (dx4)

2 + (dx5)
2 + (dx6)

2 and the degenerate
metric g2 = (dy2)

2, where x1, x2, x3, x4, x5, x6 are the canonical coordinates on R6 and
y1, y2, y3 are the canonical coordinates on R3, respectively. We define the following map

f : R
6
0,2,4 → R

3
2,0,1, (x1, x2, x3, x4, x5, x6) 7→ (x1 cosh α−x3 sinh α−x4, x2+x5, x6)

for α ∈ R. Then, the kernel of f∗ is

Ker f∗ = Span
{

Z1 = cosh α
∂

∂ x1
+ sinh α

∂

∂ x3
+

∂

∂ x4
, Z2 = − ∂

∂ x2
+

∂

∂ x5

}

and

(Ker f∗)
⊥ = Span

{

Z1, Z2, Z3 =
∂

∂ x6

}

.

Hence, ∆ = Span{Z1, Z2} = Ker f∗ ⊂ (Ker f∗)
⊥. Moreover, we get

ltr(Ker f∗) =
{

N1 =
1

2

{

− cosh α
∂

∂ x1
− sinh α

∂

∂ x3
+

∂

∂ x4

}

,

N2 =
1

2

{ ∂

∂ x2
+

∂

∂ x5

}}

.

Then, it is easy to see that f∗(Z3) = ∂
∂ y3

, f∗(N1) = − ∂
∂ y1

, f∗(N2) = ∂
∂ y2

. Thus f is an

isotropic submersion.

3.5. Example. Let R
5
0,2,3 and R

2
2,0,0 be R

5 and R
2 endowed with the semi-Riemannian

metric g1 = −(dx1)
2 − (dx2)

2 + (dx3)
2 + (dx4)

2 + (dx5)
2 and degenerate metric g2,

respectively, where x1, x2, x3, x4, x5 are the canonical coordinates on R
5 We denote the

canonical coordinates on R2 by y1, y2. We define the following map

f : R
5
0,2,3 → R

2
2,0,0, (x1, x2, x3, x4, x5) 7→

(

x1 +
x3 + x4√

2
, x2 +

x3 − x4√
2

)

.

Then, the kernel of f∗ is

Ker f∗ =Span
{

Z1 = −
√

2
∂

∂ x1
+

∂

∂ x3
+

∂

∂ x4
,

Z2 =
√

2
∂

∂ x2
− ∂

∂ x3
+

∂

∂ x4
, Z3 =

∂

∂ x5

}

and

(Ker f∗)
⊥ = Span{Z1, Z2} = ∆ ⊂ Ker f∗.

Hence, we get

ltr(Ker f∗) =Span
{

N1 =
1

4

{√
2

∂

∂ x1
+

∂

∂ x3
+

∂

∂ x4

}

,

N2 =
1

4

{

−
√

2
∂

∂ x2
− ∂

∂ x3
+

∂

∂ x4

}}

.
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Moreover, we have f∗(N1) = 1√
2

∂
∂ y1

and f∗(N2) = − 1√
2

∂
∂ y2

. Thus f is a co-isotropic

submersion.

3.6. Example. Let R
4
0,2,2 and R

2
2,0,0 be R

4 and R
2 endowed with the semi-Riemannian

metric g1 = −(dx1)
2 − (dx2)

2 + (dx3)
2 + (dx4)

2 and the degenerate metric g2, respec-
tively, where x1, x2, x3, x4 are the canonical coordinates on R4. We denote the canonical
coordinates on R

2 by y1, y2. We define the following map

f : R
4
0,2,2 → R

2
2,0,0, (x1, x2, x3, x4) 7→ (x1 + x3, x2 + x4).

Then, we have

Ker f∗ = Span
{

Z1 =
∂

∂ x1
− ∂

∂ x3
, Z2 =

∂

∂ x2
− ∂

∂ x4

}

= (Ker f∗)
⊥ = ∆.

Moreover, we obtain

ltr(Ker f∗) = Span
{

N1 =
1

2

{

− ∂

∂ x1
− ∂

∂ x3

}

, N2 =
1

2

{

− ∂

∂ x2
− ∂

∂ x4

}}

.

Furthermore, we derive

f∗(N1) = − ∂

∂ y1
, f∗(N2) = − ∂

∂ y2
.

Hence, f is a totally lightlike submersion.

Now, we define O’Neill’s tensors for a lightlike submersion:

Let f : M1 → M2 be a lightlike submersion and X, Y arbitrary vector fields on M1.
Let h : TM1 → H and ν : TM1 → V denote the natural projections associated with
the direct sum decomposition TM1 = H ⊕ V. Let ∇ be the Levi-Civita connection of
(M1, g1). Then, we define a tensor field T of type (1,2) by

(3.4) TXY = h∇νXνY + ν∇νXhY.

It is easy check that T has the following properties as a Riemann submersion.

(1) T reverses the horizontal and vertical subspaces.
(2) T is vertical: TX = TνX

(3) For vertical vector fields, T has the symmetry property TXY = TY X.

The other tensor is given by

(3.5) AXY = ν∇hXhY + h∇hXνY,

and it has the following properties:

(1) A reverses the horizontal and vertical subspaces.
(2) A is horizontal: AX = AhX .

3.7. Lemma. Let f : M1 →M2 be a lightlike submersion. If X and Y are basic vector
fields on M1, then

(a) g1(X, Y ) = g2(X̃, Ỹ ) ◦ f ,

(b) h[X, Y ] is the basic vector field corresponding to [X̃, Ỹ ].

Proof. Since f is a lightlike submersion, from Definition 3.1 (2) we have (a).

(b) follows from the identity f∗[X, Y ] = [X̃, Ỹ ]. �

For Riemannian submersions, it is well known that h∇XY is the basic vector field cor-

responding to ∇M2

X̃
Ỹ , where ∇M2

is the linear connection of M2. We will show that this
property is here true in a particular case.
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3.8. Theorem. Let M1 be a semi-Riemannian manifold and M2 a Reinhart lightlike
manifold. Let also f : M1 → M2 be a lightlike submersion. Then h∇XY is the basic

vector field corresponding to ∇M2

X̃
Ỹ , for basic vector fields X, Y.

Proof. From the Kozsul formula we have

2g1(∇XY, Z) = X(g1(Y, Z)) + Y (g(Z, X))− Z(g1(X, Y ))

− g1(X, [Y, Z]) + g1([Z, X], Y ) + g1(Z, [X, Y ]).

Since X(g1(Y,Z)) = X̃g2(Ỹ , Z̃) ◦ f , from Lemma 3.1 we obtain

(3.6)
2g1(∇XY, Z) = X̃g2(Ỹ , Z̃) ◦ f + Ỹ g2(Z̃, X̃) ◦ f − Z̃g2(Ỹ , X̃) ◦ f

− g2(X̃, [Ỹ , Z̃]) ◦ f + g2(Ỹ , [Z̃, X̃]) ◦ f + g2(Z̃, [X̃, Ỹ ]) ◦ f.

Since M2 is a Reinhart lightlike manifold, then from Theorem 2.3, it has a Levi-Civita

connection. Hence ∇M2

satisfies the Kozsul identity. Thus the right side of equation

(3.6) is 2g2(∇
M2

X̃
Ỹ , Z̃), hence we have

g1(∇XY, Z) = g2(∇
M2

X̃
Ỹ , Z̃) ◦ f.

Thus we obtain that h∇XY is the basic vector field corresponding to ∇M2

X̃
Ỹ . �

From (3.1) and (3.5) we have the following.

3.9. Lemma. Let f : (M1, g1)→ (M2, g2) be an r–lightlike submersion. Then we have:

(a) ∇UV = TUV + ν∇UV ,
(b) ∇V X = h∇V X + TV X,
(c) ∇XV = AXV + ν∇XV ,
(d) ∇XY = h∇XY + AXY ,

for any X, Y ∈ Γ(ltr(ker f∗)), U, V ∈ Γ(Ker f∗), where ∇ is the Levi-Civita connection
on M1. �

We note that T and A are skew-symmetric in the Riemannian submersions. But these
properties are not generally valid for a lightlike submersion because the horizontal and
vertical subspaces are not orthogonal to each other. However, we have these properties
for some particular cases.

3.10. Lemma. Let f : (M1, g1)→ (M2, g2) be an r–lightlike submersion. Then we have:

(a) g1(TV X, Y ) = −g1(TV Y, X),
(b) g1(AXV, W ) = −g1(AXW,V ),

for any X, Y ∈ Γ(ltr(Ker f∗)), V ∈ Γ(Ker f∗) and W ∈ Γ(∆).

Proof. We only prove (a), the proof of (b) being similar. Using (3.1), we obtain

(3.7) TV X = h∇νV νX + ν∇νV hX = ν∇V X

and

(3.8) TV Y = h∇νV νY + v∇νV hY = ν∇V Y.

On the other hand, using ∇g1 = 0 we have

(3.9) V g1(X, Y ) = g1(∇V X, Y ) + g1(∇V Y, X).

Then, from (3.7), (3.8) and (3.9) we have

g1(TV X, Y ) + g1(TV Y, X) = 0. �
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We also note that A has the alternation property AXY = −AY X for a Riemannian
submersion, but this is not generally the case for a lightlike submersion. However, we
have a special case where the above property is satisfied for a lightlike submersion.

3.11. Lemma. Let f : (M1, g1) → (M2, g2) be an r–lightlike submersion and ∇ the
Levi-Civita connection of g1. Then AXZ = −AZX if and only if ∇NX does not belong
to Γ(S(Ker f∗)

⊥), for any X, Z ∈ Γ(S(Ker f∗)
⊥) and N ∈ Γ(ltr(Ker f∗)).

Proof. We first prove that AXX = 0 for any X ∈ Γ(S(Ker f∗)
⊥). We may assume that

X is basic.

Since AXX ∈ Γ(V), AXX = 0 if and only if g1(AXX, Y ) = 0 and g1(AXX, N) = 0
for Y ∈ Γ(S(Ker f∗)) and N ∈ Γ(ltr(Ker f∗)). For any Y ∈ Γ(S(Ker f∗)) we have
g1(AXX, Y ) = g1(∇XX, Y ). Since g1(X, Y ) = 0, we get g1(AXX, Y ) = −g1(X,∇XY ).
Hence we have g1(AXX, Y ) = −g1(X, [X, Y ] +∇Y X). Then [X, Y ] ∈ Γ(Ker f∗) implies
that

g1(AXX, Y ) = −g1(X,∇Y X).

On the other hand, since X is constant along the vertical subspace, we have Y g1(X, X) =
0 which gives g1(∇Y X, X) = 0, Y ∈ Γ(S(Ker f∗)) and X ∈ Γ((Ker f∗)

⊥). Putting this
in the above equation we arrive at

(3.10) g1(AXX, Y ) = 0.

In a similar way, from (3.5) we get g1(AXX, N) = g1(∇XX, N). Hence we obtain
g1(AXX, N) = −g1(X,∇XN). Then we derive g1(AXX, N) = −g1(X, [X, N ] + ∇XN).
Since [X, N ] ∈ Γ(Ker f∗), we obtain g1(AXX, N) = −g1(X,∇NX). Hence we conclude
that

(3.11) g1(AXX, N) = 0

if and only if ∇NX does not belong to Γ(S(Ker f∗)
⊥). Then, from (3.10) and (3.11) we

obtain

AXZ = −AZX,

if and only ∇NX does not belong to Γ(S(Ker f∗)
⊥), which gives the statement of lemma.

�

Now, we denote by ∇̄ the Schouten connection associated with the distributions V

and H. It is defined by

(3.12) ∇̄XY = h∇XhY + ν∇XνY

for X, Y ∈ Γ(TM) [4]. It is easy to see that ∇̄ is a linear connection along a fiber with
respect to the induced metric. Moreover, by direct computations, using (3.1) and (3.5),
we have the following:

3.12. Proposition. Let f : (M1, g1)→ (M2, g2) be an r–lightlike submersion. Then we
have

(3.13) ∇̄XY = ∇XY − TXY − AXY

for any X, Y ∈ Γ(TM1), where ∇̄ is the Schouten connection and ∇ is the Levi-civita
connection on M1. �

It is important to mention that the Schouten connection is a metric connection in a
non-degenerate submersion [4]. But this is not true for a lightlike submersion, in general.
The reason is that T and A are not anti-symmetric in a lightlike submersion. More
precisely, we have the following.
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3.13. Proposition. Let f : (M1, g1)→ (M2, g2) be an r–lightlike submersion. Then we
have:

(3.14) (∇̄Xg1)(Y, Z) = g1(TXY, Z) + g1(Y, TXZ) + g1(AXY, Z) + g1(Y, AXZ)

for X, Y ∈ Γ(TM1).

Proof. Since ∇ is a metric connection we have

(∇Xg1)(Y, Z) = Xg1(Y, Z) − g1(∇XY, Z) − g1(Y,∇XZ) = 0.

Thus, using (3.13), we have (3.14). �

In the rest of this section, we give the covariant derivatives of the tensors A and T .
First recall that the covariant derivative of a tensor field A of type (1, 2) is given by

(∇EA)F G = ∇E(AF G)−A∇EF G− AF (∇EG)

for any three vector fields E, F, G ∈ Γ(TM1). Now if we choose E = V ∈ Γ(Ker f∗), F =
W ∈ Γ(Ker f∗), then AF = AW = 0 so the first and third terms on the right side vanish.
In the middle term we have

A∇V W = Ah∇V W = ATV W ,

so we get

(∇V A)W = −ATV W .

If we take E = X ∈ Γ(ltr(Ker f∗)) and F = W ∈ Γ(Ker f∗), then we have

(∇XA)W = −AAXW .

All other terms are zero. In a similar way, we get,

(∇XT )Y = −TAXY , (∇V T )Y = −TTV Y , X, Y ∈ Γ(ltr(Ker f∗)), V ∈ Γ(Ker f∗).

3.14. Lemma. Let f : (M1, g1) → (M2, g2) be a totally lightlike submersion. Then we
have:

(a) g1((∇UA)XV, Y ) = g1(TUAXV, Y )− g1(AXTUV, Y ),
(b) g1((∇XT )UY, V ) = g1(AXTUY, V )− g1(TAXY U, V ),
(c) g1((∇UT )V X, W ) = g1(TTV XU, W )− g1(TTU XV, W ),
(d) g1((∇XA)Y U, Z) = g1(AXAY U, Z)− g1(AY AXU,Z),

for any X, Y, Z ∈ Γ(ltr(Ker f∗)), V, U, W ∈ Γ(Ker f∗), where ∇ is the Levi-Civita con-
nection on M1.

Proof. We only prove (a), the other assertions can be obtained in a similar way.

From the definition of covariant derivative of the tensor field A, we have

g1((∇UA)XV, Y ) = g1(∇U (AXV ), Y )− g1(A∇U X(V ), Y )− g1(AX(∇UV ), Y ),

for any X, Y ∈ Γ(ltr(Ker f∗)), V, U ∈ Γ(Ker f∗). On the other hand, using Lemma 3.9
we obtain

g1(∇U (AXV ), Y ) =g1(h∇UAXV, Y ) + g1(TUAXV, Y )

= g1(TUAXV, Y ),
(3.15)

g1(A∇U X(V ), Y ) = g1(Ah∇U XV, Y ) + g1(ATU XV, Y )

= 0,
(3.16)

and

(3.17)
g1(AX(∇UV ), Y ) = g1(AXTUV, Y ) + g1(AXv∇UV, Y )

= g1(AXTUV, Y ).
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Then, from (3.15), (3.16) and (3.17) we have

g1((∇UA)XV, Y ) = g1(TUAXV, Y )− g1(AXTUV, Y ). �

4. Curvature relations for lightlike submersions

For an r–lightlike submersion f : (M1, g1) → (M2, g2), since the fibers are submani-
folds of M1, we can derive equations analogous to the Gauss and Codazzi equations of a
lightlike immersion. First note that geometrical features of the fibers will be distinguished

by a caret .̂ For example, we write ∇̂V W = ν∇V W for the covariant derivative.

4.1. Theorem. Let M1 be a semi-Riemannian manifold and M2 a Reinhart lightlike
manifold. Suppose that f : (M1, g1) → (M2, g2) is an r–lightlike submersion or an
isotropic submersion. Then we have:

g1(R(U,V )W,X) = g1(R̂(U, V )W,X) + g1(TUTV W,X)− g1(TV TUW,X),

g1(R(U,V )W, F ) = g1((∇UT )V W,F )− g1((∇V T )UW, F ),

for any X ∈ Γ(ltr(Ker f∗)) and U,V, W,F ∈ Γ(∆), where ∇, R and R̂ are the Levi-Civita
connection on M1, the Riemannian curvature tensor field of M1, and the Riemannian
curvature tensor field of the fibers, respectively.

Proof. From Lemma 3.9 we obtain

∇U∇V W = ∇UTV W +∇U∇̂V W

= h∇UTV W + TUTV W + ∇̂U∇̂V W + TU∇̂V W,

∇V∇UW = h∇V TUW + TV TUW + ∇̂V ∇̂UW + TV ∇̂UW,

and

∇[U,V ]W = T[U,V ]W + ∇̂[U,V ]W

= h∇[U,V ]W + ∇̂[U,V ]W.

Therefore we have

R(U, V )W = R̂(U,V )W + h∇UTV W + TUTV W + TU∇̂V W

− h∇V TUW − TV TUW − TV ∇̂UW − h∇[U,V ]W.

Taking the inner product of both sides of the above equation with X gives us the first
equation. Taking the inner product with F , we obtain

(4.1)
g1(R(U, V )W, F ) = g1(h∇UTV W,F ) + g1(TUν∇V W,F )− g1(∇V TUW, F )

− g1(TV∇UW,F )− g1(h∇[U,V ]W,F ).

On the other hand, by direct computations, we have

(4.2)
g1(h∇[U,V ]W, F ) =g1(h∇∇U V W, F )− g1(h∇∇V UW, F )

= g1(T∇U V W, F )− g1(T∇V UW,F ).

Thus, from (4.1) and (4.2) we have

g1(R(U,V )W,F ) =g1((∇UTV W − T∇U V W − TV∇UW ), F )

− [g1((∇V TUW − T∇V UW − TU∇V W ), F )].

Hence,

g1(R(U,V )W,F ) = g1((∇UT )V W,F )− g1((∇V T )UW,F ),

which is the second equation. �
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We recall that the null sectional curvature [1] of M at p ∈ M with respect to Up is
defined by

(4.3) KM (Up, Xp) =
g(R(Xp, Up)Up, Xp)

g(Xp, Xp)
,

where Xp is a non-null vector and Up is a null vector in Tp(M).

We denote the horizontal lift of the curvature tensor R
M2

of M2 by R∗, that is, if
X1, X2, X3 and X4 are basic vector fields of M1, we write

g1(R
∗(X1, X2)X3, X4) = g2(R

M2

(X̃1, X̃2)X̃3, X̃4).

Also, if Xi and Xj are basic vector fields, we will denote the horizontal lift of ∇M2

X̃i

X̃j by

∇∗
Xi

Xj .

4.2. Theorem. Let M1 be a semi-Riemannian manifold and M2 a Reinhart lightlike
manifold. Suppose that f : (M1, g1) → (M2, g2) is an r–lightlike submersion or an
isotropic submersion. Then we have:

KM2
(Z̃, Ũ) = KM1

(Z, U)− g1(AZAUU,Z) + g1(AUAZU,Z) − g1(U, Tν[Z,U]Z),

where KM2
is the null sectional curvature of M2, KM1

is the null sectional curvature of
M1, Z ∈ Γ(S(Ker f∗)

⊥) and U ∈ Γ(ltr(Ker f∗)).

Proof. For Z ∈ Γ(S(Ker f∗)
⊥) and U ∈ Γ(ltr(Ker f∗)), from (3.5), we can write

∇ZU = h∇ZU + ν∇ZU = h∇ZU + AZU.

Since M2 is a Reinhart lightlike manifold, from Theorem 3.8 we have that h∇ZU is the

basic vector field corresponding to ∇M2

Z̃
Ũ , where ∇M2

is the Levi-civita connection on

M2, Z and U are the horizontal lifts of Z̃ and Ũ . Then, we write the basic vector field
h∇ZU as ∇∗

ZU . Thus we have

∇ZU = ∇∗
ZU + AZU.

Then, by direct computations, using (3.5), we get

∇Z∇UU = ∇∗
Z∇∗

UU + AZ∇∗
UU + AZAUU + ν∇ZAUU.

Since A reverses the horizontal and vertical subspaces, we obtain

(4.4) g1(∇Z∇UU, Z) = g1(∇∗
Z∇∗

UU, Z) + g1(AZAUU, Z).

In a similar way, we get

(4.5) g1(∇U∇ZU, Z) = g1(∇∗
U∇∗

ZU, Z) + g1(AUAZU, Z).

On the other hand, by direct computations, we have

∇[Z,U]U = ∇h[Z,U]U +∇ν[Z,U]U

= h∇h[Z,U]U + ν∇h[Z,U]U + h∇ν[Z,U]U + ν∇ν[Z,U]U.

Hence, we get

g1(∇[Z,U]U,Z) = g1(h∇h[Z,U]U, Z) + g1(h∇ν[Z,U]U, Z)

= g1(∇∗
h[Z,U]U, Z) + g1(∇ν[Z,U]U,Z).

Then, since ∇ is a metric connection and U and Z are orthogonal, we arrive at

g1(∇[Z,U]U,Z) = g1(∇∗
h[Z,U]U, Z)− g1(U,∇ν[Z,U]Z)

= g1(∇∗
h[Z,U]U, Z)− g1(U, ν∇ν[Z,U]Z).

Thus, using (3.1) we obtain

(4.6) g1(∇[Z,U]U,Z) = g1(∇∗
h[Z,U]U, Z)− g1(U, Tν[Z,U]Z).
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Then, from (4.4), (4.5) and (4.6) we have

g1(R(Z,U)U, Z) = g1(R
∗(Z, U)U, Z) + g1(AZAUU, Z) − g1(AUAZU, Z)

+ g1(U, Tν[Z,U]Z).

Hence,

g1(R(Z,U)U, Z) = g2(R
M2

(Z̃, Ũ)Ũ , Z̃) ◦ f + g1(AZAUU, Z) − g1(AUAZU, Z)

+ g1(U, Tν[Z,U]Z).

Thus, the proof is complete. �
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