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Effect of hall current on the MHD fluid flow and
heat transfer due to a rotating disk with uniform

radial electric field
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Abstract
In this paper the steady Von Kármán flow of incompressible fluid in
which the Hall effect exists is analyzed over the infinite rotating disk with
additional assumptions: the uniform magnetic field applied normally to
the disk and the radial electric field imposed to the disk. Therefore,
the stability equations and energy equation have been modified in the
presence of Hall effect, uniform magnetic field and radial electric field.
The system of equations generated by stability and energy equations has
been solved using Chebyshev collocation technique for varying values of
Hall parameters, magnetic interaction and radial electric parameters.
Accuracy of the method is verified comparing results in the literature.
Effects of parameters are depicted graphically and are analyzed.
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1. Introduction
Rotating disk flow has been extensively studied in the literature. An interesting problem

from both engineering and mathematical point of view has been investigated for the last
half of the century using experimental, analytical and numerical means. Rotating disk
flows are important in many applications such as turbomachinery, oceanography, computer
storage devices, nuclear reactors, lubrication, and so on.

Von Kármán [13] has carried out the pioneering study of fluid flow, triggered further
studies, many explanations are initiated on infinite rotating disk. Cochran [7] and Benton
[5] have considered by Kármán [13], they investigated the steady motion of an incompress-
ible viscous fluid. The effect of uniform magnetic field on the flow over a rotating infinite
disk has been studied by many researchers [8], [12], [19], [20], [22], [23], [24], [25]. Hall
effect has been taken into consideration in some of the works in the literature. To the best
of our knowledge Attia[2] has initiated in his studies examining Hall effect on the flow over
a infinite rotating disk. The study has been followed by Attia & Aboul-Hassan[1], and
Siddiqui, Rana & Naseer[19]. The case without Hall effect on the rotating infinite disk has
been investigated [4], [6], [8], [9], [12], [14], [15], [16], [19], [20], [21], [22], [23], [24], [25].

Millsaps & Pohlhausen[15] have considered the heat transfer problem on the rotating
infinite disk. After their work, the heat transfer on a flat plate was analyzed by Sparrow
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& Gregg[21] for Prandtl numbers. Sparrow & Cess[20], Riley[16], Kumar & Thacker &
Watson[14] studied the effects of magnetic field to the heat transfer over a infinite rotating
disk. Finally, effects of the uniform radial electric field on the MHD heat and fluid flow
due to a rotating disk was investigated by Turkyilmazoglu[22].

In most of the studies, the Hall term is neglected for small or moderate values of the
magnetic field in applying Ohm’s law in the analysis. When a strong magnetic field is
applied, the influence of electromagnetic force is noticeable as stated by Cramer and Pai
[8]. Therefore, the Hall current is important and it has a marked effect on the magnitude
and direction of the current density and consequently on the magnetic force term.

In this work, following the above approach, steady hydromagnetic flow of viscous, in-
compressible fluid over rotating infinite disk is examined with the radial electric field taking
Hall effect into consideration. An external uniform magnetic field is imposed on the nor-
mal direction. The radial electric field is produced by electric potential. In the rotating
infinite disk, the magnetic Reynolds number is assumed to be very small. Navier-Stokes
equations and energy equation are solved by using Chebyshev collocation method. The
effects of Hall parameters, magnetic field and electric field are analyzed.

2. Basic Equations
Let us consider the three-dimensional steady viscous incompressible conducting fluid over
infinite rotating disk. The disk is assumed to be rotating about z-axis with a constant
angular velocity Ω in the cylindrical coordinates (r, θ, z). An external uniform magnetic
field is applied in the z-direction and has a constant magnetic flux density B0. The
magnetic Reynolds number is assumed to be very small, therefore, the effect on the imposed
magnetic field is negligible. The disk is taken electrically conducting with e = (er, eθ, ez)
denoting the electric field, in which eθ = 0 due to axisymmetric flow assumption, by
the work of Kármán [13]. Moreover, the effect of uniform electric field on the disk flow
is produced by electrical potential is given by er = −B0Ωγr [10]. In magnetic field,
the electric current can be written by Ohm’s law j = σ(e + v × B − β(j × B)) where
j = (jr, jθ, jz) is the current density vector, σ is the electrical conductivity, and the last
term defines the Hall effect as β is the Hall factor. The disk flow motion is governed by
Maxvell’s equation, continuity equation, the Navier-Stokes equations including the Lorentz
force as follows

(2.1) ∇ · j = 0,

(2.2) ∇ · v = 0,

(2.3) ρ
[∂v
∂t

+ (v · ∇)v
]

= −∇p+
1

Re

[
∇2v

]
+Mn(j ×B)i

Lorentz force terms Mn(j × B)i represents the existence of magnetic field in the fluid
motion equations. The presence of the force, originating from magnetic field, on the flow
of conducting fluids can alter the velocity and pressure characteristics of the flow.

In general Maxwell’s equation is defined by

(2.4) ∇× e = −∂B
∂t
.

In the case of time-independent flow, the equation(2.4) is turned into the equation below,

∇× e = 0.

Therefore, there is a conservative electric field which arises by electric potential Φ, arriving
to e = −∇Φ.

Several parameters appearing in equations (2.1-2.3) are defined as follows, ρ is the den-
sity, v = (u, v, w) is the velocity vector, ∇ is the usual gradient operator in cylindrical
coordinates, p is the pressure, Re is the Reynolds number characterizing the flow defined
by Re = Ω

ν
, ν is the kinematic viscosity of the fluid. Finally Mn is the magnetic inter-

action parameter, which represents the ratio between the magnetic force and the fluid
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inertia force. In component form of Maxvell’s equation, continuity equation and momen-
tum equations with Lorentz force can be written as

(2.5)
∂jr
∂r

+
∂jz
∂z

+
jr
r

= 0,

(2.6)
∂u

∂r
+
∂w

∂z
+
w

r
= 0,

(2.7) u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −∂p

∂r
+

1

Re

[
∇2u− u

r2

]
+

Mn

1 +m2
[mer − u+mv] ,

(2.8) u
∂v

∂r
+ w

∂v

∂z
+
uv

r
+ 2u =

1

Re

[
∇2v − v

r2

]
+

Mn

1 +m2
[−er −mu− v] ,

(2.9) u
∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

[
∇2w

]
,

where m = σβB0 is the Hall parameter. The Hall parameter can take any value. In case
of positive values of m, B0 is upwards and the electrons of the conducting fluid gyrate in
the same sense as the rotating disk. On the other hand, when m takes negative values, B0

is downwards and the electrons gyrate in an opposite sense to the disk.

In equations(2.7-2.8), Lorentz force terms are j × B = B0(jθ,−jr, 0), and the compo-
nents of current density vector are easily derived by Ohm’s law as

(jr, jθ, jz) =
σ

1 +m2

(
er +mu+ v,mer − u+mv, (1 +m2)ez

)
.

Because of imposing radial electric field in velocity at infinity, the tangential direction
velocity is given by v = Ωγr. Furthermore, existence of potential flow due to radial electric
field at the edge of the boundary layer implies that pressure gradient in the radial direction
is ∂p

∂r
= ρΩ2γ2r (see Evans[10]). When these are taken into consideration, boundary

conditions become

(2.10) u = 0, v = rΩ, w = 0, jz = 2rΩB0Cγ, at z = 0,
u→ 0, v → rΩγ, as z →∞,

where C is the wall conduction ratio of the electrical conductance of the wall to electrical
conductivity of the fluid.

The basic flow of incompressible case, which is also called as Von Kármán’s steady state
flow is well known. The Von Kármán’s[13] flow will be considered here, which means that
the disk flow is assumed to evolve alongside the boundary layer coordinate η = Re1/2z, in
conformity with the self similarity variables (see Hossain,Hossain& Wilson[11])

(2.11)
(u, v, w, p) = (rΩF (η), rΩG(η), Re−1/2H(η), ρΩ2P (η)),

(jr, jθ, jz) = (B0rΩJr(η), B0rΩJθ(η), BoΩRe
−1/2Jz(η)),

(er, eθ, ez) = (B0rΩEr(η), 0, B0ΩRe−1/2Ez(η)).

These quantities substitute into the governing equations (2.5-2.9), and also neglect terms
of O(Re−1), the disk flow quantities are determined from the subsequent equations and
boundary conditions(2.10) as

(2.12) 2Jr + J ′z = 0,

(2.13) 2F +H ′ = 0,

(2.14) F 2 −G2 + F ′H − F ′′ − Mn

1 +m2

[
−mγ − F +mG

]
+ γ2 = 0,

(2.15) 2FG+G′H −G′′ − Mn

1 +m2

[
γ −G−mF

]
= 0,

(2.16) P ′ +H ′H −H ′′ = 0,

(2.17) F = 0, G = 1, H = 0, Jz = 2Cγ at η = 0,
F → 0, G→ γ as η →∞,
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a prime denotes derivative with respect to η. The initial and boundary conditions(3.3)
show the no-slip boundary conditions of governing equations at the surface of disk and a
far field disk flow, respectively.

3. Analysis of the Heat Transfer
Due to the difference in the temperature between the surface of the disk and the ambient

fluid, heat transfer takes place. The energy equation, with viscous dissipation and Joule
heating depending on the Hall effect, takes the form

(3.1)
ρ
[
∂T
∂t

+(v · ∇)T
]

= M2
∞(Γ− 1)

[
∂p
∂t

+ (v · ∇)p
]

+ 1
Pr

1
Re

[
∇2T

]
+ Γ−1

Re
M2
∞
[
Φ
]

+Mn(Γ− 1)M2
∞
j2

σ

where T is the temperature of the fluid, Pr =
µcp
k

is the Prandtl number cp is the specific
heat capacity, µ is the dynamical viscosity and k is thermal conductivity of the fluid.
Moreover, Γ is the ratio of the specific heats,M∞ is the free stream Mach number. Finally,
the last two terms in the right-hand-side of Eq.(3.1) represent

Φ = (
∂u

∂z
)2 + (

∂v

∂z
)2,

the viscous dissipation and

j2

σ
=

1

(1 +m2)2

[
(er +mu+ v)2 + (mer − u+mv)2 + (1 +m2)2e2

z

]
Joule heating terms respectively.

Using the Von Kármán [13] assumptions, similarities of (2.11) and also neglecting terms
of O(Re−1), equation(3.1) becomes

(3.2)
1
Pr
T ′′ −HT ′ +M2

∞(Γ− 1)
[
γ2F + F ′2 +G′2

]
+M2

∞(Γ− 1) Mn
(1+m2)2

[
(−γ +mF +G)2 + (−mγ − F +mG)2

]
= 0,

and the initial and boundary conditions for the energy equation are

(3.3) T = Tw, at η = 0,
T → T∞, as η →∞,

recalling that a prime indicates derivative in term of η. In the last two equations, Tw is
the temperature at the surface of the disk, T∞ is the temperature of the ambient fluid at
a large distance from the disk. Introducing the non-dimensional variable θ = T−T∞

Tw−T∞ , the
equation(3.2), the initial and boundary conditions(3.3) take the forms

(3.4)
1
Pr
θ′′ −Hθ′ + Ec

[
γ2F + F ′2 +G′2

]
+ MnEc

(1+m2)2

[
(−γ +mF +G)2 + (−mγ − F +mG)2

]
= 0,

(3.5) θ = 0, at η = 0,
θ → 1, as η →∞,

where Ec =
M2
∞(Γ−1)

Tw−T∞ is the Eckert number. The heat transfer from the disk surface to
the fluid is computed by the application of the Fourier’s law, and using transformation for
heat term we have

(3.6)
q = −k

(
∂T
∂z

)
w

= −k(Tw − T∞)
√

Ω
ν
dθ(0)
dη

,

by rephrasing the heat transfer result in terms of the Nusselt number, defined as

Nu =
q
√

ν
Ω

k(Tw − T∞)

Therefore the second part of the equation (3.6) turns into
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(3.7) Nu = −dθ(0)

dη

The action of viscosity in the fluid adjacent to the disk tends to set up tangential shear
stress, which opposes the rotation of the disk. There is also a surface shear stress in the
radial direction. Consequently, it is necessary to provide a torque at the shaft to maintain a
steady rotation. Applying the Newtonian formula, the radial component τr and tangential
component τθ of the shear stress are respectively expressed by

(3.8) τr =

(
∂u

∂z

)
w

= rΩ

√
Ω

ν
F ′(0)

(3.9) τθ =

(
∂v

∂z

)
w

= rΩ

√
Ω

ν
G′(0)

Of physical interest is also the magnitude of the constant axial velocity at infinity, given
by H(∞) and the resisting the turning moment (or torque) T0 on the disk of radius R

(3.10) T0 = −
∫ R

0

µ

(
∂v

∂z

)
w

2πr2dr = −ρΩπ

2

√
ΩνG′(0)

In this study, a matrix method called Chebyshev collocation method is presented for
numerical solution of the equations (2.12-2.16) and (3.3) under the initial and bound-
ary conditions (2.17) and (3.4) respectively by a truncated Chebyshev series. Using the
Chebyshev collocation points, this method transforms the differential-integral equations
to a matrix equation which corresponds to a system of linear algebraic equations with
unknown Chebyshev coefficients. Therefore, this allows us to use computer for solution of
the equations. In addition, the Chebyshev collocation method can be used for differential
and integral equations.

4. Results and Discussions
In this section, we numerically solved the system of differential equations (2.12-2.16) under
the initial and boundary conditions (2.17). The energy equation (3.3) relating to the initial
and boundary conditions (3.4) was calculated using velocity profiles which were given in
the previous case. The numerical results were obtained by utilizing Spectral Chebyshev
collocation scheme.

In many boundary layer problems different methods have been applied to solve the
system of the equations. For example, Sahoo [17], Attia [2], Jasmine & Gajjar [12] and
Turkyilmazoglu [22], [25] reached their results using finite-difference method, a special
technique, and also Chebyshev collocation method respectively.

In this work we use spectral Chebyshev collocation scheme based on the Chebsyhev
polynomials. We briefly summarize the numerical scheme as follows: Nonlinear terms
are linearized with the Newton linearization technique in the given equations. Using the
Chebyshev collocation points, the linearized equations are transformed to a matrix equa-
tions with unknown Chebyshev coefficients and matrix system is solved by decomposition
technique.

To verify the accuracy of the numerical scheme, as well as, to validate the code, we
compared our results with the outcome of the studies by Sahoo [17] and Turkyilmazoglu
[22]. For comparison purpose, the results of Sahoo [17], and Turkyilmazoglu [22] are
tabulated in Table 1 and Table 2, which presents a clear evidence for accuracy of the
numerical method. Moreover, Figure 1, which demonstrates the velocity profiles of the
generalized Von Kármán’s flow for the boundary layer over the rotating disk, is given
below. This figure has been included in many relevant studies, as well.

Equations (2.13-2.15) under the conditions (2.17) are solved to compute the various
velocity profiles in relation with the several Magnetic interaction parameters, Hall param-
eters and the radial electric parameters, as depicted in Figures (2-7). It is observed that
if the radial electric parameter γ becomes larger than unity, the radial velocity profile
decreases as the Hall parameter increases, if not, that is, the radial electric parameter γ
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Mn F ′(0) −G′(0)

Present Sahoo Present Sahoo
0.0 0.510232 0.510214 0.615922 0.615909

Table 1. Comparison of the numerical solutions of shear stress coeffi-
cients in radial and tangential directions F ′(0), −G′(0) respectively.

Mn Pr Γ H(∞) -θ′(0)

Present Turkyilmazoglu Present Turkyilmazoglu
0.5 1.0 0.0 -0.458880064 -0.45888005 0.282655934 0.28265593

Table 2. Comparison of numerical solutions of the vertical velocity,
H(∞) and coefficients of the heat transfer, −θ′(0).

η
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Figure 1. Velocity profiles of the generalized Von Kármán’s flow are
shown against the coordinate η.

gets less than unity a reverse effect takes place. It should be noted that, in both cases
the size of the interval of η decreases as Hall parameter increases in Figures (2(a)-4(a)).
Similarly, the size of the interval of ν decreases while a Magnetic interaction parameter
increases according to graphs (2(a)-5(a)). These figures delineate that the negative Hall
parameter has prominent effect on the radial component of velocity. It is interesting to
find out from Figures (2(a)-7(a)) that F reverses its sign for some values of η, which proves
that radial reverse flow can occur near the surface. This interesting phenomenon is in-
terpreted as follows: the decelerated fluid particles in the boundary layer do not, in all
cases, remain the thin layer which adheres to the disk along the whole wetted length of
the surface. In some cases the boundary layer increases its thickness considerably in the
downstream direction and the flow in the boundary layer becomes reversed. This causes
the decelerated fluid particles to be forced outwards (see Schlicting[18]). Similar effect is
observed in figures (2(a)-7(a)) and also in the paper by Turkyilmazoglu [22] for negative
radial electric parameters.

In graphs (2(b)-7(b)), there is no meaningful change in the tangential velocity profile
when the Hall parameter or the magnetic interaction parameter increases or decreases.
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Figure 2. Velocity profiles of the generalized Von Karman‘s flow are
shown for Mn = 1.0 and m = 0.0 at six different radial electric parame-
ters, respectively in (a) for radial F , in (b) for tangential G, and in (c)
for axial H components.

The effect of the Hall parameter on the axial component of the velocity can be visualized
as in Figures (2(c)-7(c)). In case of having positive radial electric parameter values, it does
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Figure 3. Velocity profiles of the generalized Von Kármán’s flow are
shown for Mn = 1.0 and m = −0.5 at six different radial electric param-
eters, respectively in (a) for radial F , in (b) for tangential G, and in (c)
for axial H components.

not matter whether the change on the axial velocity profile as Hall parameter increases or
decreases. On the other hand, while the radial electric parameter takes negative values, the
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Figure 4. Velocity profiles of the generalized Von Kármán are shown
for Mn = 1.0 and m = 0.5 at six different radial electric parameters,
respectively in (a) for radial F , in (b) for tangential G, and in (c) for
axial H components.

axial component of the velocity profiles decreases as Hall parameter increases. Above all,
when the Hall parameter has a small negative value, H may become positive. Meanwhile,
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Figure 5. Velocity profiles of the generalized Von Kármán are shown
for Mn = 3.0 and m = 0.0 at six different radial electric parameters,
respectively in (a) for radial F , in (b) for tangential G, and in (c) for
axial H components.

the impacts of magnetic interaction parameter are depicted in graphs(2(c)-7(c)). These
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Figure 6. Velocity profiles of the generalized Von Kármán are shown
for Mn = 3.0 and m = −1.0 at six different radial electric parameters,
respectively in (a) for radial F , in (b) for tangential G, and in (c) for
axial H components.

graphs demonstrate that the increment in the magnetic interaction parameter causes in-
crement in the axial velocity values depending on positive electric parameters in radial
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Figure 7. Velocity profiles of generalized Von Kármán are shown for
Mn = 3.0 and m = 1.0 at six different radial electric parameters, respec-
tively in (a) for F radial, in (b) for G tangential, and in (c) for H axial
components.

direction and also depending on negative electric parameters in the same direction. All of
these relations can be fairly seen in Table (3-4).
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Figure 8. Temperature profile corresponding to heat transfer case is
shown for Mn = 1.0 and Ec = 0.0 at different radial electric parameters
respectively in (a) for m = 0.0, in (b) for m = −0.5, and in (c) for
m = 0.5.

Temperature profiles, depending on the velocity components, are demonstrated in
Figures(8-10), which are evaluated by using the equations (3.4-3.5) for different Eckert
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Figure 9. Temperature profile corresponding to heat transfer case is
shown for Mn = 1.0 and Ec = 3.0 at different radial electric parameters
respectively in (a) for m = 0.0, in (b) for m = −0.5, and in (c) for
m = 0.5.

numbers, Hall parameters, magnetic interaction parameters with varying electric parame-
ter in the radial direction at the fixed Prandtl number Pr = 1.0.
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Figure 10. Temperature profile corresponding to heat transfer case is
shown for Mn = 3.0 at different radial electric parameters respectively
in (a) for m = 0.0, Ec = 0.0, in (b) for m = 1.0, Ec = 0.0, in (c) for
m = 0.0, Ec = 3.0, and in (d) for m = 1.0, Ec = 3.0.

The effect of the Hall parameter is emphasized in Figures (8-10). It can be fairly inferred
from the figures that for increasing Hall parameters the size of the interval of η shrinks, then
this seems to occur for increasing Eckert numbers, as well. The case can also be observed
easily for large magnetic interaction parameters. Furthermore, whenever Hall parameter
increases, it is more temperature profiles are likely to be present for negative radial electric
parameters. Table(5) also confirms the case, that is, the number of the presence of the
more temperature profiles increases for the negative radial electric parameters.

It is also apparent from graphs (8) and (10) that when the Eckert number increases
temperature profile increases too. Finally, the impacts of magnetic interaction numbers
is given for increasing magnetic interaction numbers. As illustrated in Figures (8-10), the
size of interval of η extends as magnetic interaction parameter increases.

Variations of the radial shear stress F ′(0), tangential shear stress G′(0), the velocity
in the radial direction H(∞) and coefficients of heat transfer −θ′(0) have been tabulated
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Mn m γ F ′(0) G′(0) H(∞)

-0.6 -0.546781 -1.314478 2.707162
-0.3 -0.102931 -1.113456 1.202871

-0.5 0.0 0.145142 -0.913193 9.205420E-002
0.3 0.236486 -0.684928 -0.291948
0.9 6.565356E-002 -0.111510 -7.689249E-002
1.5 -0.457895 0.624115 0.403455
-0.6 -0.112813 -1.538095 1.236077
-0.3 0.170415 -1.315308 0.216396
0.0 0.309257 -1.069053 -0.253314

1.0 0.0 0.3 0.328034 -0.790558 -0.348514
0.9 7.445934E-002 -0.125180 -6.913082E-002
1.5 -0.489523 0.685647 0.361547
-0.6 0.233191 -1.447853 0.621125
-0.3 0.432856 -1.283261 -0.282036
0.0 0.495221 -1.062616 -0.509727

0.5 0.3 0.447946 -0.793985 -0.453959
0.9 8.918274E-002 -0.126886 -7.328618E-002
1.5 -0.554112 0.696890 0.363279

Table 3. Shear stress coefficients F ′(0) and G′(0), vertical velocity
H(∞) are tabulated at some chosen Hall parameters, radial electric pa-
rameters for fixed Magnetic interaction number Mn = 1.0.

Mn m γ F ′(0) G′(0) H(∞)

-0.6 -1.020161 -2.088827 1.243738
-0.3 -0.640020 -1.649686 0.914910

-1.0 0.0 -0.338087 -1.241569 0.565473
0.3 -0.124081 -0.858124 0.247915
0.9 1.484372E-002 -0.123473 -1.746047E-002
1.5 -0.226986 0.645086 0.275293
-0.6 -6.191555E-002 -2.760873 0.208113
-0.3 9.987538E-002 -2.254771 4.168429E-002

3.0 0.0 0.0 0.190502 -1.747685 -6.176540E-002
0.3 0.211255 -1.235386 -0.103263
0.9 5.157919E-002 -0.180893 -2.865252E-002
1.5 -0.358583 0.931506 0.190445
-0.6 0.795771 -2.175726 -0.472718
-0.3 0.805884 -1.834793 -0.522486
0.0 0.734807 -1.462603 -0.472049

1.0 0.3 0.590146 -1.059327 -0.361939
0.9 0.104282 -0.161279 -5.608166E-002
1.5 -0.612114 0.854623 0.285565

Table 4. Shear stress coefficients F ′(0) and G′(0), vertical velocity
H(∞) are tabulated at some chosen Hall parameters, radial electric pa-
rameters for fixed Magnetic interaction number Mn = 3.0.

for various radial electric parameter γ for the two different magnetic interaction numbers
Mn = 1.0, Mn = 3.0, and Eckert numbers Ec = 0.0, Ec = 3.0 respectively in Tables (3-5).
Because of increasing the Hall number m, the radial shear stress increases as the radial
electric parameter gets less than unity. However, radial shear stress decreases when radial
electric parameter gets larger than unity. It is apparent that reverse effect as a Magnetic
interaction parameter is getting bigger.
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Mn Ec m γ = −0.6 γ = −0.3 γ = 0.0 γ = 0.3 γ = 0.9

1.0 0.0 -0.5 - - - 0.204831 8.911136E-002
0.0 - - 0.193041 0.239180 7.320891E-002
0.5 - 0.222168 0.310924 0.294007 8.858441E-002

3.0 -0.5 - - - -1.086214 -2.805792E-002
0.0 - - -2.661671 -1.250502 -2.820800E-002
0.5 - -4.106938 -2.312196 -1.162085 -3.069879E-002

3.0 0.0 -1.0 - - - - 5.775309E-002
0.0 - - 8.285834E-002 0.107275 6.388499E-002
1.0 0.319910 0.341921 0.322544 0.269701 7.936438E-002

3.0 -1.0 - - - - 2.106896E-003
0.0 - - -5.020784 -2.411661 -2.226743E-002
1.0 -8.848756 -5.836229 -3.493386 -1.762939 -3.213039E-002

Table 5. Heat transfer parameter −θ′(0) is tabulated at some chosen
Hall parameters, radial electric parameters for the two different Magnetic
interaction numbersMn = 1.0,Mn = 3.0, and Eckert numbers Ec = 0.0,
Ec = 3.0 respectively, and fixed Prandtl number Pr = 1.0.

Impact of Hall numbers on tangential shear stress can be deduced from these tables.
It can be seen that the tangential shear stress increases in the case of increasing or de-
creasing Hall parameters values. In the event of the radial electric parameter becomes less
than unity, when the magnetic interaction parameter increases the tangential shear stress
decreases. On the other hand, if the radial electric parameter gets larger than unity, the
effect on the shear stress in tangential direction becomes reversed.

5. Conclusions
The velocity and temperature profiles governing the steady-incompressible boundary layer
flow over a rotating disk have been obtained using self-consistent assumptions. The result-
ing equations have then been solved numerically by using Chebyshev collocation method,
and then the behavior of the velocity and temperature profiles are displayed graphically.

The effects of Hall parameter, radial electric parameter, Eckert parameter and magnetic
interaction parameter are tabulated. One of the main outcomes of the present study is
defining the effect of the Hall parameters on temperature profiles. This has been observed
throughout for varying magnetic interaction parameters and radial electric parameters.
Although the positive values of Hall parameter reveal the more temperature profiles for
negative radial electric parameters, negative Hall parameter reverses the effect.

In this paper the effect of Hall parameter on the rotating disk is studied. Following
this, we believe that, it would be interesting to study the effect of the electric field and
also Hall parameter on instability mechanisms over rotating disk. For similar works, we
refer to Jasmine &Gajjar [12] and Turkyilmazoglu [25]
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