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Oscillation theorems for fractional neutral
differential equations
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Abstract

In this paper we study the oscillation of the fractional neutral differen-
tial equation

Dα
t [a(t)Dα

t (x(t) + p(t)x(τ(t)))] + q(t)x(σ(t)) = 0,

where Dα
t is a modified Riemann-Liouville derivative. The obtained

results are based on the new comparison theorems, which enable us to
reduce the oscillatory problem of 2α-order fractional differential equa-
tion to the oscillation of the first order equation. The results are easily
verified.
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1. Introduction
In this paper, we shall study the oscillation behavior of a class of fractional neutral

differential equations with the form

(1.1) Dα
t [a(t)Dα

t (x(t) + p(t)x(τ(t)))] + q(t)x(σ(t)) = 0, t ≥ t0 > 0, 0 < α < 1,

where Dα
t denotes the modified Riemann-Liouville derivative [1] with respect to the vari-

able t, q(t) ∈ C([t0,+∞)), Dα
t a(t) ∈ C([t0,+∞)), D2α

t p(t) ∈ C([t0,+∞)), and we define
z(t) = x(t) + p(t)x(τ(t)). The equation also satisfies that:

(H1) a(t) > 0, q(t) > 0, 0 ≤ p(t) ≤ p0 <∞;
(H2) lim

t→+∞
τ(t) = +∞, lim

t→+∞
σ(t) = +∞;

(H3) τ ′(t) ≥ τ0 > 0, τ ◦ σ = σ ◦ τ ;
(H4) t

τ(t)
≥ l > 0.

In recent years, there has been much research activity concerning the fractional differ-
ential equation and many useful achievement have been obtained. Due to the fractional
differential equation is more realistic in describing some practical models, it has been used
widely in establishing mathematical models in electrochemistry, control, electromagnetic
field theories and other natural phenomena and physical problems. Furthermore, it can
also provide an excellent instrument for the description of memory and hereditary prop-
erties of various materials and processes due to the existence of a “memory" term in the
model. Its initial and boundary value problems, stability of solutions, explicit and nu-
merical solutions and many other properties have obtained significant development [2–6].
Particularly, the oscillation of fractional differential equations as a new research field has
been received attention, and some interesting results have already been obtained. The
relative works we refer to [7–17].

In 2012, Grace et al. [7] studied the oscillation theory for fractional differential equa-
tions by considering equations of the form

Dq
ax+ f1(t, x) = v(t) + f2(t, x), lim

t→a+
J1−q
a x(t) = b1,

under the conditions

xfi(t, x) > 0 for i = 1, 2, x 6= 0, and t ≥ a,

and

|f1(t, x)| > p1(t)|x|β and |f2(t, x)| > p2(t)|x|γ for x 6= 0, and t ≥ a,

where Dq
a denotes the Riemann-Liouville differential operator of order q with 0 < q ≤ 1,

and the operator Jpa is the Rieman-Liouville fractional integral operator. The authors
obtained some new oscillation criteria by reducing the fractional differential equation to
the equivalent Volterra fractional integral equation and by applying inequality technique.

In 2012, Chen et al. [8] studied the oscillatory behavior of the following fractional
differential equation

[r(t)(Dα
−y)η(t)]′ − q(t)f(

∫ ∞
t

(v − t)−αy(v)dv) = 0 for t > 0,

where Dα
−y denotes the Liouville right-sided fractional derivative of order α with the

form

(Dα
−y)(t) := − 1

Γ(1− α)

d

dt

∫ ∞
t

(v − t)−αy(v)dv for t ∈ R+ := (0,∞).

By the Riccati transformation technique the authors obtained some sufficient conditions,
which guarantee that every solution of the equation is oscillatory.
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Using the same method, in 2013, Chen [9] studied oscillatory behavior of the fractional
differential equation in the form

(D1+α
− y)(t)− p(t)(Dα

−y)(t) + q(t)f(

∫ ∞
t

(v − t)−αy(v)dv) = 0 for t > 0,

where Dα
−y is the Liouville right-sided fractional derivative of order α ∈ (0, 1) of y.

Zheng [10] considered the oscillation of the nonlinear fractional differential equation
with damping term

[a(t)(Dα
−x(t))γ ]′ + p(t)(Dα

−x(t))γ − q(t)f(

∫ ∞
t

(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞),

where Dα
−x(t) denotes the Liouville right-sided fractional derivative of order α of x.

Using a generalized Riccati function and inequality technique, he established some new
oscillation criteria.

Han et al. [11] considered the oscillation for a class of fractional differential equation[
r(t)g ((Dα

−y)(t))
]′ − p(t)f (∫ ∞

t

(s− t)−αy(s)ds

)
= 0, for t > 0,

where 0 < α < 1 is a real number, Dα
−y is the Liouville right-sided fractional derivative

of order α of y. By generalized Riccati transformation technique, oscillation criteria for
the nonlinear fractional differential equation are obtained.

In this paper we focus on the fractional neutral differential equations involving a
modified Riemann-Liouville derivative, which is given by Jumarie in [1] (see also in [18–
22]). The modified Riemann-Liouville derivative is defined as

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t
0

(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1,

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.

And it has some properties that

(1.2) Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α,

(1.3) Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t),

(1.4) Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t) = Dα
g f [g(t)](g′(t))α.

Due to having these especial properties, it can be more appropriately used in studying
the oscillatory behavior of the fractional differential equations.

In [12], Feng et al. considered the fractional differential equation involving the deriv-
ative of this type in the form

Dα
t [r(t)ψ(x(t))Dα

t x(t)] + q(t)f(x(t)) = e(t), t ≥ t0 > 0, 0 < α < 1,

where Dα
t (·) denotes the modified Riemann-Liouville derivative. Based on a transfor-

mation of variables and properties of the modified Riemann-Liouville derivative, they
transformed the fractional differential equation into a second-order ordinary differential
equation. Then by a generalized Riccati transformation, inequalities, and an integration
average technique, they established some oscillation criteria for the fractional differential
equation.

In [13], Liu et al. concerned with oscillation of a class of fractional differential equa-
tions under the modified Riemann-Liouville derivative

Dα
t [a(t)(Dα

t (r(t)Dα
t x(t)))γ ] + q(t)f(x(t)) = 0, t ≥ t0 > 0, 0 < α < 1,
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where Dα
t (·) denotes the modified Riemann-Liouville derivative and they put some suf-

ficient conditions about the oscillation of the equation.
Although the oscillation of fractional differential equation has been initiated to study

by some authors, to the best of our knowledge very little is known in the literature
regarding the oscillatory behavior of fractional neutral differential equations up to now.

Regarding the integer case of our equation (1.1), that is, α = 1, B. Baculíková et al.
in their article [23] have studied the second-order neutral differential equation

(1.5) (r(t)[x(t) + p(t)x(τ(t))]′)′ + q(t)x(σ(t)) = 0.

By comparison theorem, they established some oscillation criteria for the equation (1.5).
They proved that: when σ(t) ≤ t, if

lim inf
t→∞

∫ t

σ(t)

Q(s)R(σ(s))ds >
τ0 + p0

τ0e
,

where Q(t) = min{q(t), q(τ(t))}, R(t) =
∫ t
t0

1
r(s)

ds, then (1.5) is oscillatory.
Moreover, in article [24], B. Baculíková et al. investigated the oscillation for the

nonlinear case. They studied the equation in the form

(1.6) (a(t)[z′(t)]γ)′ + q(t)xβ(σ(t)) = 0,

where z(t) = x(t) + p(t)x(τ(t)). Also by comparison theorem, they established some
sufficiently conditions for the oscillation of equation (1.6).

In this paper we will consider the oscillation of fractional neutral differential equation
(1.1). Comparing to the method used by Feng and Liu [12,13], we will reduce a fractional
differential equations to an integer one by appropriate variable transforms and establish
some new comparison theorems and then use them to reduce the problem of the fractional
order differential equation to the problem of second-order differential equations. In order
to treat the delay or advance term in our equations, in this paper, we establish some
new variable transformations so that the variable transformation method in [12, 13] can
be applied for more classes of fractional differential equations, such as fractional neutral
differential equations and fractional differential equations with delays. We also extend
B. Baculíková and J. Džurina’s results to the fractional order differential equations.

We organize this article as follows. In the next section, we give a transformation of
variables to the fractional differential equation similar to that in the references [12, 13],
and provide a new transformation on account of the delay term. So we can translate our
fractional neutral differential equation to a second-order neutral differential equation. In
Section 3, we first establish some new comparison theorems and then use them to get
some sufficient conditions for oscillation of all solutions of (1.1). At the last we provide
some examples to show applications of our criteria.

A solution of the equation is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise it is nonoscillatory. Equation is said to be oscillatory
if all its solutions are oscillatory.

2. Some preliminary lemmas

First we will use a variable substitution. Denote ξ = y(t) = tα

Γ(1+α)
, ξi = y(ti) =

tαi
Γ(1+α)

, i = 0, 1, x(t) = x̃(ξ), a(t) = ã(ξ), p(t) = p̃(ξ), q(t) = q̃(ξ).

Towards to τ(t), σ(t), we have the next transformations.

2.1. Lemma. Suppose (H3), (H4) hold, we define the functions τ̃(ξ), σ̃(ξ) as the fol-
lowing forms

τ̃(ξ) = y(τ(y−1(ξ))),
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σ̃(ξ) = y(σ(y−1(ξ))),

then it satisfies
x(τ(t)) = x̃(τ̃(ξ)), x(σ(t)) = x̃(σ̃(ξ));

and a new condition

(H ′3) : τ̃ ′(ξ) ≥ τ0l1−α = τ̃0 > 0, τ̃ ◦ σ̃ = σ̃ ◦ τ̃ .

Proof. From the defines of τ̃ , σ̃ we get

x̃(τ̃(ξ)) = x̃(y(τ(y−1(ξ)))) = x̃(y(τ(t))).

Due to
x(t) = x̃(ξ) = x̃(y(t)),

substituting t with τ(t) we get

x̃(y(τ(t))) = x(τ(t)).

Thus
x̃(τ̃(ξ)) = x(τ(t)).

The same is
x̃(σ̃(ξ)) = x(σ(t)).

On the other hand, from H3, H4 and the defines of τ̃ we get

τ̃◦σ̃ = y(τ(y−1(σ̃(ξ)))) = y(τ(y−1(y(σ(y−1(ξ)))))) = y(τ(σ(y−1(ξ)))) = y(σ(τ(y−1(ξ)))) = σ̃◦τ̃ .
Also we have that,

τ̃ ′(ξ) = ∂
∂ξ
y(τ(y−1(ξ))) = ∂y(τ(y−1(ξ)))

∂τ(y−1(ξ))
× ∂τ(y−1(ξ))

∂y−1(ξ)
× ∂y−1(ξ)

∂ξ

= ∂y(τ(t))
∂τ(t)

× ∂τ(t)
∂t
× ∂y−1(ξ)

∂ξ

≥ α(τ(t))α−1

Γ(1+α)
× τ0 × 1

α
(Γ(1 + α))

1
α ξ

1
α
−1

= α(τ(t))α−1

Γ(1+α)
× τ0 × 1

α
(Γ(1 + α))

1
α ( tα

Γ(1+α)
)

1
α
−1

= τ0( t
τ(t)

)1−α

≥ τ0l1−α = τ̃0.

The proof is complete.

2.2. Lemma. If x(t) is a eventually positive solution of (1.1), and a sufficient large t1
such that

(2.1) R(t) =

∫ t

t1

1

a(s)
ds→ +∞ as t→ +∞,

then the corresponding function z(t) = x(t) + p(t)x(τ(t)) satisfies

z(t) > 0, a(t)Dα
t (z(t)) > 0, Dα

t [a(t)Dα
t (z(t))] < 0,

eventually.

Proof. Let x(t) = x̃(ξ), where ξ = tα

Γ(1+α)
. Then from (1.2) we get Dα

t ξ(t) = 1, and
furthermore by use of (1.4) and Lemma 2.1 we have

Dα
t x(t) = Dα

t x̃(ξ) = x̃′(ξ)Dα
t ξ(t) = x̃′(ξ),

Dα
t x(τ(t)) = Dα

t x̃(τ̃(ξ)) = (x̃(τ̃(ξ)))′Dα
t ξ(t) = (x̃(τ̃(ξ)))′.
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Similarly we have Dα
t a(t) = ã′(ξ), Dα

t p(t) = p̃′(ξ), Dα
t q(t) = q̃′(ξ) and Dα

t x(σ(t)) =
(x̃(σ̃(ξ)))′. Then we get Dα

t z(t) = (x̃(ξ) + p̃(ξ)x̃(τ̃(ξ)))′. We define z̃(ξ) = x̃(ξ) +
p̃(ξ)x̃(τ̃(ξ)), then Dα

t z(t) = z̃′(ξ). So the equation (1.1) can be transformed into the
following form:

(2.2) (ã(ξ)z̃′(ξ))′ + q̃(ξ)x̃(σ̃(ξ)) = 0, ξ ≥ ξ0 > 0.

Since x(t) is an eventually positive solution of (1.1), x̃(ξ) is an eventually positive solution
of (2.2). Hence there exists ξ1 > ξ0 such that x̃(ξ) > 0 on [ξ1,∞). Also we know z̃(ξ) > 0
on [ξ1,∞). It follows from (2.2) that

(ã(ξ)z̃′(ξ))′ = −q̃(ξ)x̃(σ̃(ξ)) < 0,

holds eventually. Consequently, ã(ξ)z̃′(ξ) is decreasing and thus either z̃′(ξ) > 0 or
z̃′(ξ) < 0 eventually. We claim z̃′(ξ) > 0. Otherwise if z̃′(ξ) < 0, then also ã(ξ)z̃′(ξ) <
−c < 0 and integrating this from ξ1 to ξ, we have

z̃(ξ) ≤ z̃(ξ1)− c
∫ ξ

ξ1

1

ã(s)
ds = z̃(ξ1)− c

∫ t

t1

1

a(s)
ds→ −∞ as t→ +∞.

This contradicts the positivity of z̃(ξ) and the proof is complete.

3. Main results
To simplify our notation, let us denote

(3.1) Q(ξ) = min{q̃(ξ), q̃(τ̃(ξ))}, Q∗(ξ) = Q(ξ)

∫ ξ

ξ1

1

ã(s)
ds,

where ξ1 is defined in Lemma 2.2.

3.1. Theorem. If the first order neutral differential inequality

(3.2) (u(t) +
p0

τ̃0
u(τ̃(t)))′ +Q∗(t)u(σ̃(t)) ≤ 0, t ≥ ξ1 =

tα1
Γ(1 + α)

,

where τ̃(t) is defined in Lemma 2.1, Q∗(t) is defined in (3.1), has no positive solution,
then (1.1) is oscillatory.

Proof. Assume to the contrary that there exists a non-oscillatory solution x of equa-
tion (1.1). Without loss of generality, we only consider the case when x(t) is eventually
positive, since the case when x(t) is eventually negative is similar. Then let x(t) > 0
on [t1,∞). It is equivalent to x̃(ξ) > 0 on [ξ1,∞). Then from (H1) and (H ′3) the
corresponding function z̃(ξ) satisfies

(3.3)
z̃(σ̃(ξ)) = x̃(σ̃(ξ)) + p̃(σ̃(ξ))x̃(τ̃(σ̃(ξ)))

≤ x̃(σ̃(ξ)) + p0x̃(σ̃(τ̃(ξ))).

On the other hand from (2.2) we have

(3.4) 0 = (ã(ξ)z̃′(ξ))′ + q̃(ξ)x̃(σ̃(ξ)),

which in view of (H1) and (H ′3) yields

(3.5)
0 = p0

τ̃ ′(ξ) (ã(τ̃(ξ))z̃′(τ̃(ξ)))′ + p0q̃(τ̃(ξ))x̃(σ̃(τ̃(ξ)))

≥ p0
τ̃0

(ã(τ̃(ξ))z̃′(τ̃(ξ)))′ + p0q̃(τ̃(ξ))x̃(σ̃(τ̃(ξ))).

Then combining (3.4) and (3.5) we get

(3.6) (ã(ξ)z̃′(ξ))′ + q̃(ξ)x̃(σ̃(ξ)) +
p0

τ̃0
(ã(τ̃(ξ))z̃′(τ̃(ξ)))′ + p0q̃(τ̃(ξ))x̃(σ̃(τ̃(ξ))) ≤ 0.



1483

Furthermore using (3.1) and (3.3) we obtain

(3.7) (ã(ξ)z̃′(ξ))′ +
p0

τ̃0
(ã(τ̃(ξ))z̃′(τ̃(ξ)))′ +Q(ξ)z̃(σ̃(ξ)) ≤ 0,

where Q(ξ) is defined in (3.1). Now we denote u(ξ) = ã(ξ)z̃′(ξ). From Lemma 2.2 we
get u(ξ) > 0 eventually. Also we have

(3.8) z̃(ξ) ≥
∫ ξ

ξ1

ã(s)z̃′(s)

ã(s)
ds ≥ ã(ξ)z̃′(ξ)

∫ ξ

ξ1

1

ã(s)
ds = u(ξ)

∫ ξ

ξ1

1

ã(s)
ds.

Then taking (3.8) into (3.7) we get that u(ξ) is a positive solution of

(u(ξ) +
p0

τ̃0
u(τ̃(ξ)))′ +Q∗(ξ)u(σ̃(ξ)) ≤ 0,

which is a contradiction and the proof is complete.
Next, by using the conclusion of Theorem 3.1, we will deduce oscillatory problem of

our equation into the problem of first-order nonlinear delay differential equations, and
establish some new oscillatory criteria for equation (1.1). We shall discuss both cases
when τ is a delayed or advanced argument.

3.2. Theorem. Assume that τ(t) ≥ t and σ(t) ≤ t is increasing. Assumptions (H1) −
(H4) hold. Then if the first-order delay differential equation

(3.9) w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(σ̃(ξ)) = 0

is oscillatory, the equation (1.1) is oscillatory.

Proof. We assume that x(t) is a positive solution of (1.1) eventually. Then it follows
from Lemma 2.2 and the proof of Theorem 3.1 that u(ξ) = ã(ξ)z̃′(ξ) > 0 is decreasing
eventually and satisfies (3.2). We define

(3.10) w(ξ) = u(ξ) +
p0

τ̃0
u(τ̃(ξ)).

From the definition of τ̃(ξ) and τ(t) ≥ t, we can easily get that τ̃(ξ) ≥ ξ. Similarly we
have σ̃(ξ) ≤ ξ. Then

w(ξ) ≤ u(ξ)(1 +
p0

τ̃0
),

τ̃0
τ̃0 + p0

w(ξ) ≤ u(ξ).

Substituting this into (3.2), we get that w(ξ) is the positive solution of the delay differ-
ential inequality

(3.11) w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(σ̃(ξ)) ≤ 0.

Then from [25, Theorem 1] we know that the equation (3.9) also has a positive solution,
which is a contradiction. The proof is complete.

3.3. Theorem. Assume that τ(t) ≤ t and σ(t) ≤ τ(t) ≤ t. Conditions (H1)−(H4) hold.
Then if the first-order delay differential equation

(3.12) w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(τ̃−1(σ̃(ξ))) = 0

is oscillatory, the equation (1.1) is oscillatory.
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Proof. We assume that x(t) is a positive solution of (1.1) eventually. Then it follows
from Lemma 2.2 and the proof of Theorem 3.1 that u(ξ) = ã(ξ)z̃′(ξ) > 0 is decreasing
eventually and satisfies (3.2). Also from Lemma 2.1 we have

σ̃(ξ) ≤ τ̃(ξ) ≤ ξ.

Then it follows from (3.10) that

w(ξ) ≤ u(τ̃(ξ))(1 +
p0

τ̃0
),

which is equivalent to

u(σ̃(ξ)) ≥ τ̃0
τ̃0 + p0

w(τ̃−1(σ̃(ξ))).

Substituting this into (3.2), we obtain that w(ξ) is a positive solution of the delay differ-
ential inequality

w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(τ̃−1(σ̃(ξ))) ≤ 0.

Then from [25, Theorem 1] we know that the equation (3.12) also has a positive solution,
and a contradiction. The proof is complete.

Next we will give some sufficient conditions such that equations (3.9) and (3.12) have
only oscillatory solutions.

3.4. Lemma. Assume that e(ξ) is a positive continuous function on [ξ0,∞). If

(3.13) lim
ξ→∞

inf

∫ ξ

σ̃(ξ)

e(s)ds >
1

e
,

then the first-order delay differential equation

(3.14) w′(ξ) + e(ξ)w(σ̃(ξ)) = 0

is oscillatory.

Proof. From (3.13) we can get that

(3.15)
∫ ∞
ξ0

e(s)ds = +∞.

Then assume to the contrary that there exists a positive solution w(ξ) of equation (3.14)
on [ξ1,∞). Since w(ξ) is decreasing, there exists lim

ξ→+∞
w(ξ) = k ≥ 0. If k > 0, then

integrating (3.14) from t1 to t. We have

w(ξ1) ≥
∫ ξ

ξ1

e(s)w(σ̃(s))ds ≥ k
∫ ξ

ξ1

e(s)ds→ +∞ as ξ → +∞.

This is a contradiction. So we get that lim
ξ→+∞

w(ξ) = 0. But from the Theorem 2.1.1

in [26], the condition (3.13) yields that the equation (3.14) has no positive solution,
which is a contradiction. The proof is complete.

3.5. Theorem. Let τ(t) ≥ t and σ(t) ≤ t. Conditions (H1)− (H4) hold. If

(3.16) lim
ξ→∞

inf

∫ ξ

σ̃(ξ)

Q∗(s)ds >
τ̃0 + p0

τ̃0e
,

then (1.1) is oscillatory.

Proof. From the condition (3.16) and Lemma 3.4 we get that equation (3.9) is
oscillatory. Then from Theorem 3.2 we have equation (1.1) is oscillatory, the proof is
complete.
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3.6. Theorem. Let σ(t) ≤ τ(t) ≤ t and conditions (H1)− (H4) hold. If

(3.17) lim
ξ→∞

inf

∫ ξ

τ̃−1(σ̃(ξ))

Q∗(s)ds >
τ̃0 + p0

τ̃0e
,

then (1.1) is oscillatory.

Proof. The proof is similar to the proof of Theorem 3.5.

4. Examples
In this section, we will show the application of our main results.
Example 4.1 Consider the fractional differential equation

(4.1) D
1
2
t [
√
tD

1
2
t (x(t) +

1

t
x(t+ 3))] + tx(t− 5) = 0, t ∈ [5,+∞),

where Dα
t x(t) is the modified Riemann-Liouville differential operator. In (4.1), we set

a(t) =
√
t, p(t) = 1

t
, τ(t) = t + 3, q(t) = t, σ(t) = t − 5. Then using a variable

substitution we have

ξ = y(t) =
t
1
2

Γ( 3
2
)
, y−1(ξ) = Γ2(

3

2
)ξ2, ξ1 =

√
5

Γ( 3
2
)
.

And we also have

ã(ξ) = a(y−1(ξ)) = Γ(
3

2
)ξ,

σ̃(ξ) = y(σ(y−1(ξ))) =
(Γ2( 3

2
)ξ2 − 5)

1
2

Γ( 3
2
)

= (ξ2 − 5

Γ2( 3
2
)
)
1
2 ,

q̃(ξ) = q(y−1(ξ)) = Γ2(
3

2
)ξ2.

Easily we see the equation (4.1) satisfies (H1)− (H4), furthermore we have
0 ≤ p(t) = 1

t
≤ 1

5
= p0,

τ0 = (t+ 3)′ = 1,

lim
t→∞

t
τ(t)

= t
t+3

= l = 1,

τ̃0 = τ0l
1− 1

2 = 1.

We know q̃(ξ) is increasing and τ(t) > t, τ̃(ξ) > ξ, so

Q(ξ) = q̃(ξ) = Γ2(
3

2
)ξ2,

Q∗(ξ) = Γ2( 3
2
)ξ2
∫ ξ
ξ1

1

Γ( 3
2

)s
ds

= Γ2( 3
2
)ξ2( 1

Γ( 3
2

)
ln ξ − 1

Γ( 3
2

)
ln ξ1).
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Then we have

lim
ξ→∞

inf
∫ ξ
σ̃(ξ)

Q∗(s)ds

= lim
ξ→∞

inf
∫ ξ
σ̃(ξ)

Γ( 3
2
)(s2 ln s− s2 lnm)ds

= lim
ξ→∞

inf[
Γ( 3

2
)

3
(ξ3 ln ξ

m
− σ̃3(ξ) ln σ̃(ξ)

m
)− 5

9Γ( 3
2

)
]

≥ lim
ξ→∞

inf[
Γ( 3

2
)

3
(ξ3 − σ̃3(ξ)) ln σ̃(ξ)

m
)− 5

9Γ( 3
2

)
]

≥ lim
ξ→∞

inf[
Γ( 3

2
)

3
(ξ2 − σ̃2(ξ)) ln σ̃(ξ)

m
− 5

9Γ( 3
2

)
]

=≥ lim
ξ→∞

inf[
Γ( 3

2
)

3
5

Γ2( 3
2

)
ln σ̃(ξ)

m
− 5

9Γ( 3
2

)
]

=∞ >
1+ 1

5
e
,

where m = ξ1 = 5
1
2

Γ( 3
2

)
. From Theorem 3.5 we get that (4.1) is oscillatory.

Example 4.2 Consider the fractional differential equation

(4.2) D
1
3
t [tD

1
3
t (x(t) + 2x(

t

2
))] + tx(

t

8
) = 0, t ∈ [1,+∞),

where Dα
t x(t) is the modified Riemann-Liouville differential operator. In (4.2), we set

a(t) = t, p(t) = 2, q(t) = t, τ(t) = t
2
, σ(t) = t

8
. Then using a variable substitution we

have

ξ = y(t) =
t
1
3

Γ( 4
3
)
, y−1(ξ) = Γ3(

4

3
)ξ3, ξ1 =

1

Γ( 4
3
)
.

Then we get

ã(ξ) = a(y−1(ξ)) = Γ3(
4

3
)ξ3,

σ̃(ξ) = y(σ(y−1(ξ))) = y(
Γ3( 4

3
)ξ3

8
) =

ξ

2
,

q̃(ξ) = q(y−1(ξ)) = Γ3(
4

3
)ξ3,

τ̃(ξ) = y(τ(y−1(ξ))) = y(
Γ3( 4

3
)ξ3

2
) =

ξ

2
1
3

,

τ̃−1(σ̃(ξ)) = 2
1
3 σ̃(ξ) =

ξ

2
2
3

.

Easily we see the equation (4.2) satisfies (H1)− (H4), and
0 ≤ p(t) = 2 = p0,

τ0 = ( t
2
)′ = 1

2
,

lim
t→∞

t
τ(t)

= t
t
2

= 2 = l,

τ̃0 = τ0l
1− 1

3 = 2−
1
3 .

In this time q̃(ξ) is increasing and τ(t) < t, τ̃(ξ) < ξ, so

Q(ξ) = q̃(σ̃(ξ)) = Γ3(
4

3
)
ξ3

2
,



1487

Q∗(ξ) = Γ3( 4
3
) ξ

3

2

∫ ξ
ξ1

1

Γ3( 4
3

)s
ds

= ξ3

2
(ln ξ − ln ξ1).

Following from (3.17) we have

lim
ξ→∞

inf
∫ ξ
τ̃−1(σ̃(ξ))

Q∗(s)ds

= lim
ξ→∞

inf
∫ ξ
τ̃−1(σ̃(ξ))

s3

2
(ln s− ln s1)ds

= lim
ξ→∞

inf[ 1
8
ξ4(ln ξ − 1

4
− ln ξ1)− 1

8
· 1

2
8
3
t4(ln ξ − 2

3
ln 2− 1

4
− ln ξ1)]

=∞ > 2
− 1

3 +2

2
− 1

3 e
.

According to Theorem 3.6 we get that (4.2) is oscillatory.

5. Conclusion
We have established some new oscillation criteria for a fractional neutral differential

equation. First we can see, the variable transformation used in ξ is very important, trans-
forms a fractional differential equation into an ordinary differential equation of integer
order. Then toward to this differential equation with neutral term, we solve it by the
comparison theorem, such that we can judge whether its solutions oscillatory by inves-
tigating some first-order delay differential equations. And some classical results can be
used easily. Finally, we note that the oscillation for other fractional differential equations
possessing the modified Riemann-Liouville derivative can also be used this method.
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[24] B. Bacuĺiková, J. Dz̆urina, Oscillation theorems for second-order nonlinear neutral differen-
tial equations, Comput. Math. Appl. 62(2011), 4472–4478.

[25] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differ-
ential equations with positive delay. Arch. Math. 36(1981), 168–178.

[26] G. Ladde, V. Lakshmikantham, B. Zhang, Osscillation theory of differential equations with
Deviating arguments, Marcel Dekker, New York, 1987.


