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Abstract

The behavior of various types of noncompact covering properties such
as paracompactness, metacompactness, subparacompactness, submeta-
compactness, etc., are studied under various types of fuzzy mappings
such as open map, closed map, perfect map, etc. Moreover the con-
cept of para-Lindelof space is introduced in L-topological spaces and
its properties and behavior under maps are obtained.
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1. Introduction

Zadeh [24] introduced fuzzy sets as a generalization of ordinary sets by means of
membership functions. The concept of fuzzy set offers us a new framework of set theory,
and in this new framework we are generalizing many of the concepts of general topology
which form the content of fuzzy topology. In fact fuzzy topology, which was introduced
by Chang [7], comes as a generalization of general topology.

The concept of compactness is one of the most important concepts in general topology.
Locally finite families, point finite families, discrete families and locally countable fami-
lies etc. are used to define several covering properties, namely, paracompactness, meta-
compactness, subparacompactness, submetacompactness, and para–Lindelofness, respec-
tively. The class of paracompact spaces was introduced by J. Dieudonne in 1944 [9] as
a natural generalization of compactness. Metacompact spaces were introduced by Arens
and Dugundji in 1950 [1]. The concept of subparacompact spaces was introduced by
McAuley [17], and further studies were conducted by Burke [6] and Creede [8]. In 1965,
Worrel and Wicke [22] introduced the concept of θ- refinability and submetacompactness.
The para–Lindelof space was introduced by J. Greever [11] in 1968.
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Also the preservation of covering properties under different maps, such as closed map,
open map, perfect map etc. is of great importance in general topology.

Compactness and its various versions have been generalized to L-topological spaces by
many authors (see [7, 10, 18, 19, 14]). The concept of paracompactness in fuzzy topology
was introduced by Luo [16]. The present authors have done some work on metacompact-
ness in [14]. In [4] and [3] we have introduced the concept of subparacompactness and
submetacompactness, respectively, in L-topological spaces. In this paper we study the
behavior of various types of noncompact covering properties such as paracompactness,
metacompactness, subparacompactness, and submetacompactness and also introduce the
concept of para–Lindelof spaces. Besides these, preservation of covering properties under
various maps, such as closed map, open map, perfect map etc. are also studied.

Let L be a complete lattice. Its universal bounds are denoted by ⊥ and ⊤. We
presume that L is consistent. i.e., ⊥ is distinct from ⊤. Thus ⊥ ≤ α ≤ ⊤ for all α ∈ L.
We note

∨

φ = ⊥ and
∧

φ = ⊤. The two point lattice {⊥,⊤} is denoted by 2. A unary
operation ′ on L is a quasi-complementation if it is an involution (ie., α′′ = α for all
α ∈ L) that inverts the ordering. (ie., α ≤ β implies β′ ≤ α′).

In (L,′ ) the DeMorgan laws hold:
(
∨

A
)′

=
∧

{α′ : α ∈ A} and
(
∧

A
)′

=
∨

{α′ : α ∈ A}

for every A ⊂ L. Moreover, in particular, ⊥′ = ⊤ and ⊤′ = ⊥.

A molecule or co-prime element in a lattice L is a join irreducible element in L, and
the set of all non-zero co-prime elements of L is denoted by M(L). A complete lattice L

is completely distributive if it satisfies either of the logically equivalent conditions CD1
or CD2 below:

CD1:
∧

i∈I

(

∨

j∈Ji
ai,j

)

=
∨

φ∈ΠJi

i∈I

(

∧

i∈I
ai,φ(i)

)

,

CD2:
∨

i∈I

(

∧

j∈Ji
ai,j

)

=
∧

φ∈ΠJi

i∈I

(

∨

i∈I
ai,φ(i)

)

,

for all {{aij : j ∈ Ji} : i ∈ I} ⊂ P (L) \ {∅}.

If L is a complete lattice, then for a set X, LX is the complete lattice of all maps from
X into L, called L-sets or L-subsets of X, under the point-wise ordering, a ≤ b in LX if
and only if a(x) ≤ b(x) in L for all x ∈ X. If A ⊂ X, 1A ∈ 2X ⊂ LX is the characteristic
function of A. The constant member of LX with value α is denoted by α itself. Usually
we will not distinguish between a crisp set and its characteristic function.

Wang [20] proved that a complete lattice is completely distributive if and only if for
each α ∈ L, there exists B ⊆ L such that

(i) a =
∨

A, and
(ii) if A ⊆ L and a ≤

∨

B, then for each b ∈ B, there exists c ∈ A such that b ≤ c.

B is called a minimal set of a, and β(a) denotes the union of all minimal sets of a. Also,
β∗(a) = β(a) ∩ M(L). Clearly, β(a) and β∗(a) are minimal sets of a.

For α ∈ L and A ∈ LX , we use the following notations.

A[α] = {x ∈ X : A(x) ≥ α};

A
[α] = {x ∈ X : A(x) ≤ α};

A
(α) = {x ∈ X : A(x) 6≥ α};

A(α) = {x ∈ X : A(x) 6≤ α}.

Clearly LX has a quasi complementation ′ defined point-wise, α′(x) = α(x)′ for all α ∈ L

and x ∈ X. Thus the DeMorgan laws are inherited by (LX ,′ ).
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Let (L,′ ) be a complete lattice equipped with an order reversing involution and X

any non empty set. A subfamily τ ⊂ LX which is closed under the formation of sups and
finite infs (both formed in LX) is called an L-topology on X and its members are called
open L-sets.

The pair (X, τ ) is called an L-topological space (L-ts). The category of all L-topological
spaces, together with L-continuous mappings and the composition and identities of Set

is denoted by L-Top. Quasi complements of open L-sets are called closed L-sets.

We know that the set of all non-zero co-prime elements in a completely distributive
lattice is ∨-generating. Moreover, for a continuous lattice L and a topological space
(X, T ), T = iLωL(T ) is not true in general. By Kubiak [15, Proposition 3.5] we know
that one sufficient condition for T = iLωL(T ) is that L be completely distributive.

In [21], Wang extended the Lowen functor ω for completely distributive lattices as
follows: For a topological space (X, T ), (X, ω(T )) is called the induced space of (X, T ),
where

ω(T ) = {A ∈ L
X : ∀α ∈ M(L), A

(α′) ∈ T}.

In 1992 Kubiak also extended the Lowen functor ωL for a complete lattice L. In fact,
when L is completely distributive, ωL = ω.

An L-topological space (X, τ ) is called a weakly induced space if ∀α ∈ M(L) and

∀A ∈ τ , it is true that A(α′) ∈ [τ ], where [τ ] is the set of all crisp open sets in τ .

Based on these facts, in this paper we use a complete, completely distributive lat-
tice L in LX . For all standardized basic fixed-basis terminology, we follow Hohle and
Rodabaugh [12].

2. Preliminaries and basic definitions

2.1. Definition. [23] Let (X, τ ), (Y, µ) be L-topological spaces, f : X → Y an ordinary
mapping. Based on this we define the L-fuzzy mapping f→ : LX → LY and its L-fuzzy
reverse mapping f← : LY → LX by

f
→ : L

X → L
Y

, f
→(A)(y) =

∨

{A(x) : x ∈ X, f(x) = y} ∀A ∈ L
X

, ∀ y ∈ Y.

f
← : L

Y → L
X

, f
←(B)(x) = B(f(x)), ∀B ∈ L

Y
, ∀x ∈ X.

2.2. Definition. [23] Let (X, τ ), (Y, µ) be L-topological spaces, f→ : LX → LY an
L-fuzzy mapping. We say f→ is an L-fuzzy continuous mapping from (X, τ ) to (Y, µ) if
its L-fuzzy reverse mapping f← : LY → LX maps every open subset in (Y, µ) as an open
one in (X, τ ). i.e., ∀V ∈ µ, f←(V ) ∈ τ .

2.3. Definition. [23] Let (X, τ ), (Y, µ) be L-topological spaces, f→ : LX → LY an
L-fuzzy mapping. We say f→ is open if it maps every open subset in (X, τ ) to an open
set in (Y, µ). i.e., ∀U ∈ τ , f→(U) ∈ µ.

2.4. Definition. [23] Let (X, τ ), (Y, µ) be L-topological spaces, f→ : LX → LY an
L-fuzzy mapping. We say f→ is closed if it maps every closed subset in (X, τ ) to a closed
set in (Y, µ). i.e., ∀F ∈ τ ′, f→(F ) ∈ µ′.

2.5. Definition. [23] Let (X, τ ) be an L-ts. A fuzzy point xα is quasi coincident with

D ∈ LX (and we write xα ≺ D) if xα 6≤ D′.

Also, D quasi coincides with E at x (D q E at x) if D(x) 6≤ E′(x). We say D is quasi

coincident with E, and write D q E, if D q E at x for some x ∈ X. Further D¬ q E

means D does not quasi coincide with E.
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We say U ∈ τ is a quasi coincident nbd. of xα (Q - nbd.) if xα ≺ U . The family of
all Q- nbds. of xα is denoted by Qτ (xα) or by Q(xα).

If α ∈ M(L), then C ∈ τ is an α-Q-nbd. of A if C ∈ Q(xα) for every xα ≤ A.

2.6. Definition. [23] Let (X, τ ) be an L-ts, A ∈ LX . Then Φ ⊂ LX is called a Q-cover

of A if for every x ∈ Supp (A), there exists U ∈ Φ such that xA(x) ≺ U . In particular, Φ
is a Q-cover of (X, τ ) if Φ is a Q-cover of ⊤.

Φ is called an α-Q-cover of A, if for each xα ≤ A, there exists U ∈ Φ such that
xα ≺ U .

Φ is called an open α-Q-cover of A if Φ ⊂ τ and Φ is an α-Q-cover of A.

Φ0 ⊂ LX is called a sub α-Q-cover of A if Φ0 ⊂ Φ and Φ0 is also an α-Q-cover of A.

Φ is called an α−-Q cover of A, if there exists γ ∈ β∗(α) such that Φ is γ-Q-cover of
A.

2.7. Definition. [23] Let (X, τ ) be an L-ts, D ∈ LX . Then, D is called N-compact if
for every α ∈ M(L), every open α-Q cover of D has a finite sub family which is an α−-Q
cover of D. In particular, (X, τ ) is called N-compact if ⊤ is N-compact.

2.8. Definition. [23] Let (X, τ ) be an L-ts, A = {At : t ∈ T} ⊆ LX , and xλ ∈ M(LX).
Then A is called locally finite at xλ, if there exist U ∈ Q(xλ) and a finite subset T0 of T

such that t ∈ T \ T0 =⇒ At ¬ q U . Likewise, A is called ∗-locally finite at xλ if there
exist U ∈ Q(xλ) and a finite subset T0 of T such that t ∈ T0 =⇒ χAt(0) ¬ q U . Then, A

is called locally finite (∗-locally finite) for short, if A is locally finite (∗-locally finite) at
every molecule xλ ∈ M(LX ).

2.9. Definition. [14] Let (X, τ ) be an L-ts, A = {At : t ∈ T} ⊂ LX , and xλ ∈ M(LX).
Then A is called point finite at xλ if xλ ≺ At for at most finitely many t ∈ T . Likewise,
A is ∗-point finite at xλ if there exists at most finitely many t ∈ T such that xλ ≺ χAt(0).

Then A is called point finite (resp. ∗-point finite) for short, if A is point finite (resp.
∗-point finite) at every molecule xλ of LX .

2.10. Definition. Let (X, τ ) be an L-ts, A = {At : t ∈ T} ⊆ LX , and xλ ∈ M(LX).
Then A is called locally countable at xλ, if there exist U ∈ Q(xλ) and a countable subset
T0 of T such that t ∈ T \T0 =⇒ At ¬ q U . Likewise, A is called ∗-locally countable at xλ if
there exist U ∈ Q(xλ) and a countable subset T0 of T such that t ∈ T0 =⇒ χAt(0) ¬ q U .

Then A is called locally countable (∗-locally countable) for short, if A is locally count-
able (∗-locally countable) at every molecule xλ ∈ M(LX).

2.11. Definition. Let (X, τ ) be an L-ts, A = {At : t ∈ T} ⊆ LX , and B ∈ LX . Then
A is called σ-locally countable in B if A is a countable union of sub-families which are
locally countable in B.

In particular, A is called σ-locally countable for short, if A is σ-locally countable in
⊤.

2.12. Definition. [23] Let (X, τ ) be an L-ts. Then by [τ ] we denote the family of
support sets of all crisp subsets in τ . Clearly, (X, [τ ]) is a topology and it is the called
the background space. Then (X, τ ) is called weakly induced if U ∈ τ is a lower semi
continuous function from the background space (X, [τ ]) to L.

2.13. Definition. [23] A collection A refines a collection B (written, A < B) if for
every A ∈ A, there exists B ∈ B such that A ≤ B.

2.14. Definition. [23] Let (X, τ ) be an L-ts. Then A = {At : t ∈ T} ⊆ LX is a closure

preserving collection if for every subfamily A0 of A, cl [
∨

A0] =
∨

[clA0].
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2.15. Definition. Let (X, τ ) be an L-ts. Then A = {At : t ∈ T} ⊆ LX is a interior

preserving collection if for every subfamily A0 of A, int [
∧

A0] =
∧

[intA0].

2.16. Definition. [14] A collection U of fuzzy subsets of an L-topological space (X, τ )
is said to be well monotone if the subset relation ‘<’ is a well order on U.

2.17. Definition. [14] A collection U of fuzzy subsets of an L-topological space (X, τ )
is said to be directed if U, V ∈ U implies there exists W ∈ U such that U ∨ V < W .

2.18. Definition. A sequence {Gn} of α-Q covers of ⊤ is said to be a θ-sequence (∗-
θ-sequence) of α-Q covers if for each xα ∈ M(LX), there is some k ∈ N such that the
family Gk is point finite (∗-point finite) at xα.

3. Noncompact covering properties

3.1. Definition. [23] Let (X, τ ) be an L-ts, A ∈ LX , α ∈ M(L). Then A is called
α-paracompact (α∗-paracompact) if for every open α-Q-cover Φ of A, there exist an open
refinement Ψ of Φ which is locally finite (∗-locally finite) in A and Ψ is also an α-Q-cover
of A.

In particular, A is paracompact (∗-paracompact) if A is α-paracompact (α∗-paracompact)
for every α ∈ M(L). Also, (X, τ ) is paracompact (∗-paracompact) if ⊤ is paracompact
(∗-paracompact).

3.2. Proposition. [23] Let (X, τ ) be a weakly induced L-ts. Then the following condi-

tions are equivalent:

(i) (X, τ ) is ∗-paracompact;

(ii) There exist α ∈ M(L) such that (X, τ ) is α∗-paracompact;

(iii) (X, [τ ]) is paracompact.

3.3. Proposition. [22] Let (X, τ ) be an L-ts, A ∈ LX , and α ∈ M(L). Then:

(i) A is ∗-paracompact =⇒ A is α-paracompact;

(ii) A is ∗-paracompact =⇒ A is paracompact.

3.4. Definition. [13] Let (X, τ ) be an L-ts, A ∈ LX , and α ∈ M(L). Then A is
called α-metacompact (resp. α∗-metacompact) if every open α-Q-cover of A has a point
finite (resp.∗-point finite) open refinement which is also an α-Q-cover of A. In par-
ticular, A is called metacompact (resp. ∗-metacompact) if A is α-metacompact (resp.
α∗-metacompact) for every α ∈ M(L).

Finally, (X, τ ) is metacompact (resp. ∗-metacompact) if ⊤ is metacompact (resp.∗-
metacompact).

3.5. Theorem. [13] Let (X, τ ) be a weakly induced L-ts. Then the following are equiv-

alent:

(i) (X, τ ) is metacompact;

(ii) There exist α ∈ M(L) such that (X, τ ) is α-metacompact;

(iii) (X, [τ ]) is metacompact;

(iv) For every α ∈ M(L), every well monotone open α-Q-cover of ⊤ has a point

finite open refinement which is also an α-Q-cover of ⊤;

(v) There exists α ∈ M(L) such that every well monotone open α-Q-cover of ⊤ has

a point finite open refinement which is also an α-Q-cover of ⊤;

(vi) For every α ∈ M(L), every directed open α-Q-cover of ⊤ has a closure preserving

closed refinement which is also an α-Q-cover of ⊤;

(vii) There exist α ∈ M(L) such that every directed open α-Q-cover of ⊤ has a closure

preserving closed refinement which is also an α-Q-cover of ⊤;
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(viii) For every α ∈ M(L) and every open α-Q-cover U of ⊤, UF has a closure

preserving closed refinement which is also an α-Q-cover of ⊤;

(ix) There exist α ∈ M(L) such that for every open α-Q-cover U of ⊤, UF has a

closure preserving closed refinement which is also an α-Q-cover of ⊤.

3.6. Definition. [4] Let (X, τ ) be an L-ts, A ∈ LX , and α ∈ M(L). Then A is called
α-subparacompact (α∗-subparacompact) if for every open α-Q-cover Φ of A, there exist a
closed refinement Ψ of Φ which is σ-discrete (σ∗-discrete) in A and Ψ is also an α-Q-cover
of A.

In particular, A is subparacompact (∗-subparacompact) if A is α-subparacompact (α∗-
subparacompact) for every α ∈ M(L). Finally, (X, τ ) is subparacompact (∗-subparacompact)
if ⊤ is subparacompact (∗-subparacompact).

3.7. Proposition. [4] Let (X, τ ) be an L-ts, A ∈ LX , and α ∈ M(L). Then:

(i) A is α∗-subparacompact =⇒ A is α-subparacompact;

(ii) A is ∗-subparacompact =⇒ A is subparacompact.

3.8. Theorem. [4] Let (X, τ ) be a weakly induced L-ts. Then the following conditions

are equivalent.

(i) (X, τ ) is ∗-subparacompact;

(ii) There exist α ∈ M(L) such that (X, τ ) is α∗-subparacompact;

(iii) (X, [τ ]) is subparacompact.

3.9. Definition. [4] Let (X, τ ) be an L-ts, A ∈ LX , and α ∈ M(L). Then A is called
α-submetacompact (α∗-submetacompact) if for every open α-Q-cover of A there is a θ-
sequence (∗-θ-sequence) of open α-Q-cover refinements.

In particular, A is submetacompact (∗-submetacompact) if A is α-submetacompact
(α∗-submetacompact) for every α ∈ M(L). Finally, (X, τ ) is submetacompact (∗-
submetacompact) if ⊤ is submetacompact (∗-submetacompact).

3.10. Theorem. Let (X, τ ) be a weakly induced L-ts. Then the following conditions are

equivalent:

(i) (X, τ ) is submetacompact;

(ii) There exist α ∈ M(L) such that (X, τ ) is α-submetacompact;

(iii) (X, [τ ]) is submetacompact.

Proof. (i) =⇒ (ii). Clear.

(ii) =⇒ (iii). Let U ⊂ [δ] be an open cover of X. So {χU : U ∈ U} is an open α-Q-
cover of ⊤. By (ii) it has a θ-sequence of open α-Q-cover refinements say V = {Vn}.
For each Vn ∈ Vn take Vn(α′) = {x ∈ X : Vn(x) 6≤ α′}, and consider the collection
Wn = {Vn(α′)) : Vn ∈ Vn}. Now by the weakly induced property of (X, τ ), Wn is an
open cover of (X, [τ ]), and obviously Wn is a point finite open refinement of U. Then
W = {Wn} is a θ-sequence of U. Hence (ii) =⇒ (iii).

(iii) =⇒ (i). Let α ∈ M(L) and U ⊂ τ be an α-Q cover of ⊤. Since (X, τ ) is weakly
induced, {U(α′) : U ∈ U} is an open cover of (X, [τ ]). Therefore it has a θ-sequence of
open refinements, say V = {Vn}.

For every Vn ∈ Vn, take UVn
∈ U such that Vn ⊂ UVn(α′). Let Wn = {χvn

∧ UVn
:

Vn ∈ Vn}. Clearly, Wn is an open α-Q-cover refinement of U. Consider W = {Wn}.
We will show that each Wn is point finite.

Let xα ∈ M(LX). Since Vn is point finite, it follows clearly that x ∈ V1, V2, . . . , Vn for
some n ∈ N and Vi ∈ Vn for i = 1, 2, · · · , n. Next we have to show that xα ≺ χVi

∧ UVi

for at most finitely many i. For, if possible let xα ≺ χvi
∧ UVi

for infinitely many
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Vi ∈ Vn. Then xα ≺ χVi
or xα ≺ UVi

for infinitely many Vi ∈ Vn. In both cases x ∈ Vi

for infinitely many Vi ∈ Vn. Therefore W = {Wn} is a θ-sequence of U, and thus
(iii) =⇒ (i). This completes the proof. �

3.11. Definition. Let (X, τ ) be an L-ts, A ∈ LX , and α ∈ M(L). Then A is called
α-para-Lindelof (α∗-para-Lindelof ) if for every open α-Q-cover Φ of A, there exist an
open refinement Ψ of Φ which is locally countable (∗-locally countable) in A and Ψ is
also an α-Q-cover of A.

In particular, A is para-Lindelof (∗-para-Lindelof ) if A is α-para-Lindelof (α∗-para-
Lindelof) for every α ∈ M(L). Finally, (X, τ ) is para-Lindelof (∗-para-Lindelof ) if ⊤ is
para-Lindelof (∗-para-Lindelof).

3.12. Theorem. Let (X, τ ) be a weakly induced L-ts. Then the following conditions are

equivalent:

(i) (X, τ ) is para-Lindelof;

(ii) There exist α ∈ M(L) such that (X, τ ) is α-para-Lindelof;

(iii) (X, [τ ]) is para-Lindelof.

Proof. (i) =⇒ (ii). Obvious.

(ii) =⇒ (iii). Let U ⊂ [τ ] be an open cover of X. Now U∗ = {χU : U ∈ U} is an open
α-Q-cover of ⊤, and it has a locally countable refinement V which is also an α-Q-cover
of ⊤. Let

W = {V(α′) : V ∈ V}.

Clearly W is both a refinement of U and a cover of X. Since (X, τ ) is weakly induced,
we have W ⊂ [τ ]. Now we want to prove that W is locally countable. Let x ∈ X. Since
(X, τ ) is α-para-Lindelof, there exist B ∈ Q(xα) such that B only quasi coincides with a
countable number of members V0, V1, V2, . . . of V. Let O = B(⊥). By the weakly induced
property of (X, τ ), O ∈ [τ ], for every V ∈ V, if O ∩ V(α′) 6= φ, then there exists an
ordinary point y ∈ O ∩ V(α′), and hence B(y) 6≤ ⊥, V (y) 6≤ α′.

Therefore V (y)′ < α, and it follows that B(y) 6≤ V (y)′ and thus B q V . So V ∈
{V0, V1, V2, . . .}, O intersects only a countable number of members V0(α′), V1(α′), V2(α′), . . .

of W. Hence (X, [τ ]) is para-Lindelof.

(iii) =⇒ (i). Suppose that α ∈ M(L) and let U ⊂ τ be an open α-Q-cover of ⊤. Since
(X, τ ) is weakly induced,

U
∗ = {U(α′) : U ∈ U}

is an open cover of (X, [τ ]). Since (X, [τ ]) is para-Lindelof, there exist a refinement V of
U* which is also a locally countable cover of X.

For every V ∈ V, let UV ∈ U be such that V ⊂ UV (α′). Let

W = {χV ∧ UV : V ∈ V}.

Clearly W is both a refinement of U and an α-Q-cover of ⊤. Next we will prove that W

is locally countable. Let xα ∈ M(LX). Then since V is locally countable, there exist a
neighbourhood B of x such that B intersects with Vi for countably many Vi ∈ V. Now
we have χB ∈ Q(xα). We will show that χB q χVi

∧ UVi
for at most countably many i.

For if possible, let χB q χV ∧ UV for uncountably many V ∈ V.

Then χB q χV or χB q UV for uncountably many V ∈ V. In both cases B intersects
with V for uncountably many V ∈ V, which is a contradiction and hence W is locally
countable. Therefore (X, τ ) is α-para-Lindelof. This completes the proof. �
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3.13. Definition. Let (X, τ ) be an L-ts, A ∈ LX , and B ⊂ LX . Then

st(A,B) =
∨

{B ∈ B : B q A}

is defined as the star of B about A. If xλ ∈ M(LX ), then st({xλ},B) is denoted by
st(xλ,B).

3.14. Theorem. Let (X, τ ) be an L-ts. Then the following are equivalent:

(i) (X, τ ) is para-Lindelof;

(ii) For every open α-Q-cover A of ⊤, there is a locally countable refinement B such

that if xα ∈ M(LX ) then xα ∈ int (st(xα,B)).

Proof. (i) =⇒ (ii). Obvious.

(ii) =⇒ (i). Suppose A = {At : t ∈ T} is an open α-Q-cover of ⊤. Let B = {Bt :
t ∈ T} be a locally countable refinement, as given in (ii). Let C be an open α-Q-cover
of ⊤ such that every element of C intersects at most countably many elements of B.
Then for every xα ∈ M(LX), there is a locally countable refinement D of C such that
xα ∈ int (st(xα, D)).

For each B ∈ B, take AB ∈ A such that B ≤ AB and let GB = int (st(B,D)) ∧ AB.
Then clearly G = {GB : B ∈ B} is an α-Q-cover of ⊤, and hence is an open refinement
of A. To show G is locally countable, let xα ∈ M(LX) and take W ∈ Q(xα) such
that W intersects only countably many elements of D. Since each D ∈ D intersects only
countably many elements of B, it follows that W intersects only countably many elements
of {st(B,D) : B ∈ B}. Hence G is locally countable, and the theorem is proved. �

3.15. Definition. Let (X, τ ) be an L-ts and α ∈ M(L). Then (X, τ ) is called σ-para-

Lindelof if for every open α-Q-cover Φ of ⊤, there exist an open refinement Ψ of Φ which
is σ-locally countable in ⊤ and is also an α-Q-cover of ⊤.

The methodology used to prove Theorem 3.14 can be applied to the following Theorem:

3.16. Theorem. Let (X, τ ) be an L-ts. Then the following are equivalent:

(i) (X, τ ) is σ-para-Lindelof;

(ii) For any open α-Q-cover A of (X, τ ), there is a σ-locally countable refinement

B =
⋃

Bi such that if xα ∈ M(LX) then xα ∈ int (st(xα,Bk)) for some k ∈
N. �

4. Covering properties under mappings

4.1. Definition. [2] Let (X, τ ), (Y,µ) be L-ts’s, and f→ : LX → LY an L-fuzzy mapping.
Then f→ is perfect if it is continuous, closed and f←(y) is N-compact for every y ∈ Y .

4.2. Results. [23] If (X, τ ), (Y, µ) are two weakly induced L-topological spaces, then

(i) If the map f→ : LX → LY is L-fuzzy continuous, then f : (X, [τ ]) → (Y, [µ]) is

continuous;

(ii) If the map f→ : LX → LY is L-fuzzy closed, then f : (X, [τ ]) → (Y, [µ]) is

closed;

(iii) If the map f→ : LX → LY is L-fuzzy open, then f : (X, [τ ]) → (Y, [µ]) is open.

4.3. Theorem. Let (X, τ ), (Y,µ) be two weakly induced L-topological spaces. Then if

f→ : LX → LY is perfect, so is f : (X, [τ ]) → (Y, [µ]).
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Proof. Let yα ∈ M(LY ). Since f→ : LX → LY is perfect, f←(yα) is N-compact. Now
to prove f : (X, [τ ]) → (Y, [µ]) is perfect, it is enough to prove that f←(yα) is compact
for every y ∈ Y .

Now let U ∈ [τ ] be an open cover of f−1(y). Consider U∗ = {χU : U ∈ U}. This is
an open α-Q-cover of f←(yα). For, let xα ≤ f←(yα). i.e., f←(yα)(x) = yα(f(x)) ≥ α.
Now let U ∈ U be such that x ∈ U . This is possible since U is a cover of f−1(y). Then
it follows that χU (x) ≥ yα ≥ α. i.e., χU (x) ≥ α or xα ≤ χU . Hence clearly xα ≺ χU .
Therefore {χU : U ∈ U} is an open α-Q-cover of f←(yα).

Again, f←(yα) being N-compact, there exists a finite sub collection U∗s of U∗ which
is also an α−-Q cover of f←(yα). Let

U
∗

s = {χU1, χU2, . . . , χUk}.

Then clearly {U1, U2, . . . , Uk} will be a finite sub cover of f−1(y). This completes the
proof. �

4.4. Theorem. Let (X, τ ), (Y, µ) be two weakly induced L-ts’s and f→ : LX → LY a

closed continuous map. Then:

(i) If (X, τ ) is paracompact, then so is (Y, µ);
(ii) If (X, τ ) is metacompact, then so is (Y, µ);
(iii) If (X, τ ) is subparacompact, then so is (Y, µ);
(iv) If (X, τ ) is submetacompact, then so is (Y, µ).

Proof. We prove only (ii). The proofs of (i), (iii) and (iv) can be arrived at in a similar
manner.

Suppose (X, τ ) is metacompact. Let A be an open α-Q-cover of (Y, µ). By Theo-
rem 3.5 it is enough to show that AF has a closure preserving closed refinement which
is also an α-Q-cover of (Y,µ). Let

W = {f←(A) : A ∈ A}.

Clearly W is an open α-Q-cover of (X, τ ), and since (X, τ ) is metacompact, WF has
a closure preserving closed refinement B which is also an α-Q-cover of (X, τ ). Now
{f→(B) : B ∈ B} is the desired closure preserving closed refinement of AF . Hence the
proof is complete. �

4.5. Theorem. Let (X, τ ), (Y, µ) be two weakly induced L-ts’s and f→ : LX → LY a

perfect map. Then:

(i) (X, τ ) is paracompact if and only if (Y, µ) is paracompact;

(ii) (X, τ ) is metacompact if and only if (Y,µ) is metacompact;

(iii) (X, τ ) is subparacompact if and only if (Y, µ) is subparacompact;

(iv) (X, τ ) is submetacompact if and only if (Y, µ) is submetacompact;

(v) (X, τ ) is para-Lindelof if and only if (Y,µ) is para-Lindelof.

Proof. (i). By Theorem 4.3 and Propositions 3.2 and 3.3.

(ii). By Theorem 4.3 and Theorem 3.5.

(iii). By Theorem 4.3, Proposition 3.7 and Theorem 3.8.

(iv). By Theorem 4.3 and Theorem 3.10.

(v). By Theorem 4.3 and Theorem 3.12. �

4.6. Definition. Let (X, τ ) and (Y,µ) be L-topological spaces, f→ : LX → LY a closed
or open L-fuzzy mapping. We say A ⊆ LX is saturated with respect to f→; whenever it
is the complete inverse image of some set in LY . That is A is saturated if and only if
A = f←(f→(A)).
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4.7. Theorem. Let (X, τ ) and (Y, µ) be two weakly induced L-ts’s. If (X, τ ) is para-

Lindelof and f→ : LX → LY a closed map with f←(yα) Lindelof for each yα ∈ M(LY ),
then (Y, µ) is para-Lindelof.

Proof. Let U be an open α-Q-cover of (Y, µ). Then {f←(U) : U ∈ U} is an α-Q-cover of
(X, τ ), and we let W = {Wt : t ∈ T} be a locally countable open α-Q-cover refinement
of {f←(U) : U ∈ U}.

Now for any yα ∈ M(LY ), f←(yα) is Lindelof so there is an open set Gyα in LX such
that f←(yα) ≤ Gyα and Gyα ≤ Wt for countably many t ∈ T . Take Vyα as the saturated
part of Gyα. Then f→(Vyα) is an open set about yα. Consider

H = {f→(Wt) : Wt ∈ W}.

Now f→(Vyα) meets only countably many elements of H. Hence H is locally countable,
and it is clear that yα ∈ int (st(yα, H)) for every yα ∈ LY . Since H is a refinement of U,
it follows from Theorem 3.14 that (Y, µ) is para-Lindelof. �

4.8. Theorem. Let (X, τ ), (Y, µ) be two weakly induced L-ts’s. If (X, τ ) is σ-para-

Lindelof and f→ : LX → LY a perfect map then (Y, µ) is σ-para-Lindelof.

Proof. Let U be an open α-Q-cover of Y and W =
⋃

Wi an open refinement of {f←(U) :
U ∈ U}, where each Wi is locally countable. Since each f←(yα) is N-compact, without
loss of generality we may assume that f←(yα) ⊂

⋃

Wk for some k. Consider

Hi = {f→(W ) : W ∈ Wi}.

Then H =
⋃

Hi is a refinement of U, where each Hi is locally countable, and if yα ∈ LY ,
then yα ∈ int (st(yα,Hi)) for some i. The result now follows from Theorem 3.16. �

4.9. Theorem. Let (X, τ ) be an L-ts and α ∈ M(L). Then (X, τ ) is metacompact if

and only if for every open α-Q-cover A of ⊤, there is a point finite open refinement B

such that xα ∈ int (st(xα,B)) for every xα ∈ M(LX).

Proof. (i) =⇒ (ii). Obvious.

(ii) =⇒ (i). Suppose that α ∈ M(L) and that U ⊂ τ is an open α-Q-cover of ⊤.
By (ii), there exists a point finite refinement B such that xα ∈ int (st(xα,B)). That
is, xα ∈ int (

∨

{B ∈ B : xα ≺ B}). Then B is an α-Q-cover of ⊤ and hence (X, τ ) is
metacompact. �

4.10. Definition. Let (X, τ ), (Y, µ) be L-ts’s and f→ : LX → LY an L-fuzzy mapping.
Then f→ is said to be an open compact map if it is open and f←(y) is N-compact for
every y ∈ Y .

4.11. Definition. Let (X, τ ), (Y, µ) be L-ts’s and f→ : LX → LY an L-fuzzy mapping.
We say f→ is pseudo-open if whenever f←(yα) ≤ U , where yα ∈ LY and U ∈ LX , then
yα ∈ int (f→(U)).

4.12. Theorem. Let (X, τ ) and (Y,µ) be L-ts’s. If (X, τ ) is paracompact and f→ :
LX → LY a pseudo-open compact mapping, then (X, τ ) is metacompact.

Proof. Suppose U is an open α-Q-cover of (Y,µ). Then V = {f←(U) : U ∈ U} is an
open α-Q-cover of (X, τ ), and W is a locally finite refinement of V. Consider

H = {f→(W ) : W ∈ W}.

Since W is locally finite, every f←(yα) intersects at most finitely many elements of W.
Now it follows that H is a point finite refinement, and using the pseudo open condition
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it is clear that yα ∈ int (st(yα,H)) for every yα ∈ LY . Now by applying Theorem 4.9,
the proof is complete. �
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