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Abstract

A new class of multivariate discrete distributions with binomial and
multinomial marginals is studied. This class of distributions is ob-
tained in a natural manner using probabilistic properties of the sam-
pling model considered. Some possible applications in game theory, life
testing and exceedance models for order statistics are discussed.
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1. Introduction

Bivariate and multivariate binomial distributions have aroused the interest of many
authors as a natural extension of the univariate binomial distribution. Aitken and Go-
nin [1] derived bivariate binomial probability functions by considering sampling with
replacement from a fourfold population, and expressed the bivariate probability func-
tion as products of the corresponding univariate functions, multiplied by a terminating
series bilinear in the appropriate orthogonal polynomials. Krishnamoorthy [17] studied
the multivariate binomial distribution and extended the series of Aitken and Gonin [1]
for a bivariate binomial distribution to any number of variables. In the papers of Ham-
dan [10, 11], Hamdan and Al-Bayati [12], Hamdan and Jensen [13], Papageorgiou and
David [19, 20], Doss and Graham [8], Shanbhag and Basawa [21], the conditional distri-
butions associated with trivariate and multivariate binomial distributions were studied,
and characterizations of multivariate binomial distribution by univariate marginals es-
tablished. For some discussions on bivariate binomial distributions see Kocherlakota and
Kocherlakota [16] and Johnson et al. [15].
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Biswasa and Hwang [4] provide a new formulation of the bivariate binomial distri-
bution in the sense that marginally each of the two random variables has a binomial
distribution, and they have some non-zero correlation in the joint distribution. Chan-
drasekar and Balakrishnan [6] considered a trivariate binomial distribution and obtained
regression equations of this distribution. They provided a set of necessary and sufficient
conditions for the regression to be linear, and also established a characterization of the
trivariate binomial distribution based on the distribution of the sum of two trivariate
random vectors.

In the present paper we consider new trivariate and quadrivariate distributions con-
structed on the basis of a bivariate binomial distribution. These distributions appear in
several models in the contexts of lifetesting and exceedances, and can also be applied in
strategic games. We also consider an extension of the bivariate binomial model to the
case when each individual of a population is being classified as one of A1, A2, . . . , Am

and simultaneously as one of B1, B2, . . . , Bm, with probabilities given by P (AiBj) = pij ,
i, j = 1, 2, . . . , m,

∑

pij = 1, P (Ai) =
∑m

j=1 P (AiBj), P (Bj) =
∑m

i=1 P (AiBj). Let the
experiment be repeated n times. Assume that χ1, χ2, χ11, χ12 and χ21 are the num-
bers of occurrences of the events A1, B1, A1B1, A1B2 and A2B1 in these n repetitions,
respectively. We study the joint distributions of the random variables and discuss their
possible applications.

For a description of a simple bivariate binomial distribution consider the fourfold
model:

A\B B1 B2

A1 π11 π12

A2 π21 π22

wherein each individual of a population can be classified as being one of A1, A2 and at
the same time as one of B1, B2 with probabilities P (AiBj) = πij , i, j = 1, 2;

∑

ij
πij = 1.

Under random sampling with replacement n times, let ξ1 and ξ2 denote the number of
occurrences of A1 and B1, respectively. It is well known that

(1)

p1(k, l) = P {ξ1 = k, ξ2 = l}

=

min(k,l)
∑

i=max(0,k+l−n)

n!

i!(k − i)!(l − i)!(n − k − l + i)
π

i
11π

k−i
12 π

l−i
21 π

n−k−l+i
22 ,

(see Aitken and Gonin [1] and Johnson, Kotz and Balakrishnan [15]). The bivariate
discrete distribution given in (1) is called a bivariate binomial distribution. The corre-
sponding probability generating function (pgf) is

(2) Φ1(t, s) = (π11ts + π12t + π21s + π22)
n
.

A connection between a bivariate binomial distribution and a multinomial distribution
can be shown as follows. In the fourfold model described above, let A1B1 = C1, A1B2 =
C2, A2B1 = C3, A2B2 = C4 and P (C1) = p11, P (C2) = p12, P (C3) = p21, P (C4) = p22.
Let ζi be the number of cases in which Ci occurs in n repetitions, i = 1, 2, 3, 4. Clearly,
(ζ1, ζ2, ζ3, ζ4) is multinomial. Then ξ1 = ζ1 + ζ2 and ξ2 = ζ1 + ζ3.

A simple trivariate distribution in the fourfold model described above is of interest.
Under random sampling n times, let ξ1, ξ2 and ξ11 be the number of occurrences of A1, B1

and A1B1, respectively. The joint probability function of the random variables ξ1, ξ2 and
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ξ11 can be obtained easily from combinatorial considerations, and it is

(3)

pn(k, l, r) = P {ξ1 = k, ξ2 = l, ξ11 = r}

=
n!

r!(k − r)!(l − r)!(n − k − l + r)!
π

r
11π

k−r
12 π

l−r
21 π

n−k−l+r
22 ,

(k, l = 0, 1, 2, . . . , n and r = max(0, k + l − n), . . . , min(k, l)).

The corresponding probability generating function is

Ψ(t, s, z) = (π11tsz + π12t + π21s + π22)
n

.

It is clear that the univariate marginals of the discrete random vector (ξ1, ξ2, ξ11) are
binomial, with cell probabilities (π11 + π12), (π11 + π21) and π11, respectively. The joint
distribution of (ξ1, ξ2) is obviously the bivariate binomial distribution with probability
function (1) and pgf Ψ(t, s, 1) = (π11ts + π12t + π21s + π22)

n, as in (2).

The joint probability function of (ξ1, ξ11) is

P {ξ1 = k, ξ11 = r}

=
n
∑

l=0

n!

r!(k − r)!(l − r)!(n − k − l + r)!
π

r
11π

k−r
12 π

l−r
21 π

n−k−l+r
22 ,

and the pgf is

Ψ1,11(t, z) = Ψ(t, 1, z) = (π11tz + π12t + π21 + π22)
n

.

Similarly, the joint probability function of (ξ2, ξ11) is

P {ξ2 = l, ξ11 = r}

=
n
∑

k=0

n!

r!(k − r)!(l − r)!(n − k − l + r)!
π

r
11π

k−r
12 π

l−r
21 π

n−k−l+r
22 ,

and the corresponding pgf is

Ψ2,11(s, z) = Ψ(1, s, z) = (π11sz + π21s + π12 + π22)
n

.

The Poisson procedure allows us to obtain the formula that approximates the joint prob-
ability function pn(k, l, r) when the number of trials is large, (n → ∞) and nπ11 → λ11,
nπ12 → λ12, nπ21 → λ21. We have

lim
n→∞

P {ξ1 = k, ξ2 = l, ξ11 = r}

= lim
n→∞

(1 − 1
n
)(1 − 2

n
) · · · (1 − k+l−r−1

n
)

r!(k − r)!(l − r)!
λ

r
11λ

k−r
12 λ

l−r
21

×

(

1 −
λ11 + λ12 + λ21

n

)n (

1 −
λ11 + λ12 + λ21

n

)−(k+l−r)

=
λr

11λ
k−r
12 λl−r

21

r!(k − r)!(l − r)!
exp (−(λ11 + λ12 + λ21)) .

Therefore pn(k, l, r) → p(k, l, r), where

p(k, l, r) =
λr

11λ
k−r
12 λl−r

21

r!(k − r)!(l − r)!
exp (−(λ11 + λ12 + λ21)) ;

(k, l = 0, 1, 2, . . . and r = 0, 1, 2, . . . , min(k, l)).

This distribution is a trivariate Poisson distribution.
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2. Extensions of the bivariate binomial distribution

2.1. Example. Consider a strategic game of two players A and B. Player A uses one
of the strategies A1, A2, . . . , An together with one of the strategies B1, B2, . . . , Bn of
Player B. The probability of the event “A uses strategy Ai and B uses strategy Bj” is
P (AiBj) = pij , i, j = 1, 2, . . . , n. If A uses strategy Ai against strategy Bj used by B,
then A wins aij units and B loses aij units. If the game is repeated n times, then we are
interested in the joint distribution of the random variables χ1 and χ2, where χ1 is the
number of cases in which the strategy A1 was used, χ2 is the number of cases in which
the strategy B1 was used. Clearly, (χ1, χ2) is bivariate binomial.

Now assume that a third party is interested in this game, and has some profit in
all cases when the strategy A1 of the first player is used, or the strategy B1 of the
second player is used. Let χ11 be the number of cases in which A1 and B1 were used

simultaneously. Then the number in which the third party is interested is χ1 + χ2 − χ11

− the number of cases when A1 or B1 were used in the n times repeated game. It is
clear that

P {χ1 + χ2 − χ11 = m} =
∑

k,l

P {χ1 = k, χ2 = l, χ11 = k + l − m} .

Therefore, the joint probability function of χ1, χ2 and χ11 is required.

2.2. Example. Suppose n independent units, each consisting of two components, are
placed on a life-test with the corresponding failure times (X1, Y1), (X2, Y2), . . ., (Xn, Yn)
being identically distributed with cumulative distribution function F (x, y) and probabil-
ity density function f(x, y). For predefined numbers a1 < a2, if Xi ≤ a1 we say that the

ith unit fails test A1. If a1 < Xi ≤ a2, then we say that the ith unit is successful in test
A1, but fails test A2. Similarly, for b1 < b2, if Yi ≤ b1, then we say that the ith unit fails
test B1, b1 < Yi ≤ b2 means that it passes test B1 but fails test B2. Under this setup we
are interested in the following probabilities.

a) What is the probability that q1 units fail test A1, q2 units fail test B1, and at
least q3 pass both tests A1 and B1? If the number of units that fail test A1 is
χ1, the number of units that fail test A2 is χ2, the number of units that fail
both tests A1 and B1 is χ11, the number of units that fail both tests A2 and B1

is χ21, and the number of units that fail both tests A1 and B2 is χ12, then the
required probability is P{χ1 = q1, χ2 = q2, χ11 < q3}.

b) What is the probability that q1 units fail test A1, q2 units fail test B1, q3

units fail both tests A1 and B2, and q4 units fail both tests A2 and B1? This
probability is P{χ1 = q1, χ2 = q2, χ12 = q3, χ21 = q4}. Therefore the joint pmf
of (χ1, χ2, χ12, χ21) is required.

2.1. A model. A general model, including the two examples, above can be described
as follows. Suppose in an experiment that the results are observed as one of the events
A1, A2, . . . , Am, and at the same time as one of the events B1, B2, . . . , Bm with prob-
abilities P (AiBj) = pij , i, j = 1, 2, . . . , m;

∑

ij
pij = 1, m ≥ 3. This means that the

outcomes in the experiment are pairs AiBj , i, j = 1, 2, . . . , m. Assume that we repeat
the experiment n times and that the trials are independent.

2.3. Definition. Let χ1, χ2, χ11, χ12, χ21 denote the number of occurrences of A1, B1,
A1B1, A1B2, A2B1, respectively.
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From (3) it is clear that the joint probability function of the random variables χ1, χ2

and χ11 is

(4)

P {χ1 = k, χ2 = l, χ11 = r}

=
n!

r!(k − r)!(l − r)!(n − k − l + r)!
Πr

11Π
k−r
12 Πl−r

21 Πn−k−l+r
22 ,

where Π11 = p11, Π12 =
m
∑

j=2

p1j , Π21 =
m
∑

i=2

pi1, Π22 = 1 − p11 −
m
∑

j=2

p1j −
m
∑

i=2

pi1.

2.4. Theorem. Let P11 = p11, P12 = p12, P21 = p21, P13 =
m
∑

j=3

p1j and P31 =
m
∑

i=3

pi1.

Then

a) The joint probability function of the random variables χ1, χ2, χ12 and χ21 is

(5)

Pn {k, l, r, h}

= P {χ1 = k, χ2 = l, χ12 = r, χ21 = h}

=

min(k−r,l−h)
∑

i=max(0,k+l−n)

n!

i!r!h!(k − i − r)!(l − i − h)!(n − k − l + i)!

× P
i
11P

r
12P

k−i−r
13 P

h
21P

l−i−h
31 (1 − P11 − P12 − P13 − P21 − P31)

n−k−l+i

(k = r, . . . , n − h ; l = h, . . . , n − r; r = 0, . . . , n − h; h = 0, . . . , n).

b) The joint probability generating function is given by

(6) Φ(t, s, z, c) = (α1ts + α2tz + α3sc + α4t + α5s + α6)
n
,

where α1 = P11, α2 = P12, α3 = P21, α4 = P13, α5 = P31 and α6 =
m
∑

i=2

m
∑

j=2

pij .

Proof. It is clear that without loss of generality we can take m = 3. The model can be
described symbolically as follows:

A\B B1 B2 B3

A1 p11
i

p12
r

p13
k − i − r

A2 p21
h

p22 p23

A3 p31
l − i − h

p32 p33

It is clear that if we repeat the experiment n times, then r outcomes of the event A1 can
be observed together with B2 in

(

n

r

)

ways, together with B1 in
(

n−r

i

)

ways and together

with B3 in
(

n−r−i

k−r−i

)

ways. Then, h outcomes of the event B1 can be realized together with

A2 in
(

n−r−i−(k−r−i)
h

)

=
(

n−k

h

)

ways, and together with A3 in
(

n−k−h

l−i−h

)

ways. Therefore,
in n repeated independent trials, the number of possible cases when A1 appears i times,
B1 appears l times, A1B2 appears r times and A2B1 appears h times is

(

n

r

)(

n − r

i

)(

n − r − i

k − i − r

)(

n − k

h

)(

n − k − h

l − i − h

)

=
n!

i!r!h!(k − i − r)!(l − i − h)!(n − k − l + i)!
,

and each case has the same probability of

P
i
11P

r
12P

k−i−r
13 P

h
21P

l−i−h
31 (1 − P11 − P12 − P13 − P21 − P31)

n−k−l+i
.
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It is then easy to see that i changes from max(0, k + l − n) to min(k − r, l − h), and
consequently we obtain (5).

To derive the joint probability generating function, let us write

ξ
i
1 =

{

1 if in the ith trial A1 appears,

0 otherwise,

ξ
i
2 =

{

1 if in the ith trial B1 appears,

0 otherwise,

ξ
i
12 =

{

1 if in the ith trial A1B2 appears,

0 otherwise,

ξ
i
21 =

{

1 if in the ith trial A2B1 appears,

0 otherwise,

for i = 1, 2, . . . , n. It is then clear that χ1 =
n
∑

i=1

ξi
1, χ2 =

n
∑

i=1

ξi
2, χ12 =

n
∑

i=1

ξi
12 and χ21 =

n
∑

i=1

ξi
21. Since the n trials are independent, the pgf of the random vector (χ1, χ2, χ12, χ21)

can then be written as

(7) Φ(t, s, z, c) =

( 1
∑

x1,x2,x3,x4=0

t
x1s

x2z
x3c

x4qx1,x2,x3,x4

)n

,

where

qx1,x2,x3,x4 = P{ξi
1 = x1, ξ

i
2 = x2, ξ

i
12 = x3, ξ

i
21 = x4}; x1, x2, x3, x4 = 0, 1.

We have

q1,1,1,1 = P (A1B1(A1B2)(A2B1)) = 0

q0,1,1,1 = P (A c
1 B1(A1B2)(A2B1)) = 0

q1,1,1,0 = P (A1B1(A1B2)(A2B1)
c) = 0

q0,1,1,0 = P (A c
1 B1(A1B2)(A2B1)

c) = 0

q1,1,0,1 = P (A1B1(A1B2)
c(A2B1)) = 0

q0,1,0,1 = P (A c
1 B1(A1B2)

c(A2B1)) = P21

q1,1,0,0 = P (A1B1(A1B2)
c(A2B1)

c) = P11

q0,1,0,0 = P (A c
1 B1(A1B2)

c(A2B1)
c) = P31

q1,0,1,1 = P (A1B
c

1 (A1B2)(A2B1)) = 0

q0,0,1,1 = P (A c
1 B

c
1 (A1B2)(A2B1)) = 0

q1,0,1,0 = P (A1B
c

1 (A1B2)(A2B1)
c) = P12

q0,0,1,0 = P (A c
1 B

c
1 (A1B2)(A2B1)

c) = 0

q1,0,0,1 = P (A1B
c

1 (A1B2)
c(A2B1)) = 0

q0,0,0,1 = P (A c
1 B

c
1 (A1B2)

c(A2B1)) = 0

q1,0,0,0 = P (A1B
c

1 (A1B2)
c(A2B1)

c) = P13,

q0,0,0,0 = P (Ac
1B

c
1(A1B2)

c(A2B1)
c) =

∑3

i=2

∑3

j=2
pij .

Substituting for these values in (7) and simplifying, we obtain (6). Observe that k =
r, r + 1, . . . , n − h; l = h, h + 1, . . . , n − r; r = 0, 1, . . . , n − h; h = 0, 1, . . . , n. �
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2.1.1. Marginal distributions. The univariate marginals of the discrete random vector
(χ1, χ2, χ12, χ21) are binomial with cell probabilities (P11 +P12 +P13), (P11 +P21 +P31),
P12 and P21, respectively.

The joint distribution of (χ1, χ2) is obviously the bivariate binomial distribution with
probability function (1) and pgf

Ψ1,2(t, s) = Φ(t, s, 1, 1) = (b1ts + b2t + b3s + b4)
n

,

where b1 = α1, b2 = α2 + α4, b3 = α3 + α5 and b4 = α6, as in (2).
The joint pgf of (χ1, χ12)

Ψ1,12(t, z) = Φ(t, 1, z, 1) = (c1tz + c2t + c3)
n
,

where c1 = α2, c2 = α1 + α4, c3 = α3 + α5 + α6.

The joint pgf of (χ1, χ21) is

Ψ1,21(t, c) = Φ(t, 1, 1, c) = (d1t + d2c + d3)
n

,

where d1 = α1 + α2 + α4, d2 = α3, d3 = α5 + α6, which is the pgf of a trinomial
distribution.

The joint pgf of (χ2, χ12) is

Ψ2,12(s, z) = Φ(1, s, z, 1) = (e1s + e2z + e3)
n

,

where e1 = α1 + α3 + α5, e2 = α2, e3 = α4 + α6, which is the pgf of a trinomial
distribution.

The joint pgf of (χ2, χ21) is

Ψ2,21(s, c) = Φ(1, s, 1, c) = (f1cs + f2s + f3)
n

,

where f1 = α3, f2 = α1 + α5, f3 = α2 + α4 + α6.

The joint pgf (χ12, χ21) is

Ψ12,21(z, c) = Φ(1, 1, z, c) = (g1c + g2z + g3)
n

,

where g1 = α3, g2 = α2, g3 = α1 + α4 + α5 + α6, which is the pgf of a trinomial
distribution.

The trivariate marginals of the discrete random vector (χ1, χ2, χ12, χ21) are as follows.

The joint pgf of (χ1, χ2, χ12) is

Ψ1,2,12(t, s, z) = Φ(t, s, z, 1) = (h1ts + h2tz + h3t + h4s + h5)
n

,

where h1 = α1, h2 = α2, h3 = α4, h4 = α3 + α5, h5 = α6.

The joint pgf of (χ1, χ2, χ21) is

Ψ1,2,21(t, s, c) = Φ(t, s, 1, c) = (j1ts + j2cs + j3t + j4s + j5)
n

,

where j1 = α1, j2 = α3, j3 = α2 + α4, j4 = α5, j5 = α6.

The joint pgf of (χ1, χ12, χ21) is

Ψ1,12,21(t, z, c) = Φ(t, 1, z, c) = (k1tz + k2t + k3c + k4)
n

,

where k1 = α2, k2 = α1 + α4, k3 = α3, k4 = α5 + α6.

The joint pgf of (χ2, χ12, χ21) is

Ψ2,12,21(s, z, c) = Ψ(1, s, z, c) = (n1cs + n2s + n3z + n4)
n

,

where n1 = α3, n2 = α1 + α5, n3 = α2, n4 = α4 + α6.
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Example 2.1 (continued) a) It is clear that

P{χ1 = q1, χ2 = q2, χ11 < q3} =

q3−1
∑

r=1

P{χ1 = q1, χ2 = q2, χ11 = r}.

It can be calculated from (4), for m = 3 and the probabilities

(8)

p11 = P (A1B1) = P{X ≤ a1, Y ≤ b1},

p12 = P (A1B2) = P{X ≤ a1, b1 < Y ≤ b2},

p21 = P (A2B1) = P{a1 < X ≤ a2, Y ≤ b1},

p22 = P (A2B2) = P{a1 < X ≤ a2, b1 < Y ≤ b2},

p13 = P (A1B3) = P{X ≤ a1, Y > b2},

p23 = P (A2B3) = P{a1 < X ≤ a2, Y > b2}

p31 = P (A3B1) = P{X > a2, Y ≤ b1},

p32 = P (A3B2) = P{X > a2, b1 < Y ≤ b2},

p33 = P (A3B3) = P{X > a2, Y > b2}.

b) The probability is

P{χ1 = q1, χ2 = q2, χ12 = q3, χ21 = q4},

which can be calculated from (5) for m = 3 by using the probabilities (8).

Below, in Table 1, we provide some numerical values of

f(n, k, l, r, h) = P {χ1 = k, χ2 = l, χ12 = r, χ21 = h}

for n = 2, m = 3 and pij = 1
9
, i, j = 1, 2, 3.

Table 1. Numerical values of f(n, k, l, r, h) = P {χ1 = k, χ2 = l, χ12 = r, χ21 = h}
for n = 2, m = 3.

n k l r h f(n, k, l, r, h) n k l r h f(n, k, l, r, h)

2 0 0 0 0 0.198 2 1 1 1 0 0.025

2 0 1 0 0 0.099 2 2 0 1 0 0.025

2 0 2 0 0 0.012 2 2 1 1 0 0.025

2 1 0 0 0 0.099 2 2 0 2 0 0.012

2 1 1 0 0 0.123 2 0 1 0 1 0.099

2 1 2 0 0 0.025 2 0 2 0 1 0.025

2 2 0 0 0 0.012 2 1 1 0 1 0.025

2 2 1 0 0 0.025 2 1 2 0 1 0.025

2 2 2 0 0 0.012 2 1 1 1 1 0.025

2 1 0 1 0 0.099 2 0 2 0 2 0.012

2.2. The Poisson approximation. The Poisson procedure allows us to obtain the
formula that approximates the probability mass function pn(k, l, r, h) when the number
of trials is large (n → ∞), and P11, P12, P21, P13, P31 → 0, nP11 → λ11, nP12 → λ12,

nP21 → λ21, nP1 → λ1, nP2 → λ2, where P1 = P11 +P12 +P13 and P2 = P11 +P21 +P31.
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The limiting form of P {k, l, r, h} is given by

lim
n→∞

P {χ1 = k, χ2 = l, χ12 = r, χ21 = h}

= lim
n→∞

min(k−r,l−h)
∑

i=max(0,k+l−n)

n(n − 1) · · · (n − k) · · · (n − k − l + i + 1)(n − k − l + i)!

i!r!h!(k − i − r)!(l − i − h)!(n − k − l + i)!

×

(

λ11

n

)i(

λ12

n

)r(

λ1 − λ11 − λ12

n

)k−i−r(

λ21

n

)h

×

(

λ2 − λ11 − λ21

n

)l−i−h(

1 −
λ1 + λ2 − λ11

n

)n−k−l+i

= lim
n→∞

min(k−r,l−h)
∑

i=max(0,k+l−n)

1(1 − 1
n
) · · · (1 − k

n
) · · · (1 − k+l−i−1

n
)

i!r!h!(k − i − r)!(l − i − h)!
λ

i
11λ

r
12

× (λ1 − λ11 − λ12)
k−i−r

λ
h
21(λ2 − λ11 − λ21)

l−i−h

×

(

1 −
λ1 + λ2 − λ11

n

)n−k−l+i

= e−(λ1+λ2−λ11)

min(k−r,l−h)
∑

i=0

λi
11

i!

λr
12

r!

λh
21

h!

(λ1 − λ11 − λ12)
k−i−r

(k − i − r)!

×
(λ2 − λ11 − λ21)

l−i−h

(l − i − h)!
,

(k = r, r + 1, . . . ; l = h, h + 1, . . . ; r = 0, 1, 2, . . . ; h = 0, 1, 2, . . .).

Therefore Pn(k, l, r, h) → p(k, l, r, h), where

p(k, l, r, h) = e−(λ1+λ2−λ11)

min(k−r,l−h)
∑

i=0

λi
11

i!

λr
12

r!

λh
21

h!

(λ1 − λ11 − λ12)
k−i−r

(k − i − r)!

×
(λ2 − λ11 − λ21)

l−i−h

(l − i − h)!
;

(k = r, r + 1, . . . ; l = h, h + 1, . . . ; r = 0, 1, 2, . . . ; h = 0, 1, 2, . . .).

This distribution is a version of the quadrivariate Poisson distribution.

2.5. Remark. It should be noted that Theorem 2.4 enables one to calculate the joint
probability function of any random variables Xi, Xj , Xij counting, respectively, the
number of occurrences of Ai, Bj and AiBj in n repetitions of the experiment.

2.6. Remark. In this paper we do not deal with statistical inferences for the proposed
family of distributions. The estimating and testing techniques for similar multivariate
distributions are discussed in the statistical literature, see e.g. Voinov and Nikulin [22],
Voinov et al. [23].

2.7. Remark. The problem addressed in this paper is that associated with determining
the joint distribution of overlapping sums of the coordinates of a multinomial density in
certain specific cases. The general problem would begin with

X ∼ Multinomial(n; p1, p2, . . . , pm),

where pi ≥ 0 and
m
∑

i=1

pi = 1, and for each i, Xi denotes the number of outcomes of type i,

i = 1, 2, . . . , m. In such a setting, we can consider the joint density of the random vector
Z = AX, where A is a k×m matrix of zeroes and ones. It is random vectors of this type
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that are considered in the paper. In particular, we focus on a cross-classified version in
which there are m2 possible outcomes of the experiment which can be indexed by {(i; j):
i = 1, 2, . . . , m; j = 1, 2, . . . , m} with corresponding probabilities pij .

3. Some possible applications

3.1. Empirical distribution function and dependence measures. Let (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) be a sample from a bivariate distribution with distribution func-
tion (df) F (x, y) and marginal df’s FX(x) and FY (y). Write ξ1 = # {i : Xi ≤ x},
ξ2 = # {j : Yj ≤ y}, ξ11 = # {i : Xi ≤ x, Yi ≤ y}, ξ12 = # {i : Xi ≤ x, Yi > y}, A1 =
{X ≤ x}, A2 = {X > x} and B1 = {Y ≤ y}, B2 = {Y > y}. It is easy to observe that
ξ1 represents the number of elements of the sample X1, X2, . . . , Xn falling below the
threshold x, ξ2 represents the number of elements of the sample Y1, Y2, . . . , Yn falling
below the threshold y, and ξ11 represents the number of elements of the sample (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) belonging to the set {(u, v) : u ≤ x, v ≤ y}. It can also be observed
that ξ1 ≡ nF ∗

X(x) is the empirical df of the sample X1, X2, . . . , Xn; ξ2 ≡ nF ∗
Y (y) is the

empirical df of the sample Y1, Y2, . . . , Yn, and ξ11 = nF ∗
X,Y (x, y) is the empirical df of the

bivariate sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn). In this case we have

(9) P{nF
∗
X (x) = k, nF

∗
Y (y) = l, nF

∗
X,Y (x, y) = r} = P {ξ1 = k, ξ2 = l, ξ11 = r} ,

where the joint probability function of the exceedances (ξ1, ξ2, ξ11) is as given in (4) with
the probabilities

π11 = P (A1B1) = P {X ≤ x, Y ≤ y} = F (x, y)

π12 = P (A1B2) = P {X ≤ x, Y > y} = FX(x) − F (x, y)

π21 = P (A2B1) = P {X > x, Y ≤ y} = FY (y) − F (x, y)

π22 = P (A2B2) = P {X > x, Y > y} = 1 − FX(x) − FY (y) + F (x, y)

The probabilities (9) can be used to construct a criteria for testing the independence
of random variables X and Y , based on the empirical distribution functions F ∗

X(x),
F ∗

Y (y) and F ∗
X,Y (x, y). In recent years, several statistical papers have appeared, dis-

cussing local dependence measures that can characterize the dependence structure of
two random variables localized at the fixed point. For more details on local dependence
functions, see Bjerve and Doksum [5], Jones [14], Bairamov and Kotz [2], Bairamov et

al. [3], Kotz and Nadarajah [18]. Assume that J(u, v, w) is any function on the unit
cube and that J(F ∗

X(x), F ∗
Y (y), F ∗

X,Y (x, y)) leads to a test statistic for testing indepen-
dence between X and Y at the point (x, y). Then the distribution of this statistic is
P{J(F ∗

X(x), F ∗
Y (y), F ∗

X,Y (x, y)) ≤ t} given by

P{J(F ∗
X (x), F ∗

Y (y), F ∗
X,Y (x, y)) ≤ t} =

∑

{(k,l,r):J( k
n

, l
n

, r
n

)≤t}

P {ξ1 = k, ξ2 = l, ξ11 = r} .

3.2. Exceedances. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sample as in Example 2.2.
Denote by Xr:n the rth order statistic constructed from the sample X1, X2, . . . , Xn and
let Y[r:n] be the corresponding concomitant of Xr:n. The joint probability density function

of the rth order statistic and its concomitant Y[r:n] is

fXr:n,Y[r:n]
(x, y) = f(y | x)fr:n(x).

The concomitants of order statistics arise in different selection procedures (see David
[7]). Assume that (Xn+1, Yn+1), (Xn+2, Yn+2), . . . , (Xn+m, Yn+m) are the next m obser-
vations obtained from the same population with df F (x, y) that are independent of the
first sample. In this case let r < s and η1 = # {i : Xi ≤ Xr:n}, η2 = #

{

j : Yj ≤ Y[r:n]

}

,

η11 = #
{

i : Xi ≤ Xr:n, Yi ≤ Y[r:n]

}

, η12 = #
{

i : Xi ≤ Xr:n, Yi ≤ Y[s:n]

}

and η21 =
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#
{

i : Xi ≤ Xs:n, Yi ≤ Y[r:n]

}

. The random variable η1 +1 shows the rank of Xr:n among
the Xn+1, Xn+2, . . . , Xn+m and η2 + 1 shows the rank of Y[r:n] among the Yn+1, Yn+2,
. . . , Yn+m. The joint distribution of η1 +1 and η2 +1 can be obtained from (1) as follows:

(10)

P{ξ1 = k − 1, ξ2 = l − 1}

=

min(k−1,l−1)
∑

i=max(0,k+l−n−2)

n!

i!(k − 1 − i)!(l − 1 − i)!(n − k − l + i + 2)!

×

∞
∫

−∞

∞
∫

−∞

π
i
11(x, y)πk−i−1

12 (x, y)πl−i−1
21 (x, y)

× π
n−k−l+i+2
22 (x, y)f(y |x)fr:n(x) dx dy.

Formula (10) is obtained in Eryilmaz and Bairamov [9] by conditioning on Xr:n and
Y[r:n]. The joint distribution of the exceedance statistics η1, η2, η11 and η1, η2, η12, η21

can be obtained in a similar way to (4) and (5).
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