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The modified beta Weibull distribution
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Abstract
A new five-parameter model called the modified beta Weibull proba-
bility distribution is being introduced in this paper. This model turns
out to be quite flexible for analyzing positive data and has bathtub and
upside down bathtub hazard rate function.
Our main objectives are to obtain representations of certain statistical
functions and to estimate the parameters of the proposed distribution.
As an application, the probability density function is utilized to model
two actual data sets. The new distribution is shown to provide a better
fit than related distributions.
The proposed distribution may serve as a viable alternative to other
distributions available in the literature for modeling positive data aris-
ing in various fields of scientific investigation such as reliability theory,
hydrology, medicine, meteorology, survival analysis and engineering.
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1. Introduction
The Weibull distribution is a very popular distribution named after Waloddi Weibull,

a Swedish physicist. He used it in 1939 to analyze the breaking strength of materi-
als. Ever since, it has been widely used for analyzing lifetime data. However, this
distribution does not have a bathtub or upside–down bathtub shaped hazard rate func-
tion, that is why it cannot be utilized to model the life time of certain systems. To
overcome this shortcoming, several generalizations of the classical Weibull distribution
have been discussed by different authors in recent years. Many authors introduced flex-
ible distributions for modeling complex data and obtaining a better fit. Extensions
of Weibull distribution arise in different areas of research as discussed for instance in
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[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 21, 24] and [27]. Many extended Weibull models
have an upside–down bath tub shaped hazard rate, which is the case of the extensions
discussed by [4], [14], [18] and [25], among others.
Adding parameters to an existing distribution enables one to obtain classes of more flex-
ible distributions. Nadarajah et al. [17] introduced an interesting method for adding
three new parameters to an existing distribution. The new distribution provides more
flexibility to model various types of data. The baseline distribution has the cdf G(x),
then the new distribution is

F (x) =
1

B(a , b)

∫ {
cG(x)

(c−1)G(x)+1

}
0

xa−1(1− x)b−1 dx .(1.1)

The Modified beta Weibull probability density function obtained from (1.1) can be ex-
pressed in the following form:

f(x) =
cag(x){G(x)}a−1{1−G(x)}b−1

B(a, b){1− (1− c)G(x)}a+b .(1.2)

The cdf and pdf of Weibull distribution are defined as follows:

G(x) = 1− e−( xλ )k , λ > 0 , k > 0 , x > 0(1.3)

and

g(x) =
k

λ

(x
λ

)k−1

e−( xλ )k .(1.4)

We further generalize this model by applying the modified beta technique [17], which
results in what we are referring to as the modified beta Weibull (MBW) distribution.
The cdf, survival function, pdf and hazard rate function of the modified beta Weibull
distribution, for which G(x) is the baseline function, are respectively given by

F (x) =
1

B(a, b)
B

 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1 ; a, b

 ,(1.5)

S(x) = 1− 1

B(a, b)
B

 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1 ; a, b

 ,(1.6)

f(x) = ca k (x)−1+k
(

e−λ
−k xk

)b (
1− e−λ

−k xk
)−1+a

×

{
1− (1− c)

(
1− e−λ

−k xk
)}−a−b

λk B(a, b)
(1.7)

and

h(x) = k ca x−1+k λ−k
(

e−x
kλ−k

)b (
1− e−x

kλ−k
)−1+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b

 , x > 0 ,(1.8)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, Re(a) > 0, Re(b) > 0 and B(z; a, b) =

∫ z
0
ta−1(1−

t)b−1dt.
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Also λ > 0 , k > 0 , a > 0 , b > 0 , c > 0 . Equations (1.5) to (1.8) can be easily evalu-
ated numerically using computational packages such as Mathematica, Maple, MATLAB
and R. The following Mathematica code can be used for integration purposes: Inte-
grate[f(x),{x, 0, Infinity}]. Further, Figure 1 shows the correctness of the defined cdf.
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Figure 1. The MBW cdf. λ = 0.8, k = 1.6, a = 1.4, b = 1.5, c = 0.8,
(dotted line), λ = 4.8, k = 2.6, a = 3.4, b = 2.5, c = 1.8, (dashed
line), λ = 10, k = 6, a = 4, b = 5, c = 5, (solid line), λ = 1, k =
1.2, a = 1, b = 2, c = 0.1, (thick line).

Note that on making use of the identity

(1− z)−τ =

∞∑
n=0

Γ(τ + n)

Γ(τ)n!
zn , |z| < 1 , τ > 0 ,(1.9)

one has the following series representations of the pdf specified by (1.7)

f(x) =
ca x−1+kk

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
(

e−λ
−kxk

)m+b

.(1.10)
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Moreover, the first derivative of h(x), which is used to study the shapes of hazard rate
functions as explained in [13] is

d

dx
h(x) = c1+a k2 x−1+k λ−1−k

(
e−

x
λ

)k (
1− e−x

kλ−k
)−1+a (

e−x
kλ−k

)b
×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

{
c− c

(
e−

x
λ

)k}2

B(a, b)−B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


2

×

 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1


1+a

×

1− 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1


−1+b

+ k2x−2+2kλ−2k(a+ b)(1− c)ca
(

e−x
kλ−k

)1+b (
1− e−x

kλ−k
)−1+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−1−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


+ cak2λ−2k(a− 1)x−2+2k

(
e−x

kλ−k
)1+b (

1− e−x
kλ−k

)−2+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


− b ca

(
e−x

kλ−k
)b (

1− e−x
kλ−k

)−1+a

k2x−2+2kλ−2k

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


+ ca(k − 1)k λ−kx−2+k

(
e−x

kλ−k
)b (

1− e−x
kλ−k

)−1+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b

 .

Fig. 2, 3 and 4 plots some MBW curves for different choices of parameters for pdf and
hazard rate function. Figures 2 and 3 indicate how the new parameters a, b and c affect
the MBW density. These graphs illustrate the versatility of the MBW distribution. As
can be seen from left panel of Figure 2 that a is a scale parameter and from the right
panel of Figure 2 and left panel of Figure 3 that b and c are shape parameters. Similarly
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Figure 2. The MBW pdf. Left panel: λ = 0.5, k = 3.5, b = 2.8, c =
2.1 and a = 30 (dotted line) a = 50 (dashed line), a = 70 (solid line),
a = 100 (thick line). Right panel: λ = 0.5, k = 1, a = 1.5, c = 1.5 and
b = 1 (dotted line) b = 2 (dashed line), b = 3 (solid line), b = 4 (thick
line).
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Figure 3. Left panel: The MBW pdf. λ = 0.8, k = 1.6, a = 1.4, b =
1.5 and c = 0.8 (dotted line), c = 2 (dashed line), c = 4 (solid line),
c = 6 (thick line). Right panel: The MBW hazard rate function.
λ = 1.7, k = 1.2, b = 1.5, c = 3.5 and a = 1.2 (dotted line) a = 1.6
(short dashes), a = 2 (long dashes), a = 2.5 (solid line), a = 3 (thick
line).

right panel of Figure 3 and left and right panels of Figure 4 represent bathtub shaped
and upside down bathtub shaped hazard rate function.

The rest of the paper is organized as follows. Representations of certain statistical
functions are provided in Section 2. The parameter estimation technique described in
Section 3 is utilized in connection with the modeling of two actual data sets originat-
ing from the engineering and biological sciences in Section 4, where the new model is
compared with several related distributions.
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Figure 4. Left panel: The MBW hazard rate function. λ = 1.7, k =
1.2, a = 1.5, c = 3.5 and b = 1 (dotted line), b = 1.5 (dashed line),
b = 1.9 (long dashes), b = 2.3 (solid line), b = 2.8 (thick line). Right
panel: The MBW hazard rate function. λ = 2, k = 4, a = 2, b = 1.5
and c = 1.6 (dashed line), c = 2 (long dashes), c = 2.4 (solid line),
c = 2.8 (thick line).

2. Statistical Functions of the MBW Distribution
Here, we derive computable representations of some statistical functions associated

with the MBW distribution whose probability density function can be represented by
(1.10). The resulting expressions can be evaluated exactly or numerically with sym-
bolic computational packages such as Mathematica, MATLAB or Maple. In numerical
applications, infinite sum can be truncated whenever convergence is observed.

2.1. Moments. We now derive closed form representations of the positive, negative
and factorial moments of a MBW random variable. The rth raw moment of the MBW
distribution is

E(Xr) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
∫ ∞
0

xr x−1+k
(

e−λ
−k xk

)m+b

dx .(2.1)

Which gives

E(Xr) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
(
(b+m)λ−k

)− k+r
k Γ

(
k+r
k

)
k

.(2.2)

The hth order negative moment can readily be determined by replacing r with −h in
(2.1):

E(X−h) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
∫ ∞
0

x−h x−1+k
(

e−x
k/λk

)m+b

dx
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Which gives,

E(X−h) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
(
(b+m)λ−k

)−1+h
k Γ
(
1− h

k

)
k

.(2.3)

The factorial moments of X are

E(X(X − 1)(X − 2) · · · (X − γ + 1)) ≡
γ−1∑
m=0

φm(−1)j E(Xγ−m) ,(2.4)

where E(Xγ−m) can be evaluated by replacing r by γ −m in (2.1).

2.2. Moment Generating Function. The moment generating function of the MBW
distribution whose density function is specified by (1.10) will be derived here. First, we
consider a result developed in [23]:∫ ∞

0

xη−1e−θ x
k

es xdx =
(2π)1−(q+p)/2q1/2pη−1/2

(−s)η

×Gq,pp,q

((
−p
s

)p(θ
q

)q ∣∣∣∣∣ 1− i+η
p
, i = 0, 1, ...., p− 1

j/q, j = 0, 1, ...., q − 1

)
,(2.5)

where <(η),<(θ),<(s) < 0 and k is rational number such that k = p/q, where p and
q 6= 0 are integers.

The moment generating function of the MBW distribution whose density function is
specified by (1.10) is

M(t) =
ca

B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

xk−1e−(λ−k (m+b))xk et x dx

On replacing η with k, θ with λ−k (m + b)) and s with t. In the integrand of integral
and making use of (2.5), we have the following representation of the moment generating
function when k = p/q:

M(t) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

× (2π)1−(q+p)/2 q1/2p k−1/2

(−t)k

×Gq,pp,q

((−p
t

)p(λ−k (m+ b)

q

)q ∣∣∣∣∣ 1− i+k
p
, i = 0, 1, . . . , p− 1

j/q , j = 0, 1, . . . , q − 1

)
(2.6)

2.3. Entropy. Entropy is a concept encountered in Physics and Engineering. An ex-
tension of Shannon’s entropy for the continuous case can be defined as follows:

H(f) = −
∫ ∞
0

f(x) log(f(x)) dx .(2.7)
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Combining (1.10) with (2.7), one has the following representation:

H(f) = − cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

× log

(
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

)

×
∫ ∞
0

x−1+k
(

e−λ
−k xk

)m+b

dx

− cak(−1 + k)

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

x−1+k
(

e−λ
−k xk

)m+b

log (x) dx

+
cak (m+ b)

λ2kB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

x−1+2k
(

e−λ
−k xk

)m+b

dx .

H(f) = − ca

(m+ b)B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

× log

(
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

)

− cak(−1 + k)

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

(x)−1+k
(

e−λ
−k xk

)m+b

log (x) dx

+
ca

(m+ b)B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!
.(2.8)

Note that, the integral on the right–hand side of (2.8) can be evaluated by numerical
integration.

2.4. Mean Residue Life Function. The mean residue life function is defined as

K(x) =
1

S(x)

∫ ∞
x

(y − x) f(y) dy

=
1

S(x)

∫ ∞
x

y f(y) dy − x

=
1

S(x)

[
E(Y )−

∫ x

0

y f(y) dy

]
− x ,
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where f(y), S(x) and E(Y ) are as given in (1.10), (1.6) and (2.2), respectively and∫ x

0

yf(y)dy =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n)Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ x

0

yk
(

e−λ
−k yk

)m+b

dy .

=
ca k λ−k

B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ x

0

e−(m+b)λ−k yk yk dy

=
ca k λ−k

B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ x

0

ykG1,0
0,1

(
(m+ b)λ−k yp/q

∣∣∣∣∣ −0
)

dy ,(2.9)

where e−g(x) = G1,0
0,1

(
g(x)

∣∣∣∣∣ −0
)
, k = p/q , p ≥ 1 , q ≥ 1 are natural co-prime numbers

and ∫ x

0

ytG1,0
0,1

(
(m+ b)β yp/q

∣∣∣∣∣ −0
)

dy

=
q xp (t+1)

p(2π)(q−1)/2
Gq,pp,p+q

(
((m+ b)λ−k)q xp

qq

∣∣∣∣∣ −tp , 1−t
p
, . . . , p−t−1

p
,−

0 , −t−1
p

, t
p
, . . . , p−t−2

p

)
.(2.10)

Equation (2.10) is obtained by making use of Equation (13) of [5].

2.5. Mean Deviation. The mean deviation about the mean is defined by

δ(X) =

∫ ∞
0

|x− E(X)| f(x) dx

=

∫ E(X)

0

(E(X)− x) f(x) dx+

∫ ∞
E(X)

(x− E(X)) f(x) dx .

where E(X) can be evaluated by letting r = 1 in (2.2). The mean deviation can easily
be evaluated by numerical integration.

3. Parameter Estimation
In this section, we will make use of the MBW, Transmuted–Weibull(TW) [1], Ku-

maraswamy modified Weibull (KwMW) [9], Extended Weibull (ExtW) [21], Exponential–
Weibull (EW) [5], Gamma–Weibull (GW) [22], Generalized modified Weibull (GMW)
[4], Modified Weibull (MW) [15], Generalized gamma (GG) [26], Two parameter Weibull
(Weibull) and Two parameter gamma (Gamma) distributions to model two well–known
real data sets, namely the ‘Carbon fibres’ [19] and the ‘Cancer patients’ [16] data sets.
The parameters of the MBW distribution can be estimated from the loglikelihood of
the samples in conjunction with the NMaximize command in the symbolic computa-
tional package Mathematica. Additionally, three goodness-of-fit measures are proposed
to compare the density estimates.
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3.1. Maximum Likelihood Estimation. In order to estimate the parameters of the
proposed MBW density function as defined in Equation (1.7), the loglikelihood of the
sample is maximized with respect to the parameters. Given the data xi, i = 1, . . . , n,
the loglikelihood function is

`(λ, k, a, b, c) = n {a log(c) + log(k)− k log(λ)− log(B(a, b))}

+ (k − 1)

n∑
i=1

log (xi) + b

n∑
i=1

log
(

e−xi
k/λk

)
+ (a− 1)

n∑
i=1

log
(

1− e−xi
k/λk

)
− (a+ b)

n∑
i=1

log
{

1− (1− c)
(

1− e−xi
k/λk

)}
(3.1)

where f(x) is as given in (1.7). The associated nonlinear loglikehood system ∂`(θ)
∂θ

= 0
for MLE estimator derivation reads as follows:

∂`(θ)

∂λ
= −k n

λ
+ b

n∑
i=1

k λ−1−k xki + (a− 1)

n∑
i=1

−e−λ
−k xki k λ−1−k xki

1− e−λ
−k xki

− (a+ b)

n∑
i=1

(1− c) e−λ
−k xki k λ−1−k xki

1− (1− c)
(

1− e−λ
−k xki

) = 0

∂`(θ)

∂k
= n

{
1

k
− log(λ)

}
+

n∑
i=1

log (xi)

+ b

n∑
i=1

{
λ−k log(λ)xki − λ−k log (xi)x

k
i

}
− (a− 1)

n∑
i=1

e−λ
−kxki

{
λ−k log(λ)xki − λ−k log (xi) x

k
i

}
1− e−λ

−k xki

− (a+ b)

n∑
i=1

(1− c)e−λ
−kxki

{
λ−k log(λ)xki − λ−k log (xi)x

k
i

}
1− (1− c)

(
1− e−λ

−kxki

) = 0

∂`(θ)

∂a
= n{log(c)− ψ(0)(a) + ψ(0)(a+ b)}+

n∑
i=1

log
(

1− e−λ
−kxki

)
−

n∑
i=1

log
{

1− (1− c)
(

1− e−λ
−k xki

)}
= 0

∂`(θ)

∂b
= n {−ψ(0)(b) + ψ(0)(a+ b)}

+

n∑
i=1

log
(

e−λ
−k xki

)
−

n∑
i=1

log
{

1− (1− c)
(

1− e−λ
−kxki

)}
= 0

∂`(θ)

∂c
=
an

c
− (a+ b)

n∑
i=1

1− e−λ
−k xki

1− (1− c)
(

1− e−λ
−k xki

) = 0 .(3.2)

Where ψ(0)(·) is the polygamma function. The above equations cannot be solved analyt-
ically and statistical software can be used to solve them numerically.
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3.2. Goodness-of-Fit Statistics. To verify the goodness-of-fit of certain statistical
models, some goodness-of-fit statistics shall be used. They are computed using the
symbolic computation package Mathematica. The following goodness-of-fit statistics are
considered: the Anderson-Darling, Cramér-von Mises and Akaike Information Criterion
(AIC) statistics for comparison purposes. The Anderson-Darling and Cramér-von Mises
statistics are widely utilized to determine how closely a specific distribution whose asso-
ciated cumulative distribution function denoted by cdf(·) fits the empirical distribution
associated with a given data set. Upper tail percentiles of the asymptotic distributions
of Anderson-Darling and Cramér-von Mises statistics were tabulated in [19]. The distri-
bution having the better fit will be the one whose goodness-of-fit statistic is the smallest.

4. Empirical illustrations
In this section, we present two applications where the MBW model is compared with

other related models, namely Transmuted–Weibull(TW) [1], Kumaraswamy modified
Weibull (KwMW) [9] Extended Weibull (ExtW) [21], Exponential–Weibull (EW) [5],
Gamma–Weibull (GW) [22], Generalized modified Weibull (GMW) [4], Modified Weibull
(MW) [15], Generalized gamma (GG) [26], Two parameter Weibull (Weibull) and Two
parameter gamma (Gamma) distributions. We make use of two data sets: first, the
Carbon fibres data set [19] and, secondly, the Cancer patients data set [16].

• The classical gamma (Gamma) distribution with density function

f(x) =
xξ−1 e−x/φ

φξ Γ(ξ)
, x > 0, φ, ξ > 0 .

• The classical Weibull (Weibull) distribution with density function

f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , x > 0, k, λ > 0 .

• The generalize gamma (GG) distribution [26] with density function

f(x) =
k λ−ξ xξ−1 e−λ

−k xk

Γ(ξ/k)
, x > 0, ξ, k, λ > 0 .

• The modified Weibull (MW) distribution [15] with density function

f(x) = αxγ−1(γ + λx) e(λx− αx γ eλ x), x > 0, γ, α > 0, λ ≥ 0.

• The generalized modified Weibull (GMW) distribution [4] with density function

f(x) = ϕαxγ−1 (γ + λx) e(λx−αxγ eλx)
{

1− e(−αxγ eλx)
}ϕ−1

,

x > 0, γ, α, ϕ > 0, λ ≥ 0.

• The gamma–Weibull distribution [22] with density function

f(x) =
k λ−k−ξ x ξ+k−1e−λ

−k xk

Γ(1 + ξ/k)
, x > 0, ξ + k > 0, λ > 0 .

• The exponential–Weibull (EW) distribution [5] with density function

f(x) =
(
λ+ β k xk−1

)
e−λx−β x

k

, x > 0, λ, β, k > 0 .

• The Transmuted–Weibull(TW) [1] with density function

f(x) =
ηe−( xσ )η ( x

σ

)η−1
{

2λ e−( xσ )η − λ+ 1
}

σ
, x > 0, σ, η, λ > 0 .
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• The extended Weibull (ExtW) distribution [21] with density function

f(x) = a (c+ b x)x−2+b e−c/x−ax
be−c/x , x > 0, a, b > 0, c ≥ 0 .

• The Kumaraswamy modified Weibull (KwMW) distribution [9] with density
function

f(x) = a bαxγ−1 (γ + λx) e(λx−αxγ eλ x)
{

1− e(−αx
γ eλ x)

}a−1

×
[
1−

{
1− e(−αx

γ eλ x)
}a]b−1

, x > 0, a, b, α, γ > 0, λ ≥ 0 .
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Figure 5. Left panel: The MBW density estimate superimposed on
the histogram for Carbon fibres data . Right panel: The MBW cdf
estimates and empirical cdf.

Note that: The empirical cdf can be plotted using the following code in mathematica.
ListPlot[Table[{data[[i]], i/n-1/(2n)},{i, 1,n}]].

4.1. The Carbon Fibres Data Set. The first data set represents the uncensored real
data set on the breaking stress of carbon fibres (in Gba) as reported in [5]. The data are
(n = 66): 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19,
3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55,
3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88,
2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15,
1.08, 2.56, 1.80, 2.53.

4.2. The Cancer Patients Data Set. The second data set represents the remission
times (in months) of a random sample of 128 bladder cancer patients as reported in [16].
The data are 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97,
9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32,
7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90 , 2.69, 4.18, 5.34,
7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26,
5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98,
19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02,
3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The pdf and cdf estimates of the MBW distribution are plotted in Figures 5 and
6 for the Carbon fibres and Cancer patients data, respectively. The estimated hazard



1565

Table 1. Estimates of the Parameters, Goodness-of-Fit Statistics and
Loglikelihood for the Carbon Fibres Data

Distributions Estimates
Gamma (ξ , φ) 7.48803 0.368528
Weibull (k , λ) 3.4412 47.0505
GG (k , λ , ξ) 4.0735 3.34592 3.09225
MW(α , γ , λ) 0.021813 2.709212 0.248518
GMW(ϕ, α , γ , λ ) 5.49894 0.436399 0.148117 0.516284
GW (k , ξ , λ) 3.4412 1.6 × 10−7 3.06226
EW (k , λ , β) 3.73666 0.0170948 0.01401
TW (η , σ , λ ) 3.441197 3.745584 1
ExtW ( a , b , c) 16.1979 1 × 10−7 8.05671
KwMW(α , γ , λ , a , b) 0.14981 1.7994 0.49987 0.64975 0.17111
MBW (λ, k, a , b , c) 1.65934 2.23218 0.78685 0.55408 0.07248

Distributions A∗0 W∗0 AIC `(Θ̂)
Gamma (ξ , φ) 1.32674 0.248153 186.335 -91.1675
Weibull (k , λ) 0.491678 0.0843011 176.135 -86.0676
GG (k , λ , ξ) 0.487573 0.0811144 177.835 -85.9175
MW(α , γ , λ) 0.485662 0.0793299 177.727 -85.8636
GMW(ϕ, α , γ , λ ) 0.385439 0.0627953 178.746 -85.3731
GW (k , ξ , λ) 0.491678 0.0843011 178.135 -86.0676
EW (k , λ , β) 0.403649 0.06479 177.044 -85.5218
TW (η , σ , λ ) 0.491678 0.0843011 178.135 -86.0676
ExtW ( a , b , c) 2.26745 0.416152 207.47 -100.735
KwMW(α , γ , λ , a , b) 1.29338 0.213215 185.980 -87.9902
MBW (λ, k, a , b , c) 0.24516 0.034375 179.226 -84.613
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Figure 6. Left panel: The MBW density estimate superimposed on
the histogram for Cancer patients data . Right panel: The MBW cdf
estimates and empirical cdf.

rate function of MBW distribution are plotted in Figure 7. It can be seen that both
shapes of hazard rate function, for carbon fibers and cancer patients data sets are like
bathtub shaped hazard rate function. The estimates of the parameters and the values
of AIC, Anderson-Darling and Cramér-von Mises goodness–of–fit statistics are given in
Tables 1 and 2 for the Carbon fibres and Cancer patients data, respectively. It is seen
that the proposed MBW model provides the best fit for both data sets when considering
Anderson-Darling and Cramér-von Mises goodness–of–fit statistics and is a competitive
model when considering AIC.
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Table 2. Estimates of the Parameters, Goodness-of-Fit Statistics and
Loglikelihood for the Cancer Patients Data

Distributions Estimates
Gamma (ξ , φ) 1.17251 7.98766
Weibull (k , λ) 1.04783 10.651
GG (k , λ , ξ) 0.520095 0.595104 1.94927
MW(α , γ , λ) 0.093887 1.047834 3.6 × 10−11

GMW(ϕ, α , γ , λ ) 2.796005 0.453691 0.654409 5.8 × 10−13

GW (k , ξ , λ) 0.520095 1.42917 0.595104
EW (k , λ , β) 1.04783 1 × 10−7 0.093887
TW (η , σ , λ ) 1.133310 14.61979 0.744922
ExtW ( a , b , c) 1.9621 1 × 10−21 3.74383
KwMW(α , γ , λ , a , b) 0.639622 0.381865 0.029602 0.375 0.322843
MBW (λ , k, a , b , c) 0.32113 0.52381 1.29997 0.41823 0.053809
Distributions A∗0 W∗0 AIC `(Θ̂)
Gamma (ξ , φ) 0.77625 0.136063 830.736 -413.368
Weibull (k , λ) 0.963452 0.154303 832.174 -414.087
GG (k , λ , ξ) 0.300873 0.04526 827.708 -410.854
MW(α , γ , λ) 0.963452 0.154303 834.174 -414.087
GMW(ϕ, α , γ , λ ) 0.271984 0.04050 829.36 -410.68
GW (k , ξ , λ) 0.300873 0.045261 827.708 -410.854
EW (k , λ , β) 0.963452 0.154303 834.174 -414.087
TW (η , σ , λ ) 0.563397 0.0882597 829.916 -411.958
ExtW ( a , b , c) 13.3317 2.49818 1034.9 -514.498
KwMW(α , γ , λ , a , b) 18.8864 3.68568 979.652 -484.826
MBW (λ , k, a , b , c) 0.076133 0.0119393 828.612 -409.306
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Figure 7. Left panel: The estimated MBW hazard rate function for
carbon data . Right panel: The estimated MBW hazard rate function
for cancer patients data .

5. Discussion
There has been a growing interest among statisticians and applied researchers in

constructing flexible lifetime models in order to improve the modeling of survival data.
As a result, significant progress has been made towards the generalization of some well–
known lifetime models, which have been successfully applied to problems arising in several
areas of research. In particular, several authors have proposed new distributions which
are based on the traditional Weibull model. In this paper, we introduce a five–parameter
distribution which is obtained by applying the modified beta technique to the Weibull
model. Interestingly, our proposed model has bathtub and up side down bathtub shaped
hazard rate function.We studied some of its statistical properties. We also provided



1567

computable representations of the positive and negative moments, the factorial moments,
the moment generating function, the mean residue life function, the mean deviation and
the associated Shannon’s entropy. The proposed distribution was applied to two data
sets and shown to provide a better fit than other related models. The distributional
results developed in this article should find numerous applications in the physical and
biological sciences, reliability theory, hydrology, medicine, meteorology, engineering and
survival analysis.
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