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Abstract  

Until now the second law analysis of turbulent flow relied only on the irreversibilities 
performed by the mean velocity and mean temperature gradients. Using the Reynolds 
decomposition of the volumetric entropy generation rate expression we found that the 
dissipation rates of both, turbulent kinetic energy and fluctuating temperature variance, 
also represent the irreversibilities of the flow. Applying the above results, the second 
law analysis of the turbulent boundary layer shows that the maximum values of the 
"mean motion irreversibilities" (generated by the mean velocity and mean temperature 
gradient) are located at the wall, while the maximum values of the "turbulent 
irreversibilities" (performed by the dissipation rate of turbulent kinetic energy and 
fluctuating temperature variance) are located in the buffer sublayer. As a consequence, 
for a given location on the plate, the integral values of the "mean motion 
irreversibilities" are approximately constant and the "turbulent irreversibilities" grow up 
with the boundary layer thickness. 
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1. Introduction 

Most flows occurring in engineering 
applications are turbulent. Taking into account 
the well known liaison between the 
thermodynamic irreversibilities and the lost 
exergy, the second law analysis accuracy of such 
a flow become very important for a good 
technical performance prediction of engineering 
devices.  

Following Sciubba (1994), the second law 
analysis can be performed at a bulk, microscopic 
and macroscopic level. In the bulk level, the 
whole system or macroscopic subsystems are 
considered and the entropy generation rate is 
computed using the thermodynamic procedures. 
At this level, the second law analysis can be easy 
applied, but, in the case of complex flows, it does 
not offer a reasonable accuracy. In the 
microscopic level the system is divided into an 
infinite number of subsystems of point size for 
which the calculus of the volumetric entropy 

generation rate is performed. Using the 
microscopic level, the entire flow field solution 
needs to be known, but at the same time, the 
entire flow field irreversibilities are revealed. 
This method was first formulated by Bejan 
(1982) in the case of laminar flows. It was also 
used for the turbulent flows (Bejan, 1982; 
Sciubba, 1994; Natalini and Sciubba, 1994), but 
only the viscous and thermal irreversibilities due 
to the mean velocity and mean temperature 
gradients have been considered.  

The turbulence, itself, generates specific 
mechanisms of irreversibilities because the 
kinetic energy of fluctuating velocity and the 
thermal exergy of fluctuating temperature are 
dissipated through the viscosity and the thermal 
diffusivity of the fluid. In order to identify these 
irreversibilities and their magnitude, the 
expression of the volumetric entropy generation 
rate will be first, averaged in time and next, 
particularized for the case of the turbulent 
incompressible flow over a flat plate.  
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2. Entropy Generation Rate in Turbulent 

Incompressible Flows 

In the incompressible turbulent flow 
hypothesis the instantaneous volumetric rate of 
entropy generation is expressed by: 
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represent the viscous part and the thermal part of 
irreversibilities and Sij denote the strain rate 
tensor. Decomposing the flow properties into the 
mean and the fluctuating part, the Reynolds 
averaged expression of eq. (1) can be written as: 

( ) ( )( )+′+′+′+
µ

=
−Ω

ijijijij
1)(

gen SSSSTT1
T

2S
&

 

( ) ( ) ( )
jj

2

2 x

TT

x

TT
TT1

T ∂

′+∂

∂

′+∂
′+

λ
+

−
 (4) 

Because of the fluid incompressibility the 
fluctuating temperature are much smaller than 
the mean temperature. Then, using the serial 

decomposition of 1)TT1( −′+  and 2)TT1( −′+  

the expression (4) becomes: 
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The first two terms of the above expression are: 
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and model the viscous and thermal 
irreversibilities generated in the mean motion 
field by the gradients of average velocity and 
average temperature. They are the homologues 
of the terms modeling the laminar flow 
irreversibilities because they are generated by the 
same mechanisms.  

The following two terms, containing the 
correlations of the fluctuating velocity and 
fluctuating temperature gradients model the 
proper irreversibilities of the flow turbulence. 
Thus, the term: 
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corresponds to the irreversibilities generated by 
the viscous dissipation ε of the kinetic energy K, 
and the term: 

θ
Ω ε

ρ
=

∂

′∂

∂

′∂λ
=







2
p

jj
2QT

)(
gen

T

c

x

T

x

T

T
S
&  (9) 

characterizes the irreversibilities due to the 
thermal dissipation εθ of the fluctuating 
temperature variance Kθ. As in the previous case, 
both, the viscosity and the thermal diffusivity of 
the fluid are involved in the act of mechanism’s 
dissipation. Of course, in the eq. (8) and (9) the 
last equalities result from the definitions of ε and 
εθ (Tennekes and Lumley, 1972; Mohammadi 
and Pironneau, 1994). 

The last two terms, V∆′  and Q∆′  contain all 

of the correlations build from the serial decom-

position of 1)TT1( −′+  and 2)TT1( −′+ . 

Generally they can be neglected because they are 
formed with the upper powers of )TT( ′ . 

As in the laminar case, the expressions (5)-
(9) show that the only sources of  the turbulent 
flow irreversibilities are the viscous and the 
thermal dissipations. Unlike the laminar flows 
the structure of turbulent dissipations are more 
complicated because they act not only on the 
mean exergy but also on the turbulent fluctuating 
exergy. In order to emphasize the relative 
importance of the fluctuating exergy dissipation 
mechanisms, we define two irreversibility 
distribution ratios: 
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Using the above definitions, and neglecting the 

corelations V∆′  and Q∆′  the expression for mean 

volumetric entropy generation rate becomes: 
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The relations (5)-(12) show that the turbulence 
act not only by growing the classical viscous and 
thermal ireversibilities, (noted with the subscripts 
“VM” and “QM”) but also by generating new 
kinds of viscous and thermal irreversibilities, 
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(noted with subscripts “VT” and “QT”) due to 
the dissipation of turbulent kinetic energy and 
fluctuating temperature variance. 

3. Entropy Generation Rate Calculation for 

Turbulent Boundary Layer Flow 

Most flows occurring in the field of power 
generation are turbulent and often very 
complicated. In such a case, the calculation of 
the entropy generation rate is performed only by 
numerical methods. The flow in boundary layer 
represents one of the few exceptions for which 
the distribution of all the volumetric entropy 
generation rate components can be obtained 
analytically. 

 In terms of the wall coordinates the 
common dimensionless quantities are: 
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where uτ and Tτ are the friction velocity and the 
friction temperature, and: 
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With the classical simplifications used for 
boundary layer flows the expressions (6) and (7) 
become: 
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where a and b are two coefficients containing in 

their definition the initial flow properties U∞ and 
T∞, the wall temperature Tw, the difference 
∆T=Tw-T∞,  the skin friction Cf,x and the Stanton 
number Stx: 
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The skin friction and the Stanton number are 
related by the Colburn analogy (Stx=0.5Cf,x/Pr

2/3) 
that remove the dependence of a and b from the 
x-direction. If the classical laws of the wall: 
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are used for the calculation of the two derivatives 
appearing in eq. (14) and (15), then the 

distributions of VM
)(

gen )S( Ω&  and QM
)(

gen )S( Ω&  are not 

continuos at the joining point y+=11.63 and the 
derivative’s approximations are not accurate in 
the buffer sublayer. Because of these ∂u+/∂y+ and 
∂T+/∂y+ were computed using the relations: 
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resulting from the assumptions of the constant 
total shear stress and constant total heat flux. In 
the above equations κ =0.415 is the von Karman 
constant and D=1-exp(-y+/A+) represents the van 
Driest correction for the Prandtl mixing length 
formula.  

In the wall coordinates the eq. (8) and (9) 
can be written as: 
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If the turbulence equilibrium hypothesis is used 
then: 
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where PK
+ and Pθ

+ are the production terms of 
turbulent kinetic energy and fluctuating 
temperature variance. The dimensionless 
turbulent viscosity νT

+=νT/ν and dimensionless 
thermal diffusivity αT

+=αT/α can be evaluated 
with: 
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The approximations (22) and (23) work very 
well in the logarithmic sublayer but leads to 
important errors in the vicinity of the wall. These 
errors are not relevant for the calculation of the 
volumetric entropy generation rate because at the 
wall : 
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Anyway with the two-layer treatment of the K-ε 
equations (Patel and Chen, 1988) the hypothesis 
(22) can be avoided. In the low Reynolds number 
layer, νT
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Using Eq. (18), (24), (26) and (27) the turbulent 
kinetic energy and the turbulent dissipation rate 
are the solution of the system: 
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where Aµ=70, Aε=2κCµ
-3/4 and Cµ=0.09. In the 

present work the hypothesis (23) was maintained 
because for the Kθ-εθ equations the two layer 
approach does not exist. 

4. Results and Discussions 

Figure 1 shows the distributions of the 
volumetric entropy generation rate components 
for a=2 and b=0.00667. The great mean motion 
irreversibilities occur in the viscous and in the 
buffer sublayers and their maximal values are 
reached at the wall. The high turbulent 
irreversibilities are found in the same regions of 
the flow, but their distributions are quite 
different, because their maximal values are 
reached in the buffer sublayer. We note that, 
because of the approximation (23), which does 
not work well in the viscous sublayer, only 

+Ω
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gen )S( &  has a correct behavior in the wall 

vicinity, where “ε and εθ cannot vanish”.  

 Figure 1.  The variation of the volumetric 

entropy generation rate components  

The distributions of the irreversibility ratios, 
computed with: 
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are presented in Figure 2. It can be seen that the 
turbulent irreversibility ratios increase 
monotonically with y+, and the equalities 
ΦV

(Ω)=1 and ΦQ
(Ω)=1 are valid in the buffer 

sublayer. For this reason the rate of entropy 
generation by the mean velocity and mean 
temperature gradients prevail in the viscous 
sublayer while the rate of entropy generation due 
to the dissipations of turbulent kinetic energy and 
fluctuating temperature variance rule the 
logarithmic sublayer.   

 Figure 2.  The variation of volumetric 

ireversibility ratios  

Figure 3 presents the variation of the 
volumetric entropy generation rate along the 
coordinate normal to the wall. Obviously, the 
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growth of parameter 'a' increases the flow 
irreversibilities but their profile remains 
unchanged. So, variation of the volumetric 
entropy generation  rate follows the profile of  
the mean motion irreversibilities  close to the 
wall and the variation of  turbulent 
irreversibilities in the logarithmic sublayer. 

 
Figure 3.  The variation of volumetric 

entropy generation rate 

 TABLE I shows the variations of the 
surface entropy generation rate components 
along y+, obtained by numerical integration of: 
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for a=2 and b=0.00667. It can be seen that the 
mean motion components of surface 
irreversibilities have an asymptotic behaviour on 
the wall normal coordinate so that their values 
remain practically unchanged over a certain 
value of y+ (in our case y+>300). Contrary, the 
values of surface turbulent irreversibilities grow 
continuos with the y+ coordinate showing that the 
surface dissipations of the turbulent energy and 
the turbulent irreversibility ratios increases with 
the boundary layer thickness.  It is interesting to 
note that, if the wall functions (17) had been used 
for determining the values of ∂u+/∂y+ and 
∂T+/∂y+, the errors of the mean motion entropy 
generation calculation would have been greater 
than 20% for the surface viscous rate and about 
11% for the surface thermal rate. 

TABLE I.  THE VARIATION OF SURFACE 
ENTOPY GENERATION RATE 

COMPONENTS 
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50 9.0445 14.5682 7.5573 10.2974 

100 9.0955 14.7490 9.8201 13.8701 

200 9.1285 14.8302 11.7647 17.4178 

300 9.1395 14.8568 12.8513 19.5383 

400 9.1441 14.8715 13.6249 21.0625 

500 9.1484 14.8790 14.2373 22.2563 

600 9.1496 14.8862 14.7216 23.2402 

700 9.1518 14.8889 15.1417 24.0724 

800 9.1529 14.8914 15.5056 24.8000 

900 9.1540 14.8939 15.8273 25.4422 

1000 9.1551 14.8963 16.1157 26.0184 

5. Conclusion 

The average volumetric irreversibilities of 
the incompressible turbulent flows are performed 
by the viscous and thermal dissipations that 
occur in the mean as well as in the fluctuating 
part of the motion. The expressions (6)-(9) show 
that in the both cases the mechanism of gradient 
interactions is involved in the dissipation 
process. Thus, the mean motion irreversibilities 
are born through the interactions of the average 
velocity  or the average temperature gradients, 
while the turbulent irreversibilities are performed 
by the interactions of fluctuating velocity or 
fluctuating temperature gradients. In these 
conditions the irreversibility ratios (11) and (12) 
emphasize the relative importance of the 
volumetric turbulent irreversibilities. 

Applying the above results, the second law 
analysis of the turbulent boundary layer shows 
that the  “volumetric mean motion 
irreversibilities” (generated by the mean velocity 
and mean temperature gradient) prevail in the 
viscous sublayer and reach their maximal values 
at the wall, while the "volumetric turbulent 
irreversibilities" (performed by the dissipation 
rate of turbulent kinetic energy and fluctuating 
temperature variance) rule the logarithmic 
sublayer but have the maximal values located in 
the buffer sublayer. As a consequence, for a 
given location of the plate, the surface values of 
the mean motion irreversibilities are 
approximately constant while the turbulent 
irreversibilities grow up with the boundary layer 
thickness. 
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Nomenclature 

a,b  Constants eq. 16 
Aµ,Αε Constants of the two layer 

approach  
cp Specific heat at constant 

pressure  
Cfx Local skin friction  
Cµ Constant of K-ε model 

)A/yexp(1D ++−−=  van Driest corection of Prandtl 
mixing length formula 

jj2
1 uuK ′′=  Turbulent kinetic energy  

2
2
1 TK ′=θ   Fluctuating temperature vari-

ance  
Sij Strain rate tensor  
Stx  Local Stanton number  

genS&  Rate of entropy generation  

T Temperature 
( )pw c uqT ρ= ττ &  Friction temperature  

( ) 21
wu ρτ=τ  Friction velocity 

ν= τ
+ yuy  Dimensionless wall coordinate 

)c( pρλ=α  Thermal diffusivity  

ijijSS2 ′′ν=ε  Dissipation rate of K  

jj x

T

x

T

∂

′∂
∂

′∂
α=εθ   Dissipation rate of Kθ 

κ von Karman constant 
Φ Irrevresibility ratio 
λ Thermal conductivity 
ν  Kinematic viscosity 
µ Viscosity 
ρ Density 

( ) 0yw yu =∂∂=τ   Wall stress tensor 

Superscript 

)  ( ′  Fluctuating  part 

)  (   Mean part 

(  )(Ω) Volumetirc 
(  )+ Wall coordinate 

Subscript 

(  )V Viscous part 
(  )Q Thermal part 
(  )W Wall conditions 
(  )T Turbulent 
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