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A new generalized intuitionistic fuzzy set

Ezzatallah Baloui Jamkhaneh ∗ and Saralees Nadarajah † ‡

Abstract
A generalized intuitionistic fuzzy set (GIFSB) is proposed. It is shown
that Atanassov’s intuitionistic fuzzy set, intuitionistic fuzzy sets of root
type and intuitionistic fuzzy sets of second type are special cases of
this new one. Some important notions, basic algebraic properties of
GIFSB , three operators and their relationship are discussed. The al-
gebraic properties include being closed under union, being closed under
intersection, being closed under a necessity measure, being closed under
a possibility measure and de Morgan type identities.
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1. Introduction
The concept of fuzzy sets was introduced by Zadeh [22] whose basic component is

only a degree of membership. Atanassov [2] generalized this idea to intuitionistic fuzzy
sets (IFS) using a degree of membership and a degree of non-membership, under the
constraint that the sum of the two degrees does not exceed one. A fuzzy set can be
considered as IFS, since the sum of these grades is one. However, there are different
situations when the sum of two degrees is smaller than one, which means that there is a
certain ambiguity in the decision of membership or non-membership. For such cases the
IFS is an appropriate tool.

A generalized intuitionistic fuzzy set (GIFS) were proposed by Mondal and Samanta
[14] under the constraint that the minimum of the two degrees does not exceed half.
Following the definition of IFS, Atanassov [3] [4] and Atanassov and Gargov [5] introduced
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interval valued IFSs, IFSs of second type, and temporal IFS. Srinivasan and Palaniappan
[19] introduced IFSs of root type.

Some other extensions of the IFSs have also been introduced: IF soft sets due to Maji
et al. [12]; IF rough sets due to Samanta and Mondal [18]; rough IFSs due to Rizvi et
al. [17].

Some recent applications of IFSs have been: sustainable energy planning in Malaysia
(Abdullah and Najib [1]); image fusion (Balasubramaniam and Ananthi [6]); agricultural
production planning from a small farm holder perspective (Bharati and Singh [7]); medi-
cal diagnosis (Bora et al. [8]); pattern recognition (Chu et al. [9]); reservoir flood control
operation (Hashemi et al. [10]); reliability optimization of complex system (Mahapatra
and Roy [11]); fault diagnosis using dissolved gas analysis for power transformer (Mani
and Jerome [13]); prioritizing the components of SWOT matrix in the Iranian insur-
ance industry (Nikjoo and Saeedpoor [15]); prediction of the best quality of two-wheelers
(Pathinathan et al. [16]); study of the decision framework of wind farm project plan
selection (Wu et al. [21]).

The aim of this paper is to introduce new generalized IFSs and to derive their proper-
ties. The derived properties include: i) if A and B are generalized IFSs then their union
and intersection are also generalized IFSs; ii) if A, B and C are generalized IFSs, A is a
subset of B and B is a subset of C then A is a subset of C; iii) if A is a generalized IFS
then its necessity and possibility measures are also generalized IFSs; iv) if the degree of
non-determinacy of an element of a generalized IFS is zero then that for the nth power
of the set is also zero; v) if A is a generalized IFS then the necessity measure of the nth
power of A is the same as the nth power of the necessity measure of A; vi) if A is a
generalized IFS then the possibility measure of the nth power of A is the same as the
nth power of the necessity measure of A; vii) if A is a generalized IFS and m ≥ n then
the mth power of A is a subset of the nth power of A; viii) if A is a generalized IFS
and m ≥ n then nA is a subset of mA; ix) if A and B are generalized IFSs and A is a
subset of B then nA is a subset of nB; x) if A and B are generalized IFSs and A is a
subset of B then the nth power of A is a subset of nth power of B; xi) if A and B are
generalized IFSs then the nth power of the union of A and B is the same as the union
of the nth powers of A and B; xii) if A and B are generalized IFSs then the nth power
of the intersection of A and B is the same as the intersection of the nth powers of A
and B; xiii) if A and B are generalized IFSs then n times the union of A and B is the
same as the union of nA and nB; xiv) if A and B are generalized IFSs then n times the
intersection of A and B is the same as the intersection of nA and nB.

2. Preliminaries
In this section, we give some definitions of various types of IFS. We also define trian-

gular norms and triangular conorms. Let X denote a non-empty set.

1. Definition. (Atanassov [2]). An IFS A in X is defined as an object of the form
A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA : X → [0, 1] and νA : X → [0, 1]
denote, respectively, the degree of membership and degree of non-membership functions
of A, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

2. Definition. (Atanassov [3]). An intuitionistic fuzzy set of second type (IFSST) A inX
is defined as an object of the form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions
µA : X → [0, 1] and νA : X → [0, 1] denote, respectively, the degree of membership
and degree of non-membership functions of A, and 0 ≤ [µA(x)]

2 + [νA(x)]
2 ≤ 1 for each

x ∈ X.
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3. Definition. (Srinivasan and Palaniappan [20]). An intuitionistic fuzzy set of root
type (IFSRT) A in X is defined as an object of the form

A = {〈x, µA(x), νA(x) : x ∈ X〉} ,

where the functions µA : X → [0, 1] and νA : X → [0, 1] denote, respectively, the degree
of membership and degree of non-membership functions of A, and 0 ≤ 1

2

√
µA(x) +

1
2

√
νA(x) ≤ 1 for each x ∈ X.

4. Definition. (Atanassov [4]). A temporal IFS A in X is defined as an object of the
form A(T ) = {(x, t), µA(x, t), νA(x, t) : (x, t) ∈ E × T}, where the functions µA(x, t) and
νA(x, t) denote, respectively, the degree of membership and degree of non-membership
functions of A of the element x ∈ X at the time-moment t ∈ T , A ⊂ E is a fixed set and
0 ≤ µA(x, t) + νA(x, t) ≤ 1 for each (x, t) ∈ E × T .

5. Definition. A triangular norm is a binary operation on [0, 1], i.e., an operator T :
[0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1] the following conditions are satisfied:

i) Communicativity: T (x, y) = T (y, x),
ii) Associativity: T (x, T (y, z)) = T (T (x, y), z),
iii) Monotonicity: T (x, y) ≤ T (x, z) whenever y ≤ z,
iv) Boundary condition: T (x, 1) = x.

6. Definition. A triangular conorm is a binary operation on [0, 1], i.e., an operator
S : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1] the following conditions are satisfied:

i) Communicativity: S(x, y) = S(y, x),
ii) Associativity: S (x, T (y, z)) = S (T (x, y), z),
iii) Monotonicity: S(x, y) ≤ S(x, z) whenever y ≤ z,
iv) Boundary condition: T (x, 0) = x.

Generalized fuzzy intuitionistic metric spaces can be defined based on triangular norms
and triangular conorms.

3. New generalized intuitionistic fuzzy sets
7. Definition. Let X denote a non-empty set. Our generalized IFS A in X is defined
as an object of the form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA : X →
[0, 1] and νA : X → [0, 1] denote, respectively, the degree of membership and degree
of non-membership functions of A, and 0 ≤ µA(x)

δ + νA(x)
δ ≤ 1 for each x ∈ X and

δ = n or 1
n
, n = 1, 2, . . . , N . The collection of all of our generalized IFSs is denoted by

GIFSB(δ,X).

One of the geometrical interpretations of the GIFSB(δ,X) is shown in Figures 1 and
2. Let X denote a universal set and F a subset in the Euclidean plane with cartesian
coordinates. For a GIFSBA, a function fA from X to F can be constructed such that if
x ∈ X then p = (νA(x), µA(x)) = fA(x) ∈ F , 0 ≤ µA(x), νA(x) ≤ 1.

Let X be a set of ages of men over [0, 75]. Let A be a set of young men whose ages
are between 20 and 30. Define the membership and non membership functions of A as

µA(x) =



(
x− 10

10

)1/2

, if 10 ≤ x ≤ 20,

1, if 20 ≤ x ≤ 30,(
40− x
10

)1/2

, if 30 ≤ x ≤ 40,

0, otherwise,
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Figure 1. A geometrical interpretation of GIFSB with δ = 1 and 2.

Figure 2. A geometrical interpretation of GIFSB with δ = 0.5.

and

νA(x) =



(
20− x
15

)1/2

, if 5 ≤ x ≤ 20,

0, if 20 ≤ x ≤ 30,(
x− 30

15

)1/2

, if 30 ≤ x ≤ 45,

1, otherwise.

Since 0 ≤ µA(x)2+νA(x)2 ≤ 1, ∀x ∈ X, A = {〈x, µA(x), νA(x)〉 : x ∈ X} is a GIFSB(2).
Also, we can define the membership and non membership functions of A as

µA(x) =



(
x− 10

10

)2

, if 10 ≤ x ≤ 20,

1, if 20 ≤ x ≤ 30,(
40− x
10

)2

, if 30 ≤ x ≤ 40,

0, otherwise,
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and

νA(x) =



(
20− x
15

)2

, if 5 ≤ x ≤ 20,

0, if 20 ≤ x ≤ 30,(
x− 30

15

)2

, if 30 ≤ x ≤ 45,

1, otherwise.

Since 0 ≤ µA(x)
0.5 + νA(x)

0.5 ≤ 1, ∀x ∈ X, A = {〈x, µA(x), νA(x)〉 : x ∈ X} is a
GIFSB(0.5).

3.1. Remark. It is obvious that for all real numbers α, β ∈ [0, 1],
(i) if 0 ≤ α+β ≤ 1 and δ ≥ 1 then we have 0 ≤ αδ+βδ ≤ 1. With this consideration

if A ∈ IFS then A ∈ GIFSB .
(ii) if 0 ≤ αδ + βδ ≤ 1 and δ ≤ 1 then 0 ≤ α + β ≤ 1. With this consideration if

A ∈ GIFSB then A ∈ IFS.
(iii) if δ1 ≤ δ2 then αδ2 ≤ αδ1 and βδ2 ≤ βδ1 . It follows that GIFSB (δ1) ⊂

GIFSB (δ2).

3.2. Remark. GIFSB(1) = IFS, GIFSB(2) = GIFSST , andGIFSB
(
1
2

)
= GIFSRT .

8. Definition. Let X denote a non-empty set. Let A and B denote two GIFSBs such
that A = {〈x, µA(x), νA(x)〉 : x ∈ X} and B = {〈x, µB(x), νB(x)〉 : x ∈ X}. Define the
following relations and operations on A and B:

i. A ⊂ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νA(x), ∀x ∈ X,
ii. A = B if and only if µA(x) = µB(x) and νA(x) = νB(x), ∀x ∈ X,
iii. A ∪B = {〈x,max (µA(x), µB(x)) ,min (νA(x), νB(x))〉 : x ∈ X},
iv. A ∩B = {〈x,min (µA(x), µB(x)) ,max (νA(x), νB(x))〉 : x ∈ X},
v. A+B =

{〈
x, µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ, νA(x)δνB(x)δ

〉
: x ∈ X

}
, so

2A =

{〈
x, 1−

(
1− µA(x)δ

)2
, νA(x)

2δ

〉
: x ∈ X

}
and

nA =
{〈
x, 1−

(
1− µA(x)δ

)n
, νA(x)

nδ
〉
: x ∈ X

}
,

vi. A.B =
{〈
x, µA(x)

δ.µB(x)
δ, νA(x)

δ + νB(x)
δ − νA(x)δνB(x)δ

〉
: x ∈ X

}
, so

A2 =

{〈
x, µA(x)

2δ, 1−
(
1− νA(x)δ

)2〉
: x ∈ X

}
and

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
,

vii. A = {〈x, νA(x), µA(x)〉 : x ∈ X}.

Proposition 3.1 For A,B,C ∈ GIFSB , we have

i. A = A,
ii. A ⊂ B, B ⊂ C ⇒ A ⊂ C.

Proof. The proof is obvious. �

Proposition 3.2 For A,B ∈ GIFSB , we have
i. A ∪B ∈ GIFSB ,
ii. A ∩B ∈ GIFSB ,
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iii. δ ≥ 1⇒ A+B ∈ GIFSB , δ < 1⇒ A+B ∈ IFS,
iv. δ ≥ 1⇒ A.B ∈ GIFSB , δ < 1⇒ A.B ∈ IFS.

Proof. (i) Suppose max (µA(x), µB(x)) = µA(x). Since min (νA(x), νB(x)) ≤ νA(x), we
have

0 ≤ µA∪B(x)
δ + νA∪B(x)

δ

= (max (µA(x), µB(x)))
δ + (min (νA(x), νB(x)))

δ

= µA(x)
δ + (min (νA(x), νB(x)))

δ

≤ µA(x)
δ + νA(x)

δ ≤ 1.

Suppose now max (µA(x), µB(x)) = µB(x). Since min (νA(x), νB(x)) ≤ νB(x), we have

0 ≤ (max (µA(x), µB(x)))
δ + (min (νA(x), νB(x)))

δ

= µB(x)
δ + (min (νA(x), νB(x)))

δ

≤ µB(x)
δ + νB(x)

δ ≤ 1.

The proof of (i) is complete.
(ii) Proof of (i) is similar.

(iii) Since

A+B =
{〈
x, µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ, νA(x)δνB(x)δ

〉
: x ∈ X

}
,

we have

µA+B(x)
δ + νA+B(x)

δ

=
(
µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ

)δ
+
(
νA(x)

δνB(x)
δ
)δ

=
(
µA(x)

δ
(
1− µB(x)δ

)
+ µB(x)

δ
)δ

+
(
νA(x)

δνB(x)
δ
)δ
≥ 0

and

µA+B(x)
δ + νA+B(x)

δ

=
(
µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ

)δ
+
(
νA(x)

δνB(x)
δ
)δ

≤
((

1− νA(x)δ
)
+
(
1− νB(x)δ

)
−
(
1− νA(x)δ

)(
1− νB(x)δ

))δ
+
(
νA(x)

δνB(x)
δ
)δ

=
(
1− νA(x)δνB(x)δ

)δ
+
(
νA(x)

δνB(x)
δ
)δ

= (1− u)δ + uδ,

where u = νA(x)
δνB(x)

δ. If δ ≥ 1 then (1 − u)δ + uδ ≤ 1, hence A + B ∈ GIFSB . If
δ < 1 then (1 − u)δ + uδ ≤ 1, if and only if νA(x) = 0 or νB(x) = 0. But for any δ, we
have

µA+B(x) + νA+B(x)

= µA(x)
δ + µB(x)

δ − µA(x)δµB(x)δ + νA(x)
δνB(x)

δ

≤ µA(x)
δ + µB(x)

δ − µA(x)δµB(x)δ +
(
1− µA(x)δ

)(
1− µB(x)δ

)
= 1,

hence A+B ∈ IFS. The proof of (iii) is complete.
(iv). The proof of (iii) is similar. �
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9. Definition. The degree of non-determinacy (uncertainty) of an element x ∈ X to the
GIFSBA is defined by

πA(x) =
(
1− µA(x)δ − νA(x)δ

) 1
δ
.

3.3. Remark. It can be easily shown that πA(x)δ + µA(x)
δ + νA(x)

δ = 1.

10. Definition. For every GIFSBA = {〈x, µA(x), νA(x)〉 : x ∈ X}, we define the modal
logic operators, the necessity measure on A and the possibility measure on A, as

2A =

{〈
x, µA(x),

(
1− µA(x)δ

) 1
δ

〉
: x ∈ X

}
and

3A =

{〈
x,
(
1− νA(x)δ

) 1
δ
, νA(x)

〉
: x ∈ X

}
,

respectively.

11. Definition. Let X denote a non-empty finite set. For every GIFSB as

A = {〈x, µA(x), νA(x)〉 : x ∈ X} ,
two analogues of the topological operators, closure (C) and intersection (I), can be
defined on GIFSBs as

C(A) = {〈x,K,L〉 : x ∈ X} , K = max
y∈X

µA(y), L = min
y∈X

νA(y)

and

I(A) = {〈x, k, l〉 : x ∈ X} , k = min
y∈X

µA(y), l = max
y∈X

νA(y).

It is obvious that both C(A) and I(A) are GIFSB . These two operators transform a
given GIFSB to a new GIFSB .

12. Definition. Let X denote a non-empty finite set and let A denote a finite GIFSB .
The normalization of A denoted by NORM(A) is defined by

NORM(A) =

{〈
x,

µA(x)
δ

supµA(x)δ
,
νA(x)

δ − inf νA(x)
δ

1− inf νA(x)δ

〉
: x ∈ X

}
.

Proposition 3.3 Let A,B ∈ GIFSB . We have
i. 2A ∈ GIFSB ,
ii. 3A ∈ GIFSB ,
iii. πA(x) = 0⇒ πAn(x) = 0.

Proof. (i) Follows by noting that

µ2A(x)
δ + ν2A(x)

δ = µA(x)
δ +

((
1− µA(x)δ

) 1
δ

)δ
= 1.

Proof of (ii) is similar to that of (i). (iii) Since

πA(x) =
(
1− µA(x)δ − νA(x)δ

) 1
δ
,

we have

πA(x) = 0

⇒
(
1− µA(x)δ − νA(x)δ

) 1
δ
= 0

⇒ µA(x)
δ + νA(x)

δ = 1

⇒ µA(x)
δ = 1− νA(x)δ.
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By using this result, we have

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
=

{〈
x, µA(x)

nδ, 1− µA(x)nδ
〉
: x ∈ X

}
.

It is now obvious that πAn(x) = 0. �

3.4. Proposition. Let A denote a GIFSB and n any positive real number. Then, the
following relations are true at the extreme values of µA(x) and νA(x):

i. 2An = (2A)n,
ii. 3An = (3A)n.

Proof. (i) Since

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
,

we have

2An =

{〈
x, µA(x)

nδ,
(
1− µA(x)nδ

2
) 1
δ

〉
: x ∈ X

}
.

Also since

2A =

{〈
x, µA(x),

(
1− µA(x)δ

) 1
δ

〉
: x ∈ X

}
,

we have

(2A)n =
{〈
x, µA(x)

nδ, 1−
(
1−

(
1− µA(x)δ

))n〉
: x ∈ X

}
=

{〈
x, µA(x)

nδ, 1− µA(x)nδ
〉
: x ∈ X

}
.

Assume 2An = (2A)n. Consequently, we must have(
1− µA(x)nδ

2
) 1
δ
= 1− µA(x)nδ,(

1− µA(x)nδ
2
)
=
(
1− µA(x)nδ

)δ
,

1− uδ = (1− u)δ, u =
(
1− µA(x)nδ

)
.

Hence, (i) is true if and only if µA(x) = 0 or 1, ∀x ∈ X.
(ii) We know that

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
and

3An =

{〈
x,

(
1−

(
1−

(
1− νA(x)δ

)n)δ) 1
δ

, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
.

Also

3A =

{〈
x,
(
1− νA(x)δ

) 1
δ
, νA(x)

〉
: x ∈ X

}
,

so

(3A)n =

{〈
x,
(
1− νA(x)δ

)nδ
δ
, 1−

(
1− νA(x)δ

)n〉
: x ∈ X

}
=

{〈
x,
(
1− νA(x)δ

)n
, 1−

(
1− νA(x)δ

)n〉
: x ∈ X

}
.
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Assume 3An = (3A)n. Consequently, we must have(
1−

(
1−

(
1− νA(x)δ

)n)δ) 1
δ

=
(
1− νA(x)δ

)n
,(

1−
(
1− νA(x)δ

)n)δ
= 1−

(
1− νA(x)δ

)nδ
,

(1− u)δ = 1− uδ, u =
(
1− νA(x)δ

)n
.

Hence, (ii) is true if and only if νA(x) = 0 or 1, ∀x ∈ X. �

3.5. Proposition. For every GIFSBA, we have
i. m ≥ n⇒ Am ⊂ An,
ii. m ≥ n⇒ nA ⊂ mA,
iii. An = nA,

where m and n are both positive numbers.

Proof. (i) Since

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
,

we have

Am =
{〈
x, µA(x)

mδ, 1−
(
1− νA(x)δ

)m〉
: x ∈ X

}
.

Since m ≥ n, we have µA(x)n ≥ µA(x)m, so µA(x)nδ ≥ µA(x)mδ and µAn(x) ≥ µAm(x).
Also since νA(x) ≤ 1, we have

(
1− νA(x)δ

)m ≤ (1− νA(x)δ)n, so
1−

(
1− νA(x)δ

)n
≤ 1−

(
1− νA(x)δ

)m
⇒ νAn(x) ≤ νAm(x),

completing the proof. The proof of (ii) is similar to that of (i). The proof of (iii) is
immediate. �

3.6. Proposition. Let A,B ∈ GIFSB . We have
i. A ⊂ B ⇒ nA ⊂ nB,
ii. A ⊂ B ⇒ An ⊂ Bn,
iii. (A ∪B)n = An ∪Bn,
iv. (A ∩B)n = An ∩Bn,
v. n (A ∪B) = nA ∪ nB,
vi. n (A ∩B) = nA ∩ nB.

Proof. (i) Since A ⊂ B, we have µA(x) ≤ µB(x) and

µA(x)
δ ≤ µB(x)δ ⇒ 1− µB(x)δ ≤ 1− µA(x)δ ⇒

(
1− µB(x)δ

)n
≤
(
1− µA(x)δ

)n
,

so

1−
(
1− µA(x)δ

)n
≤ 1−

(
1− µB(x)δ

)n
⇒ µnA(x) ≤ µmB(x).

Also since A ⊂ B, we have νB(x) ≤ νA(x) and

νB(x)
nδ ≤ νA(x)nδ ⇒ νnB(x) ≤ νnA(x),

completing the proof.
(ii) follows since

A ⊂ B ⇒ B ⊂ A⇒ nB ⊂ nA⇒ nA ⊂ nB ⇒ An ⊂ Bn.
(iii) follows since

A ∪B = {〈x,max (µA(x), µB(x)) ,min (νA(x), νB(x))〉 : x ∈ X}
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and
(A ∪ B)

n

=
{〈
x, (max (µA(x), µB(x)))

nδ
, 1−

(
1−min (νA(x), νB(x))

δ
)n〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
1−min

(
νA(x)

δ
, νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
max

(
1− νA(x)

δ
, 1− νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−max

((
1− νA(x)

δ
)n

,
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
,min

(
1−

(
1− νA(x)

δ
)n

, 1−
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

= A
n ∪ Bn.

(iv) follows since

A ∩B = {〈x,min (µA(x), µB(x)) ,max (νA(x), νB(x))〉 : x ∈ X}
and

(A ∩ B)
n

=
{〈
x, (min (µA(x), µB(x)))

nδ
, 1−

(
1−max (νA(x), νB(x))

δ
)n〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
1−max

(
νA(x)

δ
, νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
min

(
1− νA(x)

δ
, 1− νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−min

((
1− νA(x)

δ
)n

,
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
,max

(
1−

(
1− νA(x)

δ
)n

, 1−
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

= A
n ∩ Bn.

(v) follows since
n (A ∪ B)

=
{〈
x, 1−

(
1−max (µA(x), µB(x))

δ
)n

,min (νA(x), νB(x))
nδ
〉

: x ∈ X
}

=
{〈
x, 1−

(
1−max

(
µA(x)

δ
, µB(x)

δ
))n

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

=
{〈
x, 1−

(
min

(
1− µA(x)

δ
, 1− µB(x)

δ
))n

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

=
{〈
x, 1−min

((
1− µA(x)

δ
)n

,
(
1− µB(x)

δ
)n)

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

=
{〈
x,max

(
1−

(
1− µA(x)

δ
)n

, 1−
(
1− µB(x)

δ
)n)

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

= nA ∪ nB.

The proof of (vi) is similar to that of (v). �

4. The operators Dα(A), Fα,β(A) and Gα,β(A)

Let A = {〈x, µA(x), νA(x)〉 : x ∈ X} denote a GIFSB .

13. Definition. Let α ∈ [0, 1] and A ∈ GIFSB . We define the operator of Dα(A) as

Dα(A) =

{〈
x,
(
µA(x)

δ + απA(x)
δ
) 1
δ
,
(
νA(x)

δ + (1− α)πA(x)δ
) 1
δ

〉
: x ∈ X

}
.

Clearly, Dα(A) is a GIFSB .

4.1. Theorem. For every GIFSBA and for every α, β ∈ [0, 1], we have
i. α ≤ β ⇒ Dα(A) ⊂ Dβ(A),
ii. D0(A) = 2A,
iii. D1(A) = 3A.
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Proof. The proof of (i) is immediate.
(ii) We have

D0(A) =

{〈
x,
(
µA(x)

δ + 0× πA(x)δ
) 1
δ
,
(
νA(x)

δ + (1− 0)πA(x)
δ
) 1
δ

〉
: x ∈ X

}
=

{〈
x, µA(x),

(
νA(x)

δ + πA(x)
δ
) 1
δ

〉
: x ∈ X

}
=

{〈
x, µA(x),

(
1− µA(x)δ

) 1
δ

〉
: x ∈ X

}
= 2A,

where the penultimate equality follows since πA(x)δ = 1 − µA(x)
δ − νA(x)

δ. So, (ii)
follows.
(iii) We have

D1(A) =

{〈
x,
(
µA(x)

δ + 1× πA(x)δ
) 1
δ
,
(
νA(x)

δ + (1− 1)πA(x)
δ
) 1
δ

〉
: x ∈ X

}
=

{〈
x,
(
µA(x)

δ + πA(x)
δ
) 1
δ
, νA(x)

〉
: x ∈ X

}
=

{〈
x,
(
1− νA(x)δ

) 1
δ
, νA(x)

〉
: x ∈ X

}
= 3A,

completing the proof. �

14. Definition. Let α.β ∈ [0, 1], where α + β ≤ 1. Let A ∈ GIFSB . We define the
operator of Fα,β(A) as

Fα,β(A) =

{〈
x,
(
µA(x)

δ + απA(x)
δ
) 1
δ
,
(
νA(x)

δ + βπA(x)
δ
) 1
δ

〉
: x ∈ X

}
.

4.2. Theorem. For every GIFSBA and for any α, β ∈ [0, 1], where α+ β ≤ 1, we have
i. Fα,β(A) ∈ GIFSB ,
ii. 0 ≤ γ ≤ α⇒ Fγ,β(A) ⊂ Fα,β(A),
iii. 0 ≤ γ ≤ β ⇒ Fα,β(A) ⊂ Fα,γ(A),
iv. Dα(A) = Fα,1−α(A),
v. 2A = F0,1(A),
vi. 3A = F1,0(A),
vii. Fα,βA = Fβ,α(A).

Proof. (i) follows since

µFα,β(A)(x)
δ + νFα,β(A)(x)

δ

=

[(
µA(x)

δ + απA(x)
δ
) 1
δ

]δ
+

[(
νA(x)

δ + βπA(x)
δ
) 1
δ

]δ
= µA(x)

δ + νA(x)
δ + πA(x)

δ(α+ β)

≤ µA(x)
δ + νA(x)

δ + πA(x)
δ = 1.

The proofs of (ii) and (iii) are immediate.
(iv) follows since

Fα,1−α(A)

=

{〈
x,
(
µA(x)

δ + απA(x)
δ
) 1
δ
,
(
νA(x)

δ + (1− α)πA(x)δ
) 1
δ

〉
: x ∈ X

}
= Dα(A).
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(v) follows by Theorem 4.1 after noting that D0(A) = F0,1(A) and D1(A) = F1,0(A)
from (iv).
(vi) follows by Theorem 4.1 after noting that D0(A) = F0,1(A) and D1(A) = F1,0(A)
from (iv).
(vii) since

Fβ,α(A) =

{〈
x,
(
µA(x)

δ + βπA(x)
δ
) 1
δ
,
(
νA(x)

δ + απA(x)
δ
) 1
δ

〉
: x ∈ X

}
and

Fα,β
(
A
)
=

{〈
x,
(
νA(x)

δ + απA(x)
δ
) 1
δ
,
(
µA(x)

δ + βπA(x)
δ
) 1
δ

〉
: x ∈ X

}
,

we have

Fα,β
(
A
)
=

{〈
x,
(
µA(x)

δ + βπA(x)
δ
) 1
δ
,
(
νA(x)

δ + απA(x)
δ
) 1
δ

〉
: x ∈ X

}
and Fα,β

(
A
)
= Fβ,α(A). �

15. Definition. Let α, β ∈ [0, 1] and A ∈ GIFSB . We define the operator of Gα,β(A)
as

Gα,β(A) =
{〈
x, α

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
.

4.3. Theorem. For every GIFSBA, and for any real numbers α, β, γ ∈ [0, 1], we have
i. Gα,β(A) ∈ GIFSB ,
ii. α ≤ γ ⇒ Gα,β(A) ⊂ Gγ,β(A),
iii. β ≤ γ ⇒ Gα,β(A) ⊃ Gα,γ(A),
iv. τ ∈ [0, 1]⇒ Gα,β (Gγ,τ (A)) = Gαγ,βτ (A) = Gγ,δ (Gα,β(A)),
v. Gα,β (C(A)) = C (Gα,β(A)),
vi. Gα,β (I(A)) = I (Gα,β(A)),
vii. Gα,β

(
A
)
= Gβ,α(A).

Proof. (i) follows since

Gα,β(A) =
{〈
x, α

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
and

µGα,β(A)(x)
δ + νGα,β(A)(x)

δ =
(
α

1
δ µA(x)

)δ
+
(
β

1
δ νA(x)

)δ
= αµA(x)

δ + βνA(x)
δ

≤ µA(x)
δ + νA(x)

δ ≤ 1.

(ii) We have

Gα,β(A) =
{〈
x, α

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
and

Gγ,β(A) =
{〈
x, γ

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
.

Since α ≤ γ, we have α
1
δ ≤ γ

1
δ and so α

1
δ µA(x) ≤ γ

1
δ µA(x), completing the proof of (ii).

The proof of (iii) is similar to that of (ii).
(iv) We have

Gγ,τ (A) =
{〈
x, γ

1
δ µA(x), τ

1
δ νA(x)

〉
: x ∈ X

}
,
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Gα,β (Gγ,τ (A)) =
{〈
x, α

1
δ γ

1
δ µA(x), β

1
δ τ

1
δ νA(x)

〉
: x ∈ X

}
=

{〈
x, (αγ)

1
δ µA(x), (βτ)

1
δ νA(x)

〉
: x ∈ X

}
= Gαγ,βτ (A)

and

Gγ,τ (Gα,β(A)) =
{〈
x, γ

1
δ α

1
δ µA(x), τ

1
δ β

1
δ νA(x)

〉
: x ∈ X

}
=

{〈
x, (γα)

1
δ µA(x), (τβ)

1
δ νA(x)

〉
: x ∈ X

}
=

{〈
x, (αγ)

1
δ µA(x), (βτ)

1
δ νA(x)

〉
: x ∈ X

}
= Gαγ,βτ (A),

so

Gα,β (Gγ,τ (A)) = Gαγ,βτ (A) = Gγ,τ (Gα,β(A)) .

(v) follows since

C(A) =

{〈
x,max

y∈X
µA(y),min

y∈X
νA(y)

〉
: x ∈ X

}
and

Gα,β (C(A)) =

{〈
x, α

1
δ max
y∈X

µA(y), β
1
δ min
y∈X

νA(y)

〉
: x ∈ X

}
=

{〈
x,max

y∈X
α

1
δ µA(y),min

y∈X
β

1
δ νA(y)

〉
: x ∈ X

}
= C (Gα,β(A)) .

(vi) follows since

I(A) =

{〈
x,min
y∈X

µA(y),max
y∈X

νA(y)

〉
: x ∈ X

}
and

Gα,β (I(A)) =

{〈
x, α

1
δ min
y∈X

µA(y), β
1
δ max
y∈X

νA(y)

〉
: x ∈ X

}
=

{〈
x,min
y∈X

α
1
δ µA(y),max

y∈X
β

1
δ νA(y)

〉
: x ∈ X

}
= I (Gα,β(A)) ,

where α, β ∈ [0, 1].
(vii) Let A = {〈x, µA(x), νA(x)〉 : x ∈ X} denote a GIFSB . Then,

A = {〈x, νA(x), µA(x)〉 : x ∈ X} ,

Gβ,α(A) =
{〈
x, β

1
δ µA(x), α

1
δ νA(x)

〉
: x ∈ X

}
,

Gα,β
(
A
)
=
{〈
x, α

1
δ νA(x), β

1
δ µA(x)

〉
: x ∈ X

}
,

Gα,β
(
A
)
=
{〈
x, β

1
δ µA(x), α

1
δ νA(x)

〉
: x ∈ X

}
,

and so Gα,β
(
A
)
= Gβ,α(A). �
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5. Conclusions
We have introduced a new generalized IFS (GIFSB) as an extension to the IFS. The

basic algebraic properties of GIFSB have been presented. Some operators on GIFSB
are defined and their relationship have been proved. A list of open problems is as follows:
i) define the generalized fuzzy intuitionistic number, norms, distances, metrics, metric
spaces, etc for the generalized IFS and study of their properties; ii) develop statistical
and probabilistic tools for the generalized IFS; iii) construct an axiomatic system for the
generalized IFS; iv) develop efficient algorithms and computer software for the construc-
tion of degrees of membership and nonmembership of a given generalized IFS; v) define
and study the properties of generalized IF boolean algebras; vi) develop information and
entropy measures corresponding to generalized IFSs; vii) develop preference theory and
utility theory for the generalized IFS; viii) compare with other generalizations of the IFS.

Acknowledgments
The authors thank the Editor and the two referees for carefully reading and for com-

ments which greatly improved the paper.

References
[1] Abdullah, L. and Najib, L. Sustainable energy planning decision using the intuitionistic

fuzzy analytic hierarchy process: Choosing energy technology in Malaysia, International
Journal of Sustainable Energy, doi: 10.1080/14786451.2014.907292, 2014.

[2] Atanassov, K.T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, 87-96, 1986.
[3] Atanassov, K.T. Intuitionistic Fuzzy Set, Theory and Applications, Springer Verlag, New

York, 1999.
[4] Atanassov, K.T. On the temporal intuitionistic fuzzy sets, In: Proceedings of the Ninth

International Conference IPMU 2002, Volume III, Annecy, France, July 1-5, pp. 1833-1837,
2002.

[5] Atanassov, K.T. and Gargov, G. Interval valued intuitionistic fuzzy sets, Fuzzy Sets and
Systems 31, 343-349, 1989.

[6] Balasubramaniam, P. and Ananthi, V.P. Image fusion using intuitionistic fuzzy sets, In-
formation Fusion 20, 21-30, 2014.

[7] Bharati, K. and Singh, R. Intuitionistic fuzzy optimization technique in agricultural pro-
duction planning: A small farm holder perspective, International Journal of Computer
Applications 89, 25-31, 2014.

[8] Bora, M., Bora, B., Neog, T.J. and Sut, D.K. Intuitionistic fuzzy soft matrix theory and
its application in medical diagnosis, Annals of Fuzzy Mathematics and Informatics, 2014.

[9] Chu, C.-H., Hung, K.-C. and Julian, P. A complete pattern recognition approach under
Atanassov’s intuitionistic fuzzy sets, Knowledge-Based Systems 66, 36-45, 2014.

[10] Hashemi, H., Bazargan, J., Meysam Mousavi, S. and Vahdani, B. An extended compromise
ratio model with an application to reservoir flood control operation under an interval-valued
intuitionistic fuzzy environment, Applied Mathematical Modelling 38, 3495-3511, 2014.

[11] Mahapatra, G.S. and Roy, T.K. Reliability optimisation of complex system using intu-
itionistic fuzzy optimisation technique, International Journal of Industrial and Systems
Engineering 16, 279-295, 2014.

[12] Maji, P.K., Biswas, R. and Roy, A.R. Intuitionistic fuzzy soft sets, Journal of Fuzzy Math-
ematics 9, 677-692, 2001.

[13] Mani, G. and Jerome, J. Intuitionistic fuzzy expert system based fault diagnosis using
dissolved gas analysis for power transformer, Journal of Electrical Engineering Technology,
2014.

[14] Mondal, T.K. and Samanta, S.K. Generalized intuitionistic fuzzy sets, Journal of Fuzzy
Mathematics 10, 839-861, 2002.



1551

[15] Nikjoo, A.V. and Saeedpoor, M. An intuitionistic fuzzy DEMATEL methodology for pri-
oritising the components of SWOT matrix in the Iranian insurance industry, International
Journal of Operational Research 20, 439-452, 2014.

[16] Pathinathan, T., Poonthentral, M. and Jon Arockiaraj, J. An application of generalized
intuitionistic fuzzy set using max-min composition algorithm for predicting the best quality
of two-wheelers, International Journal of Computing Algorithm 3, 697-699, 2014.

[17] Rizvi, S., Naqvi, H.J. and Nadeem, D. Rough intuitionistic fuzzy sets, In: Proceedings
of the Sixth Joint Conference on Information Sciences, Research Triangle Park, North
Carolina, USA, March 8-13, pp. 101-104, 2002.

[18] Samanta, S.K. and Mondal, T.K. Intuitionistic fuzzy rough sets and rough intuitionistic
fuzzy sets, Journal of Fuzzy Mathematics 9, 561-582, 2001.

[19] Srinivasan, R. and Palaniappan, N. Some operations on intuitionistic fuzzy sets of root
type, Notes on IFS 12, 20-29, 2006.

[20] Srinivasan, R. and Palaniappan, N. Some operators on intuitionistic fuzzy sets of root type,
Annals of Fuzzy Mathematics and Informatics 4, 377-383, 2012.

[21] Wu, Y., Geng, S., Xu, H. and Zhang, H. Study of decision framework of wind farm project
plan selection under intuitionistic fuzzy set and fuzzy measure environment, Energy Con-
version and Management 87, 274-284, 2014.

[22] Zadeh, L.A. Fuzzy sets, Information and Control 8, 338-356, 1965.




