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Abstract

Triangular contingency tables are a special class of incomplete contin-
gency tables. Association and independence models are used to analyze
such tables. Association models can be described in terms of the as-
sociation parameters for the analysis of triangular contingency tables
having ordered categories. The aim of this study is to show the re-
lation between the association parameters of the uniform association
model and the sample correlation coefficient under the structural ze-
ros. For this purpose, a simulation study based on random contingency
tables containing structural zeros is performed. Association parame-
ters are estimated under the uniform association models. The sample
correlation coefficients are computed using these parameter estimates
and compared with the population correlation coefficients. It is shown
that by using the association parameter estimates under the uniform
association model, better estimates can be achieved for the population
correlation coefficient in the case of structural zeros.
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1. Introduction

Statistical methods for qualitative data have received considerable attention in recent
years. The variable of interest is often a categorical variable in the same way as in social
sciences, biomedical studies and behavioral sciences. There are many statistical proce-
dures which can be used for the analysis of categorical data. A special class of incomplete
contingency tables is the triangular contingency tables, which contain structural zeros in
one or more cells above or below their main diagonals.

Triangular contingency tables were first analyzed in Goodman [4] by partitioning
the table into a set of rectangular subtables, each of which can be analyzed in an ele-
mentary way. Bishop and Fienberg [2] discussed these kinds of table with the classical
example of disability of stroke patients. Altham [1], Mantel [9] and Bishop et al. [3]
also discussed the quasi-independence model. Goodman [4] introduced various tests of
the quasi-independence (QI) model against alternative hypothesis of positive or nega-
tive quasi-dependence. The QI model omits the ordinal nature of the row and column
variables. Therefore, association models have been suggested for analyzing ordinal con-
tingency tables.

In this paper, ordinal triangular tables are analyzed through the association model,
rather than the QI model. Goodman[5] defined the sample correlation coefficient in terms
of the association parameters which is estimated under the uniform association model.
In this paper, we investigate whether this relation is still valid when the data consists of
structural zeros. But only triangular contingency table forms are considered, as a special
class of incomplete contingency tables.

2. Triangular tables

A contingency table is a tabular representation of categorical data. A contingency
table usually shows the frequencies for particular combinations of the values of two dis-
crete random variables X and Y . Each cell in the table represents a mutually exclusive
combination of X-Y values. We consider R × R square tables, where the row and the
column categories are ordinal, numbered from 1 to R, and πij will denote the probability
that an observation falls in the ith row and jth column of the table.

Sarkar [10] defined four types of triangular contingency table under the following
conditions: An upper-right (left) triangular table (URT) ((ULT)) is described by the
condition that πij = 0 for i > j (i + j > R + 1), and a lower-left (right) triangular table

(LLT) ((LRT)) for i < j, (i + j < R + 1). Any of these tables can be transformed to
the other by interchanging the row and column variables and/or reversing the category
ordering.

For the URT tables there will not be any observations for i < j. An empty cell in
which the observations are impossible is called a structural zero. A structural zero is not
an observation, and is not part of the data. Contingency tables with structural zeros
are called incomplete tables. For contingency tables with the triangular structure, it is
obvious that the null hypothesis of independence cannot be expected to fit. Due to the
incompleteness of the table, the independence between the row and the column variables
are tested by the quasi-independence model first proposed by Goodman [5]. The QI
model in a URT table is given by

(2.1) πij =

{
αiβj i 6 j,

0 i > j,

where αi > 0 and βj > 0 are positive constants for i = 1, . . . , R, and j = 1, . . . , R. For
testing the QI model, Goodman [6], Bishop and Fienberg [2] used usual chi-squared tests
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based on the Pearson and the log-likelihood ratio statistics. For the analysis of two-way
cross classification table having ordered categories when the row and the column variables
are ordinal, the quasi-independence model does not take into account the ordinal nature
of the tables. Association models usually give better results.

Goodman [7] considered various kinds of association model. Suppose that both the
row and column variables of a two-dimensional table are ordinal, with the row variable
denoted by X and the column variable by Y . We assume that the scores {ui} and
{vj} are assigned to the rows and columns, respectively, where u1 < u2 < · · · < uR,
v1 < v2 < · · · < vR. A simple log-linear model that uses the ordinal information, but
that has only one more parameter than the usual independence model is given by

(2.2) log mij = µ + λ
X
i + λ

Y
j + β

XY (ui − ū)(v − v̄),

where
∑R

i=1 λX
i =

∑R

i=1 λY
j and ū and v̄ are the arithmetic means, respectively.

This model is referred to as the linear-by-linear association model, and requires the
assignment of the scores. The parameter β in Model 2.2, that describes the association
between X and Y , can be interpreted as the common value of the local log-odds ratio.
The model effectively means that all adjacent odds ratios have the same value. Its
sign is related to the direction of the association; for example, if higher values of X are
associated with higher values of Y , the sign of β will be positive. When β = 0, it indicates
independence. The independence model is the special case βXY = 0.

Goodman [7] suggested a model for the special case {ui = i}, {vi = j}, in which
the local odds ratio θij is uniformly exp(β) for adjacent rows i and i + 1, and adjacent
columns j and j +1. Goodman [7] referred to this special case as the uniform association
(UA) model.

3. Bivariate normal distribution

Let X and Y be random variables that have the joint probability density function

f(x, y) =
1

2πσxσy

√
1 − ρ2

exp
{
−

1

2(1 − ρ2)

[
(
x − µx

σx

)2

− 2ρ(
x − µx

σx

)(
y − µy

σy

) + (
y − µy

σy

)2
]}

−∞ < x < +∞, −∞ < y < +∞,

where ρ is the correlation coefficient between X and Y and the correlation is the linear
association between the two random variables X and Y . The value of the coefficient
ranges from −1 to 1. If ρ is 0, X and Y are said to be uncorrelated, with no linear
association between X and Y . In the formula, the standard deviations σx and σy are
positive constants, but the means µx and µy do not have to be positive constants. The
random variables X and Y are said to have the bivariate normal distribution.

For normalized variables zx = (x−µx)
σx

and zy =
(y−µy)

σy
the bivariate normal probability

density function becomes,

f(z1, z2) =
1

2π
√

1 − ρ2
exp(−

1

2(1 − ρ2)
)(z2

1 − 2ρz1z2 + z
2
2).

As mentioned above, the parameter β in the uniform association model gives the associa-
tion between the row and the column variables, and Goodman [5] defined the association
parameter in terms of the correlation as,

(3.1) β̂ =
ρ̂

(1 − ρ̂2)
.
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Hence, the association parameter is an estimator of the correlation coefficient. Associ-
ation models can be used to fit a cross-classification table, when the row and column
classifications arise from underlying continuous random variables having a bivariate nor-
mal distribution.

4. Simulation study

A simulation study was performed to generate pseudo R × R triangular contingency
tables having ordered categories. Random samples of size N were generated from a bivari-
ate normal distribution with correlation ρ [8]. Samples drawn from the bivariate normal
distribution with a known correlation coefficient were transformed into contingency tables
of equal-interval frequency. After the discretization of the data, simulation parameters
were set as: sample size n = 100, 250, 500, 1000; correlation coefficient ρ = 0.0, 0.2, 0.4;
and dimension R = 4, 5, 6, 7, and 8. In order to generate uncorrelated data, correlation
coefficients were taken to be small. After 500 replications in each combination, 30,000
URT tables were generated. Table 1 shows an example of 5 × 5 URT table.

Table 1. A 5 × 5 upper right triangular table

nij 1 2 3 4 5

1 n11 n12 n13 n14 n15

2 - n22 n23 n24 n25

3 - - n33 n34 n35

4 - - - n44 n45

5 - - - - n55

As an illustrative example, we show below the design matrix of a uniform association
model for a 5 × 5 URT table.

log





m11

m12

m13

m14

m15

m21

m22

m23

m24

m25

m31

m32

m33

m34

m35

m41

m42

m43

m44

m45

m51

m52

m53

m54

m55





=





1 1 0 0 0 1 0 0 0 1
1 1 0 0 0 0 1 0 0 2
1 1 0 0 0 0 0 1 0 3
1 1 0 0 0 0 0 0 1 4
1 1 0 0 0 −1 −1 −1 −1 5
1 0 1 0 0 1 0 0 0 2
1 0 1 0 0 0 1 0 0 4
1 0 1 0 0 0 0 1 0 6
1 0 1 0 0 0 0 0 1 8
1 0 1 0 0 −1 −1 −1 −1 10
1 0 0 1 0 1 0 0 0 3
1 0 0 1 0 0 1 0 0 6
1 0 0 1 0 0 0 1 0 9
1 0 0 1 0 0 0 0 1 12
1 0 0 1 0 −1 −1 −1 −1 15
1 0 0 0 1 1 0 0 0 4
1 0 0 0 1 0 1 0 0 8
1 0 0 0 1 0 0 1 0 12
1 0 0 0 1 0 0 0 1 16
1 0 0 0 1 −1 −1 −1 −1 20
1 −1 −1 −1 −1 1 0 0 0 5
1 −1 −1 −1 −1 0 1 0 0 10
1 −1 −1 −1 −1 0 0 1 0 15
1 −1 −1 −1 −1 0 0 0 1 20
1 −1 −1 −1 −1 −1 −1 −1 −1 25









µ

λX
1

λX
2

λX
3

λX
4

λY
1

λY
2

λY
3

λY
4

β





A uniform association model was applied to the tables generated by the simulation, and
goodness of fit statistics and P -values were computed. Among the generated tables, the
ones for which the null hypothesis is not rejected were selected (P > 0.05). Parameter
values were estimated under the structural zero frequencies only for those triangular
contingency tables which fit the UA model. By solving Equation 3.1 using the estimated
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β parameters, Pearson correlation coefficients were estimated and are given in Table 2

with β̂ values.

Table 2. Estimated correlation coefficients and values of β̂ for the generated

tables

n 100 250 500 1000

R β̂ ρ̂ β̂ ρ̂ β̂ ρ̂ β̂ ρ̂

ρ = 0.1 4 × 4 0.5004 0.4144 0.5184 0.4248 0.5171 0.4241 0.5424 0.4382

5 × 5 0.3409 0.3085 0.3738 0.3325 0.4066 0.3553 0.4342 0.3789

6 × 6 0.2418 0.2291 0.2768 0.2583 0.3058 0.2816 0.3378 0.3061

7 × 7 0.1810 0.1754 0.1997 0.1923 0.2230 0.2129 0.2557 0.2409

8 × 8 0.1268 0.1248 0.1493 0.1461 0.1677 0.1632 0.1967 0.1896

ρ = 0.2 4 × 4 0.5272 0.4298 0.5099 0.4200 0.5218 0.4268 0.5529 0.4439

5 × 5 0.3213 0.2936 0.3728 0.3318 0.4127 0.3594 0.4368 0.3753

6 × 6 0.2456 0.2323 0.2815 0.2622 0.3129 0.2871 0.3337 0.3031

7 × 7 0.1809 0.1753 0.1992 0.1919 0.2262 0.2157 0.2417 0.2290

8 × 8 0.1286 0.1265 0.1553 0.1517 0.1692 0.1646 0.1927 0.1860

ρ = 0.4 4 × 4 0.4959 0.4188 0.5179 0.4246 0.5404 0.4371 0.5543 0.4447

5 × 5 0.3426 0.3097 0.3739 0.3326 0.4291 0.3703 0.4428 0.3791

6 × 6 0.2362 0.2243 0.2753 0.2571 0.3034 0.2797 0.3222 0.2943

7 × 7 0.1713 0.1665 0.2063 0.1982 0.2254 0.2150 0.2536 0.2391

8 × 8 0.1282 0.1262 0.1517 0.1484 0.1705 0.1658 0.1872 0.1811

From Table 2, we can state in general that the results are not affected by the sample
size. For ρ = 0.1, as the dimension increases, ρ̂ approaches to ρ. On the contrary, for
ρ = 0.4, as the dimension increases, ρ̂ differs from ρ. For ρ = 0.2, R = 6 and R = 7
give reasonable estimates. The combination R = 4 and ρ = 0.1 does not give realistic
estimates for any sample size.

5. Conclusions

The QI model disregards the ordinal nature of the row and the column variables. In
order to avoid this problem, we applied the UA model to the generated tables, taking
integer scores and interpreted the QI model in terms of the ordinal association. Table 2
gives the maximum likelihood estimation of the β parameters for 500 replications. Using
Equation (3.1), we have found the correlation coefficients. It can be seen that, in some
cases, the estimated correlation coefficients obtained from the association parameters
converge to the actual correlations. The simulation results are not affected by the sample
size. We note that as the dimension increases, the estimates decrease and tend to ρ. It
has been shown that the relation between β and ρ is still valid for some cases when the
data contains structural zeros. These results are valid only for triangular contingency
tables, not for arbitrary contingency table with structural zeros.
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