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Improved estimation from ranked set sampling
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Abstract
Ranked set sampling is used when the measurement or quantification
of units of the variable under study is difficult but the ranking of units
of sets of small sizes can be done easily by an inexpensive method. Dell
and Clutter (1972) showed that the sample mean based on ranked set
sample is more efficient than the sample mean based on simple ran-
dom sample with replacement sampling procedure for estimation of the
population mean. In this paper Dell and Clutter estimator has been im-
proved further by using the ranking variable x as an auxiliary variable
when µx, the population mean of x is unknown. An empirical investiga-
tion based on life data shows all proposed estimators are approximately
unbiased and bring gain in efficiency of up to 50 percent.
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1. Introduction

Ranked set sampling (RSS) was introduced by McIntyre (1952) to estimate the mean
pasture and forage yield. The RSS is used when precise measurement of the variable of
interest is difficult or expensive but the variable can be ranked easily without measuring
the actual variable by an inexpensive method such as visual perception, judgment and
auxiliary information. For example, in estimating the mean height of trees in a forest,
the heights of a small sample of two or three trees standing nearby can be ranked easily
by visual inspection without measuring them. In estimating the number of bacterial cells
per unit volume, we can rearrange two or three test tubes easily in order of concentration
using optical instruments without measuring exact values. In a ranked set sampling,
instead of selecting a single sample of sizem, we selectm-sets of samples each of sizem. In
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each of the sets all the elements are ranked but only one is measured. Finally, an average
of them-measured units is taken as an estimate of the population mean. Dell and Clutter
(1972) proved that the sample mean based on the RSS is unbiased for the population
mean regardless of the errors of ranking. The RSS mean is at least as precise as the sample
mean of the simple random sampling with replacement (SRSWR) sampling scheme of
the same size. Stokes (1980, 1980a, 1988) showed that RSS provides precise estimators
for cumulative distribution function, population variance and correlation coefficient.

1.1. Rank set sampling by SRSWR method. First we choose a small number m
(set-size) such that one can easily rank the m elements of the population with sufficient
accuracy. Then the selection of RSS is as follows: Select a sample of m2 units from a
population U by SRSWR method. Allocate these m2 units at random into m sets each of
size m. Rank all the units in a set with respect to the values of the variable of interest y
from 1 (minimum) tom (maximum) by a very inexpensive method such as eye inspection.
No actual measurement is done at this stage. After the ranking has been completed, the
unit holding rank 1 of the set-1, unit holding rank-2 of the set 2, . . . , and finally the
unit holding rank m of the set m is measured accurately by using a suitable instrument.
This completes a cycle of the sampling. The process is repeated for r cycles to obtain
the desired sample of size n = mr units. Thus in a RSS a total of m2r units have been
drawn from the population but only mr of them are measured and the rest mr (m− 1)
are discarded. These measured mr observations are called “ranked set sample”. Since the
ordering of a large number of observations is difficult, increase of sample size n = mr is
done by increasing the number of cycles r.

It is obvious that the variable used for ranking x (say) e.g. eye estimation, judgment or
auxiliary information is expected to have high correlation with the variable of interest y.
Stokes (1977) considered ranking as an auxiliary variable. Prasad (1989), Kadilar et al.
(2009) and Singh et al. (2014) used the estimation of the population mean µy assuming
the population mean µx is known. In our present paper we have proposed improved
methods of estimation of the population mean using the ranking variable as an auxiliary
variable when the population mean µx is unknown. The proposed estimators fare better
than the traditional estimator-sample mean. We also compared the performances of the
proposed estimators through simulation studies based on live data collected by Platt et
al. (1988), given by Chen et al. (2003). The simulation revealed that all the proposed
estimators are approximately unbiased and bring gain in efficiency of up to 50%.

1.2. A fundamental equality. Let yi1|k, . . . , yij|k, . . . , yim|k and xi1|k, . . . , xij|k,
. . . , xim|k be the value of the variable of interest y and x of the ith set of elements of the
kth cycle, i = 1, . . . ,m; k = 1, . . . , r. Further, let yi(j)|k and xi(j)|k be the smallest jth
observation (order statistic) of yi1|k, . . . , yij|k, . . . , yim|k and xi1|k, . . . , xij|k, . . . , xim|k re-
spectively. Here we first assume that y increases with x i.e. xij|k > xi′j′|k′ implies
yij|k > yi′j′|k′ . Ranking of heights of two and three trees nearby through visual inspec-
tion, the eye estimates (x) is expected to provide perfect ranking. Obviously, perfect
ranking is not always possible. So, the theory of judgement ranking has been introduced
in section 2.6. Let yi1|k, . . . , yij|k, . . . , yim|k be a random sample from a population with
cumulative distribution function (cdf) F (y) and probability density function (pdf) f(y).
Similarly xi1|k, . . . , xij|k, . . . , xim|k are the random sample from a population with cdf
F (x)and pdf f(x) respectively. Let the mean and variance of x and y be µx, µy and
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σ2
x, σ

2
y respectively. Then we have the following equalities following Stokes (1980):

m∑
j=1

yij|k =

m∑
j=1

yi(j)|k,

m∑
j=1

xij|k =

m∑
j=1

xi(j)|k(1.1)

m∑
j=1

(xij|k − µx)2 =

m∑
j=1

, (xi(j)|k − µx)2,

m∑
j=1

(yij|k − µy)2 =

m∑
j=1

(yi(j)|k − µy)2(1.2)

and

(1.3)
m∑

j=1

(xij|k − µx)(yij|k − µy) =

m∑
j=1

(xi(j)|k − µx)(yi(j)|k − µy)

Let µx(j)|m = E{xi(j)|k} and µy(j)|m = E{yi(j)|k} be the mean of the jth order-
statistic of random samples of size m of the variables x and y for the cycle k. The order
statistics µx(j)|m and µy(j)|m depend on m but is independent of the set i and the cycle
k.

The equation (1.1) yields

E

{
1

m

m∑
j=1

xij|k

}
= E

{
1

m

m∑
j=1

xi(j)|k

}

i.e. µx =
1

m

m∑
j=1

µx(j)|m(1.4)

Similarly,

(1.5) µy =
1

m

m∑
j=1

µy(j)|m

the equation (1.2) yields
m∑

j=1

E(xij|k − µx)2 =

m∑
j=1

E(xi(j)|k − µx)2

i.e. mσ2
x =

m∑
j=1

{
σ2
x(j)|m + (µx(j)|m − µx)2

}
(where σ2

x(j)|m = variance of xi(j)|m)

i.e. σ2
x =

1

m

m∑
j=1

σ2
x(j)|m +

1

m

m∑
j=1

(µx(j)|m − µx)2(1.6)

Similarly,

σ2
y =

1

m

m∑
j=1

σ2
y(j)|m +

1

m

m∑
j=1

(µy(j)|m − µy)2(1.7)

(where σ2
y(j)|m = variance of yi(j)|m)

Let us assume that the variables x and y from the same unit are correlated while from
the different units are uncorrelated so that

(1.8) Cov(xij|k, yij|k) = µxy and Cov(xij|k, yi′j′|k′) = 0 for (i, j, k) 6= (i′, j′, k′)
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1.3. Estimation of the mean. Let ȳ[m]|k =
1

m

m∑
i=1

yi(i)|k = arithmetic mean of the m

quantified values of the variable y for the cycle k and

(1.9) µ̂y(rss) =
1

r

r∑
k=1

ȳ[m]|k =
1

n

r∑
k=1

m∑
i=1

yi(i)|k

is the mean of n = mr quantified variables based on all the r cycles. The following
theorem due to Dell and Clutter (1972)and Kaur et al. (1997) show that the estimator
µ̂y(rss) is unbiased for µy and possesses a lower variance than µ̂y(srs), the sample mean
based on an SRSWR sample of the same size n. An unbiased estimator of the variance
is also presented here.

1.1. Theorem.

(i) E(µ̂y(rss)) = µy

(ii) V (µ̂y(rss)) =
σ2
y[m]

n

=
1

n

[
σ2
y −

1

m

m∑
i=1

(µy(j)|m − µy)2
]

≤ σ2
y/n = V (µ̂y(srs))

(iii) An unbiased estimator of the variance of V (µ̂y(rss)) is

V̂ (µ̂y(rss)) =
1

r(r − 1)

r∑
k=1

(ȳ[m]|k − µ̂y(rss))
2.

where σ2
y[m] =

1

m

m∑
j=1

σ2
y(j)|m

1.4. Precision of the rank-set sampling. The relative precision of µ̂y(rss) compared
to µ̂y(srs), sample mean of an SRSWR sample of size n = mr is

(1.10) RPrss/srs =
V (µ̂y(srs))

V (µ̂y(rss))
=

σ2
y

σ2
y[m]

2. Proposed estimator of the population mean
From the ith set of the kth cycle, we construct an estimator for µy as follows:

ti|k = yi(i)|k − λxi(i)|k + λx̄i|k for i = 1, ..,m

= yi(i)|k − λ(xi(i)|k − x̄i|k)(2.1)

where x̄i|k =
1

m

m∑
j=1

xij|k and λ is a suitably chosen constant to be determined opti-

mally.
The proposed estimator of the population mean µy based on the kth cycle is

tk =
1

m

m∑
i=1

ti|k

=

(
1

m

m∑
i=1

yi(i)|k

)
− λ

(
1

m

m∑
i=1

xi(i)|k −
1

m

m∑
i=1

x̄i|k

)
(2.2)
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and the overall estimator for µy is

(2.3) t̄ =
1

r

r∑
k=1

tk

2.1. Mean and variance of t̄.

E(ti|k) = E(yi(i)|k)− λE(xi(i)|k − x̄i|k)

= µy(i)|k − λ(µx(i)|k − µx)

= µy(i) − λ(µx(i) − µx)(2.4)

(noting µy(i)|k = µy(i) for every k)
Now using (2.2), we get

E(tk) =
1

m

m∑
i=1

[(µy(i) − λµx(i)) + λµx]

= µd + λµx (where µd = µy − λµx)

= µy(2.5)

The variance of tk is

V (tk) = V

(
1

m

m∑
i=1

ti|k

)

=
1

m2

m∑
i=1

V (ti|k)(2.6)

Now

(2.7) V (ti|k) = V (yi(i)|k) + λ2V (xi(i)|k − x̄i|k)− 2λCov(yi(i)|k, xi(i)|k − x̄i|k)

Further,

V (xi(i)|k − x̄i|k) = V (xi(i)|k) + V
(
x̄i|k

)
− 2Cov(xi(i)|k,x̄i|k)

= σ2
x(i) +

σ2
x

m
− 2

m

V (xi(i)|k) +
∑
j(6=i)

Cov(xi(i)k, xi(j)|k)]

(2.8)

Cov(yi(i)|k, xi(i)|k − x̄i|k) = Cov(yi(i)|k, xi(i)|k)− Cov

(
yi(i)|k,

1

m

m∑
j=1

xi(j)||k

)

= σxy(i)|k −
1

m

Cov(xi(i)|k, yi(i)|k) +
1

m

m∑
j(6=1)

Cov(yi(i)|k, xi(j)|k)

(2.9)

where σxy(i) is the covariance between xi(i)k and yi(i)k.
Now substituting(2.8) and (2.9) in (2.7), we get

V (ti|k) = σ2
y(i) + λ2

[
σ2
x(i) +

σ2

m
− 2

m

V (xi(i)) +
∑
j(6=i)

Cov(xi(i), xi(j))




−2λ

[
σxy(i) −

1

m

Cov(xi(i), yi(i)) +
1

m

m∑
j(6=i)

Cov(yi(i), xi(j))
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The equation (2.6) yields

V (tk)

=
1

m2

m∑
i=1

σ2
y(i) +

λ2

m2

[
m∑
i=1

σ2
x(i) + σ2

x −
2

m
m∑
i=1

V (xi(i)|k) +

m∑
i=1

∑
j(6=i)

Cov(xi(i)k, xi(j)|k)




−2
λ

m2

[
m∑
i=1

σxy(i) −
1

m
m∑
i=1

Cov(xi(i)|k, yi(i)k) +
1

m

m∑
i=1

m∑
j(6=i)

Cov(yi(i)|k, xi(j)|k)




=
1

m2

m∑
i=1

σ2
yi +

λ2

m2

[
m∑
i=1

σ2
x(i) − σ2

x

]
− 2

λ

m2

[
m∑
i=1

σxy(i) − σxy

]
(2.10)

Further, the equation (2.3) yields the variance of t̄ as

V (t̄)

=
1

r2

r∑
k=1

V (tk)

=
1

rm2

[
m∑
i=1

σ2
y(i) + λ2

(
m∑
i=1

σ2
x(i) − σ2

x

)
−2λ

(
m∑
i=1

σxy(i) − σxy

)]
(2.11)

=
1

n

[
1

m

m∑
i=1

σ2
y(i) + λ2 1

m

m∑
i=1

σ2
x(i) −2

λ

m

m∑
i=1

σxy(i)

]
(2.12)

− 1

nm

[
λ2σ2

x − 2λσxy

]
(noting n = rm)

Now using (1.6), (1.7) and (1.8),we get

V (t̄) =
1

n

[(
σ2
y −

1

m

m∑
i=1

λ2
y(i)

)
+ λ2

(
σ2
x −

1

m

m∑
i=1

µ2
x(i)

)

−2λ

(
σxy −

1

m

m∑
i=1

µxy(i)

)]
− 1

rm2
[λ2σ2

x − 2λσxy]

=
1

n

[(
σ2
d −

1

m

m∑
i=1

µ2
d(i)

)
− 1

rm

(
λ2σ2

x − 2λσxy

)]
(2.13)

The above results are summarized as follows:

2.1. Theorem.
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(i) The estimator t̄ is unbiased for µy

(ii) The variance of t̄ is

V (t̄) =
1

nm

[
m∑
i=1

σ2
y(i) + λ2

(
m∑
i=1

σ2
x(i) − σ2

x

)
− 2λ

(
m∑
i=1

σxy(i) − σxy

)]

=
1

rn

[
σ2
d −

1

m

m∑
i=1

(µd(i) − µd)2 +
2λρσxσy − λ2σ2

x

m

]
where µd(i) = µy(i) − λµx(i).

(iii) An unbiased estimator of V (t̄) is

V̂ (t̄) =
1

r(r − 1)

r∑
k=1

(tk − t̄)2

The part (iii) of the Theorem 2.1 follows from the fact that the estimators tk(k =
1, . . . , r) are independently identically distributed random variables.

2.2. Optimum value of λ. The optimum value of λ that minimizes V (t̄) is obtained
from the equation

(2.14)
∂V (t̄)

∂λ
= 0

and it is given by

optλ = λ0 =

m∑
i=1

σxy(i) − σxy

m∑
i=1

σ2
x(i) − σ2

x

(2.15)

= δ

√
m∑
i=1

σ2
y(i)√

m∑
i=1

σ2
x(i) − σ2

x

(2.16)

where δ is the correlation coefficient between
1

rm

r∑
k=1

k∑
i=1

yi(i)|k and
1

rm

r∑
k=1

k∑
i=1

(
xi(i)|k − x̄i|k

)
.

Finally, the variance t̄0, the optimum value of t̄ with λ = λ0 is given by

V0 = (1− δ2)
1

m2r

m∑
i=1

σ2
y(i)

= (1− δ2)
1

n

[
σ2
y −

1

m

m∑
i=1

(µy(i) − µy)2
]

(2.17)

2.3. Precision of the proposed optimum estimator t̄0. The relative precision of
t̄0 with respect to the conventional estimator µ̂y(rss) based on an SRSWR sample mean
of size n = mr is given by

(2.18) RPt0|rss =
V (µ̂y(rss))

V (t̄0)
=

1

1− δ2

From the expression (2.18), we note that the modified estimator is more efficient than
the conventional RSS estimator µ̂y(rss) since δ2 ≤ 1 .
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2.4. Estimator of λ0. The optimum estimator t0 cannot be used in practice since the
value λ0 is generally unknown. The following estimators for λ0 may be used

(2.19) λ̂0 =

r∑
k=1

(gk − ḡ)(hk − h̄)

r∑
k=1

(hk − h̄)2

and

(2.20) λ̂1 =

r∑
k=1

m∑
i=1

yi(i)|kxi(i)|k −
(

r∑
k=1

m∑
i=1

yi(i)|k

)(
r∑

k=1

m∑
i=1

xi(i)|k

)
/ (rm)

r∑
k=1

m∑
i=1

x2i(i)|k −
(

r∑
k=1

m∑
i=1

xi(i)|k)

)2

/rm

where gk =
1

m

m∑
i=1

yi(i)|k, hk =
1

m

m∑
i=1

(xi(i)|k − x̄i|k), ḡ =
1

r

r∑
k=1

gk and

h̄ =
1

r

r∑
k=1

hk.

2.5. Ratio and difference estimators. Instead of the optimum value of λ0, one may
use the following ratio and difference estimators:

(2.21) t̄R =

(
µ̂y(rss)

µ̂x(rss)

)(
1

mr

r∑
k=1

m∑
i=1

x̄i|k

)
and

(2.22) t̄d = µ̂y(rss) − (µ̂x(rss) − x̄)

where µ̂x(rss) =
1

mr

(
r∑

k=1

m∑
i=1

xi(i)|k

)
, µ̂y(rss) =

1

mr

(
r∑

k=1

m∑
i=1

yi(i)|k

)
and x̄ =

(
1

m2r

r∑
k=1

m∑
j=1

m∑
i=1

xij|k

)
For large n = mr, the ratio estimator is appropriately unbiased and an approximate

estimator of the mean square of µ̂x(rss) is obtained by using Cochran (1977) as

M(t̄R) ∼= µ2
xV

(
1

n

r∑
k=1

m∑
i=1

yi(i)|k − θ
1

n

r∑
k=1

m∑
i=1

xi(i)|k

)
∼=

µ2
x

n

[(
σ2
y − 2θρxyσxσy + θ2σ2

x

)
− 1

m

m∑
i=1

{(
µy(i) − θµx(i)

)
− (µy − θµx)

}2](2.23)

where θ =
µy

µx
.

From the expression (2.23), we note that the ratio estimator based on ranked set
sample is more precise than the conventional ratio estimator based on the same sample
size.

A reasonably good estimator of M(t̄R) is

(2.24) M̂(t̄R) ∼= µ̂2
x(rss)

1

n− 1

r∑
k=1

m∑
i=1

(
zi(i)|k − z̄

)2
where zi(i)|k = yi(i)|k − θ̂xi(i)|k, z̄ =

r∑
k=1

m∑
i=1

zi(i)|k/n and θ̂ =
µ̂y<rss>

µ̂x(rss)

.
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It is easy to note that the difference estimator t̄d is always unbiased and it is more
efficient than the conventional difference estimator of the same sample size.

2.6. Judgment ranking. Sometimes ranking may be imperfect. Let yi<j>|k be the
smallest jth “judgment order statistic” corresponding to order statistic xi(j)|k in the ith
set of the cycle k. In case the judgment ranking is perfect yi<j>|k becomes equal to yi(j)k,
otherwise if the judgment process is imperfect, we find yi<j>|k 6= yi(j)|k. Here we assume
that the expectation of yi<j>|k over the judgment process is the true ranking so that
E(yi<j>|k) = yi(j)|k. In this case we modify the estimators µ̂y(rss), t̄0, t̄1, t̄R and t̄d by
replacing yi(j)|k with yi<j>|k. The modified estimators become respectively as follows:

µ̂y<rss> =
1

n

r∑
k=1

m∑
i=1

yi<i>|k

t̄<0> =
1

mr

[
r∑

k=1

m∑
i=1

yi<i>|k − λ<0>

(
r∑

k=1

m∑
i=1

xi(i)|k −
r∑

k=1

m∑
i=1

x̄i|k

)]
,

t̄<1> =
1

mr

[
r∑

k=1

m∑
i=1

yi<i>|k − λ<1>

(
r∑

k=1

m∑
i=1

xi(i)|k −
r∑

k=1

m∑
i=1

x̄i|k

)]
,

t̄<R> =

(
µ̂y〈rss〉

µ̂x(rss)

)(
1

mr

r∑
k=1

m∑
i=1

x̄i|k

)
and

t̄d = µ̂y<rss> − (µ̂x(rss) − x̄)(2.25)

where λ̂<0> =

r∑
k=1

(g<k> − ḡ<>)(hk − h̄)

r∑
k=1

(hk − h̄)2
,

λ̂<1> =

r∑
k=1

m∑
i=1

yi<i>|kxi(i)|k −
(

r∑
k=1

m∑
i=1

yi<i>|k

)(
r∑

k=1

m∑
i=1

xi(i)|k

)
/ (rm)

r∑
k=1

m∑
i=1

x2i(i)|k −
(

r∑
k=1

m∑
i=1

xi(i)|k

)2

/ (rm)

,

g<k> =
1

m

m∑
i=1

yi<i>|k, ḡ<> =
1

r

r∑
k=1

g<k> with hk and h̄ as defined in section 2.4.

The modified estimator µ̂y<rss> remains exactly unbiased for µy while the remain-
ing modified estimators based on the judgment order statistics remains approximately
unbiased for µy.

3. Simulation studies
In the proposed simulation study we consider the tree data set originally collected by

Platt et al. (1988) and cited by Chen et al. (2003). The data comprises of diameters in
centimetre (cm) at breastheights (x) and entire height (y) in feet of 396 trees. The mean
diameter and height of the 396 trees are µx = 20.9641 and µy = 52.6768 respectively.
Treating the 396 trees as a population, initially a sample ofm2 trees is selected by SRSWR
sampling procedures. The selection of the sample (cycle) is repeated r times. Since,
for this data y does not always increase with x, we have compared performances with
the proposed five estimators µ̂y<rss>, t̄<0>, t̄<1>, t̄<R> and t̄<d> based on judgement
order statistic. However, as per suggestions from one of the referees, we have considered
the following ratio estimator (Kadilar et al., 2009) and regression estimators when the
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population mean µx is known

(3.1) t̄∗<R> =
µ̂y<rss>

µ̂x(rss)

µx and t̄∗<1> = µ̂y<rss> − λ̂<1>(µ̂x(rss) − µx)

We call the process of selection ofm2 trees and replication r times as an iteration. The
iteration is repeated R = 100, 000 times. Let the values of the µ̂y<rss>, t̄<0>, t̄<1>, t̄<R>,
t̄<d>, t̄

∗
<R> and t̄∗<1> based on the qth iteration be denoted by µ̂y<rss>(q), t̄<0>(q),

t̄<1>(q), t̄<R>(q), t̄<d>(q), t̄∗<R>(q) and t̄∗<1>(q) respectively.
The percentage relative biases (RB) and mean square errors (MSE) of the seven esti-

mators are computed by the following formula:

(3.2) RB(θ̂) =
1

µy

(
1

R

R∑
q=1

θ̂ (q)− µy

)
and MSE(θ̂) =

1

R

R∑
q=1

(θ̂(q)− µy)2

where µy = 52.6768 and θ̂ = µ̂y<rss>, t̄<0>, t̄<1>, t̄<R>, t̄<d>, t̄
∗
<R>, t̄

∗
<1>.

The relative efficiency of the estimator θ̂ compared with the conventional estimator
µy<rss>(q) is given by

(3.3) RE(θ̂) = 100×MSE(µ̂y<rss>)/MSE(θ̂)%

The values of RB(θ̂) and RE(θ̂) are computed for different combinations of m(=
3, 4, 6, 10) and r = (3, 6, 8, 9, 12, 15, 18, 20, 36). These are presented in the following Table-
1 and Table-2. The simulation study shows for unknown, µx, the population mean of x,
all the proposed estimators are approximately unbiased. The maximum absolute relative
bias was 1.25. The minimum standard error (which is approximately

√
MSE ) is 3.69

(not shown in the table). The biases of all the estimators are ignorable since the maximum
of the ratio of bias of an estimator to its standard error is 0.0034 << 0.1(see Cochran
(1977)). For a given sample size n(= mr) the biases of all the estimators increase with
m. As per efficiency, all the proposed estimators are more efficient than the conventional
estimator µ̂y<rss> in all situations considered here. The estimator t̄<1> performed the
best, closely followed by t<R> and t<0>. The estimator t<d> performed least among the
proposed five estimators. The maximum relative efficiency 147.70 was attained by t̄<1>

with m = 10, r = 9 and it attained the minimum 133.66 when m = 3, r = 12. This
shows that the estimator t̄<1> brings gains in efficiency over the conventional estimator
µ̂y<rss> between 33% and 48% for estimating the population mean µy. However, in case
µx, the population mean is known one should use the estimators t∗<R> and t̄∗<1> as they
perform much better than all the proposed estimators with respect to bias and mean
square errors.
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Table-1: Relative Bias of the proposed estimators

Sample B
(
θ̂
)

size n m r µ̂y<rss> t̄<0> t̄<1> t̄<R> t̄<d> t̄∗<1> t̄∗<R>

3 12 0.29 −0.35 0.20 0.21 0.30 −0.24 −0.19
36 4 9 0.43 0.38 0.29 0.31 0.42 −0.14 −0.09

6 6 0.67 0.45 0.52 0.54 0.67 −0.05 0.03

54 3 18 0.26 −0.15 0.20 0.20 0.27 −0.15 −0.11
6 9 0.66 0.51 0.55 0.56 0.66 0.04 0.10

60 4 15 0.44 0.17 0.33 0.34 0.43 −0.02 0.02
10 6 1.19 1.14 1.12 1.12 1.19 0.06 0.21

3 24 0.30 −0.02 0.24 0.25 0.30 −0.11 −0.07
72 4 18 0.42 0.20 0.34 0.35 0.41 −0.00 0.04

6 12 0.66 0.54 0.58 0.59 0.66 0.07 0.13

80 4 20 0.41 0.21 0.34 0.34 0.41 0.00 0.04
10 8 1.19 1.18 1.15 1.15 1.19 0.10 0.24

3 30 0.30 0.06 0.28 0.28 0.31 −0.08 −0.04
90 6 15 0.65 0.57 0.59 0.59 0.65 0.10 0.16

10 9 1.21 1.20 0.16 1.17 1.21 0.11 0.26

108 3 36 0.32 0.12 0.30 0.30 0.33 −0.05 −0.01

120 6 20 0.65 0.57 0.60 0.60 0.64 0.13 0.19
10 12 1.21 1.21 1.19 1.19 1.22 0.14 0.28
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Table-2: Relative Efficiencies of the proposed estimators

Sample E
(
θ̂
)

size n m r µ̂y<rss> t̄<0> t̄<1> t̄<R> t̄<d> t̄∗<1> t̄∗<R>

3 12 100 119.29 133.66 132.87 115.94 427.32 410.01
36 4 9 100 118.63 139.52 138.29 117.99 394.42 380.69

6 6 100 109.33 145.55 143.67 119.70 356.66 342.76

54 3 18 100 125.59 134.50 133.27 116.05 434.01 409.9
6 9 100 125.52 146.00 143.67 119.70 363.26 343.26

60 4 15 100 129.13 140.14 138.46 118.05 401.35 379.73
10 6 100 111.93 147.67 144.93 119.97 320.61 301.68

3 24 100 127.54 134.09 132.81 115.94 440.94 412.61
72 4 18 100 130.61 139.48 137.83 117.87 402.2 378.78

6 12 100 132.17 146.41 143.77 119.69 366.35 343.37

80 4 20 100 132.37 140.18 138.39 118.05 403.1 378.85
10 8 100 124.22 147.28 144.39 119.78 323.22 302.52

3 30 100 129.53 134.71 133.33 116.13 441.11 411.54
90 6 15 100 135.51 146.19 143.50 119.63 368.25 344.19

10 9 100 127.61 147.70 144.69 119.86 322.81 302.05

108 3 36 100 130.82 134.74 133.26 116.06 443.02 411.38

120 6 20 100 138.59 145.93 143.15 119.49 366.84 341.58
10 12 100 133.46 146.66 143.75 119.59 325.82 303.93
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